

Exhibit X: Permitted Land Uses

Uses	
Accessory use customarily incidental to a permitted principal or special use	А
Automated teller machines (ATM) (Walkup)	Р
Automated teller machines (ATM) (Drive- up)	S
Child day care facility (See also Article 6)	Р, А
Clinic	P, A
College or University	Р
Essential services	P, A
Independent Senior Living Facility (See also Article 6)	Р, А
Public cultural facility	Р, А
Public service facility (See also Article 6)	Р, А
Public use facility	P, A
Radio, television or wireless transmitting and/or receiving antenna, accessory	А
Recreation facility: Non-profit	Р, А
Research activities	Р, А
Temporary portable building: Construction-related (See also Article 6)	А
Temporary portable building: Not construction-related	S

Legal Description: Former Dixon Property

Beginning at an iron pipe located in the southern right of way of Estes Drive Extension (S.R. 1780) running thence S 11° 23′ 00″ E 348.61 feet to an iron pipe, thence N 76° 30′ 50″ W 161.71 feet to an iron pipe; thence N 76° 30′ 50″ W 86.10 feet to an iron pipe located in the eastern right of way of Powell Street; thence N 76° 51′ 00″ W 66.45 feet to an iron pipe located in the western right of way of Powell Street; thence N 76° 29′ 00″ W 247.69 feet to an iron pipe; thence N 76° 29′ 00″ W 216.68 feet to an iron pipe located in the southern right of way of Estes Drive Extension (S.R. 1780); thence with the southern right of way of Estes Drive Extension (S.R. 1780) in a general northeasterly direction along a 557.97 foot radius curve to the right, said curve having a chord bearing and distance of N 62° 17′ 17″ E 248.62 feet, to an iron pipe in the southern right of way of Estes Drive Extension (S.R. 1780); thence continuing with the southern right of way of Estes Drive Extension (S.R. 1780) N 75° 09′ 40″ E 321.76 to an iron pipe, the point and place of beginning, containing 2.42 acres, more or less.

Legal Description: Facilities Parcel Division

Beginning at an iron pipe located in the southern right of way of Estes Drive Extension (S.R. 1780) running thence S 21° 31′ 42″ E 346.01 feet to an iron pipe; thence S 86°46′ 22″ E 1109.76 feet to a point; thence N 00° 41′ 32″ E 744.68 feet to a point; thence N 33° 28′ 00″ W 319.16 feet to a point in the southern right of way of Estes Drive Extension (S.R. 1780); thence with the southern right of way of Estes Drive Extension (S.R. 1780) in a general northwesterly direction along a 2019.02 foot radius curve to the right, said curve having a chord bearing and distance of S 53° 57′ 42″ W 586.01 feet, to a point in the southern right of way of Estes Drive Extension (S.R. 1780); thence continuing with the southern right of way of Estes Drive Extension S 64° 46′ 47″ W 685.46 feet to an iron pipe, the place and point of beginning, containing 18.13 acres, more or less.

Exhibit X - Zoning Atlas Amendment Application

ZONING ATLAS AMENDMENT APPLICATION

TOWN OF CHAPEL HILL
Planning Department

405 Martin Luther King Jr. Blvd phone (919) 969-5066 fax (919) 969-2014 www.townofchapelhill.org

Parcel Iden	tifier Number (PIN)	9789-24-7373	, 9789-03-3	163	Date:	March	8, 2018	Wastern ground access
Section A:	Project Informa	ation						
Project Na	me:	Town and University	Joint Service	s Center	-			
Property A	ddress:	Unaddressed			Zip Code:	27514		,
Use Group	s (A, B, and/or C):	В	Ex	isting Zoning District:	OI-2	***************************************		
	A rezoning from OI-2 to U-1 to facilitate a Development Agreement that will allow for the Town							
Project Des	scription:	Municipal Services Co				·		tion or the same of the same o
		description of the second seco	-		OTTO CONTROL OF STREET			
Section B:	Applicant, Own	er, and/or Contrac	ct Purchase	er Information				
Applic	ant Information (to whom correspon	dence will b	e mailed)				CONTRACTOR OF STREET
Name:	Aaron Frank, Tov	n of Chapel Hill Planni	ng & Develo	oment Services				
Address:	405 Martin Luthe					***************************************		
City:	Chapel Hill		State:	NC	Zij	Code:	27514	Maritiment and the second seco
Phone:	919-969-5059		Email:	afrank@townofcha	pelhill.org			Manne
			Anna Anna Anna Anna Anna Anna Anna Anna					MOTOR CONTRACTOR CONTR
The un	dersigned applica	ant hereby certifies t	hat, to the	est of their knowle	dge and b	elief, all	information	
		lication is true and a			J			
Signature:	2/	nf			Date:	3//	5/18	
	11				-			
Owner	/Contract Purcha	ser Information (97	89-24-7373):		1		
Ov	vner		Co:	ntract Purchaser				
Name:	The University of	North Carolina at Cha	oel Hill					,
Address:	300 South Buildin	g – CB #1000		***************************************		SSASSIVE COMPANY CONTRACTOR CONTR		***************************************
City:	Chapel Hill		State:	North Carolina	Zip	Code:	27599-1000	-
Phone:	919-962-3795		Email:	annaw@fac.unc.edi	1		***************************************	
				:			***************************************	NACONAL PROPERTY OF THE PROPER
The un	dersigned applica	int hereby certifies t	hat, to the l	est of their knowle	dge and b	elief, all	information	
		lication is true and a						
Signature:	7hma 2	t-Wn	***************************************		Date:	03.10	5.2018	

ZONING ATLAS AMENDMENT APPLICATION SUBMITTAL REQUIREMENTS

TOWN OF CHAPEL HILL Planning Department

Owner/Contract Purchaser Information (9789-03-3163):

	Owner	□ c o	ntenet Durchage		
Name:	Trustees, University of North Carolina at	Chapel Hill	Endowment Fund		
Address	300 South Building – CB #1000				
City:	Chapel Hill	State:	North Carolina	Zip Code:	27599-1000
Phone:	919-962-3795	Email:	jpruitt@unc.edu		
		ormani		The second secon	
The	undersigned applicant hereby certifies the	nat, to the	best of their knowledge	e and belief, all	information
	plied within this application is true and a				
Signatu	re:	mento		Date: 3	1-15-2018
		A CONTRACTOR OF THE PROPERTY O	***************************************		13 2010
The	following must accompany your application	Cailura ta d			
	following must accompany your application. Implete. For assistance with this application, references.				
incomplete. For assistance with this application, please contact the Chapel Hill Planning Department (Planning) at (919) 969-5066 or at please refer to the Description of Detailed					
Infor	mation handout.				
N/A	Application fee (refer to fee schedule)			Amazara B	-:46 [11/4
				Amount Pa	aid \$ N/A
Yes Pre-Application Meeting – with appropriate staff					
Yes Digital Files – provide digital files of all plans and documents					
Yes Mailing list of owners of property within 1,000 foot perimeter of subject property (see GIS notification tool)					
N/A	Mailing fee for above mailing list			Amount Pa	aid \$
Yes	Written Narrative describing the proposal				
Yes	Statement of Justification				
Yes	Digital photos of site and surrounding prop	erties			
Yes	Legal description of property to be rezoned	I			
Yes	Phasing Plan (if applicable) indicating phasi	ng bounda	ries and phasing notes		
Yes	Yes Reduced Site Plan Set (reduced to 8.5" x 11")				

Plan Sets (10 copies to be submitted no larger than 24" x 36")

Plans should be legible and clearly drawn. All plan set sheets should include the following:

- Project Name
- Legend
- Labels

- North Arrow (North oriented toward top of page)
- Property Boundaries with bearing and distances
- Scale (Engineering), denoted graphically and numerically
- Setbacks
- Streams, RCD Boundary, Jordan Riparian Buffer Boundary, Floodplain, and Wetlands Boundary, where applicable

Area Map

- a) Project name, applicant, contact information, location, PIN, & legend
- b) Dedicated open space, parks, greenways
- c) Overlay Districts, if applicable
- d) Property lines, zoning district boundaries, land uses, project names of site and surrounding properties, significant buildings, corporate limit lines
- e) 1,000 foot notification boundary

Town University Joint Services Center Rezoning Application

Written Narrative

March 14, 2018

Orange County PINs 9789-24-7373, 9789-03-3163, ~20.55 acres

Introduction & Background

The Town has identified the need for a new Municipal Service Center facility and initiated an effort to identify potential sites that would meet the functional, operational, and location needs for several Town departments including the police, parks and recreation administration, fire department administration, health and wellness clinic, ombuds, and training. The Town also recognized this as an opportunity to facilitate increased collaboration, shared training, operations, and public services for Town operations.

The Town tested the capacity of a University-owned site on Estes Drive, recognizing that a coordinated effort could meet long-term interests for both the Town and the University. The site-test shows that there is a significant opportunity to develop a plan for the property that respects the site constraints, the neighboring properties, and complements the planned Carolina North campus. Co-location of certain functions could enhance operations, facilitate shared responses, and encourage joint training and planning for public safety or other uses.

In 2017, Town Council authorized the Town Manager to proceed with a development agreement for the site, and separately in 2017 the University Board of Trustees agreed to consider a lease that would set the groundwork for the Town and University to move forward with a project.

The "property" consists of two unaddressed parcels 9789-24-7373, 9789-03-3163, owned by the University of North Carolina and the University of North Carolina Endowment Fund, respectively. The project area contains approximately 20.55 acres. Of the 9789-24-7373 parcel, the project only encompasses the portion of this parcel that is currently zoned Office Institutional-2.

Property Rezoning & Development Agreement

The property is proposed to be rezoned from Office/Institutional-2 (OI-2) to University-1 (U-1) to allow for a maximum of 200,000 square feet, up to 50% of which may be occupied by the Town. The Town proposes to develop a portion of the property first with the future Town Municipal Services Center in an approximately ~72,000 square foot building. A 99 year lease is proposed and will accommodate the long-term timeline for future development of additional University and Town buildings.

The rezoning is proposed from Office/Institutional-2 to University-1 to facilitate the companion development agreement. A development agreement is an instrument suited to permit long-range implementation of a development program, shared infrastructure between the University and the Town, and a customized set of development standards. The University-1 (U-1) district is designed as a carrying district for a development agreement authorizing public uses such as civic and university uses, which are being proposed. The baseline permitted land uses within a U-1 zoning district are those within the Office/Institutional-4 district, a district designed primarily for University uses. The proposed permitted land uses with this application are refined further from this list to reflect compatibility with neighboring properties and the programmatic needs of the Town and the University. Notably, certain

land uses that are permitted within U-1 but generally regarded as more intense, such as *General Business*, *Service Stations*, will be prohibited by this Development Agreement.

A conceptual site plan accompanies the rezoning application and provides the anticipated general building and infrastructure layout of the site. This site plan was designed with input from adjacent property owners and University representatives. Site specific standards regarding site design and performance standards are proposed in the development agreement that reflect these conversations. Notably, vehicular access is prohibited to the south through the Elkin Hills neighborhood, buildings have been pushed towards Estes Drive, and a 100'+ vegetated buffer is proposed adjacent to the neighborhood to provide a harmonious transition to the adjacent neighborhood.

Draft development agreement standards are provided as an attachment to this application and will be refined further with continued discussion with community members, advisory boards, Town staff, and University staff. Six focused community meetings were held with community members prior to review by advisory boards and commissions.

Project Description

The University-1 zoning district intends for public or private development notably for university and civic uses. While the first user will be the Municipal Services Center the order of following development phases remains to be determined. However, the Municipal Services Project aims to limit the development envelope only to earthwork necessary for the Municipal Services Center and associated infrastructure. The infrastructure included in the first phase of development will include two vehicular accesses (as required for police access), parking only as needed for the Municipal Services Center (to limit development footprint), and stormwater management facilities that will meet the stormwater quantity and quality requirements for the anticipated full build-out by the Town and the University.. Stormwater management is anticipated through bio-retention basins, located at the southern portions of the site. These facilities are planned at depressed areas of the site to accommodate natural drainage patterns to the extent possible within the existing development footprint.

The project is designed with a centralized plaza between the primary buildings of the site, and a drive aisle will encircle the buildings leading to the two vehicular accesses; one of which is planned to match with the UNC park & ride access. Buildings have been brought towards Estes Drive in order to allow for greater buffering from the Elkin Hills neighborhood, and buildings and parking structures are proposed to be constructed into the hillside to limit relative height and land disturbance required for construction.

A 100'+ buffer of existing vegetation is proposed and a buffer is provided adjacent to the intermittent streams located on-site. Sanitary sewer will be connected from the south via Hartig Street, and a break in the buffer is required for this utility connection. A greenway is proposed to connect Justice Street to the Municipal Services Center for a non-vehicular connection as proposed in the Mobility & Connectivity Plan.

Three intermittent streams are located on the property and no development is planned within the 50' RCD except for the internal drive aisle, which is designed to cross the RCD perpendicularly to minimize disturbance.

Rezoning Statement of Justification

Town University Joint Services Center

March 21, 2018

Introduction

The Town and the University of North Carolina are seeking a rezoning from Office-Institutional-2 (OI-2) to University-1 (U-1) to facilitate the development of Town and University services on University-owned land. A rezoning to U-1 is necessary in order to accommodate the Development Agreement proposed between the Town and University. A Development Agreement is the appropriate zoning instrument to facilitate a long-term development partnership between the Town and University. The Town is pursuing a 99-year lease and build-out is anticipated within this period; a Special Use Permit would not allow for a long-term build-out during this timeframe. A total of 200,000 square feet of floor area, of which up to 50% may be occupied by the Town, is proposed across multiple buildings, and the Town anticipates constructing the Municipal Services Center in the immediate future to address Town needs. The remaining balance of square footage will be constructed by the University and the Town within the lease period although a timeline has not been established.

The project exists on two parcels, one of which contains the existing Giles Horney Building and other University services along Airport Drive. A zoning change is only requested for the OI-2-zoned portion of the property.

Compatibility with the Comprehensive Plan

This statement of justification demonstrates how the project aligns with goals of the Comprehensive Plan.

A Place for Everyone

The Municipal Services Center and surrounding grounds will be publicly accessible and the site will feature a pedestrian plaza, trails, and open space that may be used as amenities by the public. A design goal for the project is to create a pleasurable environment both for employees who work at the Municipal Services Center as well as for members of the public who visit the site. Ideally this property will be an amenity for nearby residents as well. The site will be accessible by multiple modes of transportation utilizing a proposed bus stop on Estes Drive, a greenway connection to Justice Street, and bicycle lanes on Estes Drive.

- Family-friendly, accessible exterior and interior places throughout the town for a variety of active uses (PFE.1)
- A creative place to live, work, and play because of Chapel Hill's arts and culture (PFE.2)
- A community of high civic engagement and participation (PFE.5)

Getting Around

The project is sited and designed in a way to promote multi-modal transportation opportunities for employees and visitors of the site. The users of the first phase of project development will be Town

employees, who are encouraged by the Town to use a variety of commuting options. The site is situated to capitalize on multi-modal transportation opportunities in the following ways:

<u>Transit:</u> The project site is located on Estes Drive and directly served by the NU and HS transit routes, and is less than half a mile from Martin Luther King Jr. Blvd, served by NS, G, T, and A routes. A bus stop is planned for on Estes Drive.

<u>Bicycle:</u> The property will be accessed by bicycle through bicycle lanes that may be provided on Estes Drive Extension, and bicycle parking shall be provided to meet Town standards. A Transportation Management Plan shall be submitted and reviewed on an annual basis to meet the Town's satisfaction.

<u>Pedestrian:</u> A greenway is proposed into the site via Justice Street and will provide connectivity and recreational opportunities for users of the municipal services center as well as residents from the surrounding neighborhood. A greenway may also be constructed along Estes Drive to provide future pedestrian connectivity along this roadway.

Vehicular parking shall be built to serve the phases as they are constructed in order to minimize the development envelope.

- A well-conceived and planned, carefully thought-out, integrated, and balanced transportation system that recognizes the importance of automobiles, but encourages and facilitates the growth and use of other means of transportation such as bicycle, pedestrian, and public transportation options (GA.1)
- A connected community that links neighborhoods, businesses, and schools through the provision of greenways, sidewalks, bike facilities, and public transportation (GA.2)
- Create a comprehensive transportation system that provides everybody safe and reasonable access to all the community offers (GA.5)
- A transportation system that accommodates transportation needs and demands while mitigating congestion and promoting air quality, sustainability, and energy conservation (GA.6)

Nurturing Our Community

This project is being designed in an environmentally conscious manner and LEED certification is being pursued. The building siting and orientation is designed to optimize southern building exposure for winter solar gain, and the buildings will feature natural daylighting to minimize energy usage. The building is designed to optimize collaborative and shared spaces for the multiple users of the building, both creating an innovative work environment as well resulting in a more efficient project footprint, resulting in economic and carbon reductions. The general siting of the Municipal Services Center in this location is necessary for police to provide fast response time, as well as to locate other Town services in a centralized location within the Town.

Stormwater management may be provided in bio-retention basins and will meet or exceed the minimum Town stormwater management requirements. Stormwater rate management is anticipated to exceed the 25-year, 24-hour storm event and the stormwater volume management may exceed the 2-year, 24-hour storm event. The final conditions and type of stormwater control measure will be determined when final engineering is performed. The project aims to provide maximum stormwater volume and rate control using bio-retention

basins located within the proposed development footprint. The first one inch of precipitation shall be treated to remove 85% of total suspended solids of all new impervious surfaces resulting from development anticipated at full build-out by the Town and the University, and the project shall meet Jordan Watershed Stormwater requirements for Nitrogen and Phosphorous removal. The Jordan Watershed Stormwater requirements for Nitrogen and Phosphorus are required as this project is located on State owned property and remains subject to these requirements.

A 50' RCD buffer is provided surrounding each of the intermittent streams of the site, and the driveway crossing has been designed to cross the buffer area in a perpendicular manner to reduce encroachment.

Attention has been given to the impact of stormwater runoff, light, noise pollution, and traffic to the adjacent neighborhood. The project will be designed with glare control light fixtures, and use of timed or photocell lights is being evaluated. The location of buildings has been designed close to Estes Drive in response to community feedback about visual impact of buildings to the surrounding properties.

Vehicular traffic is prohibited from the Elkin Hills neighborhood to prevent any traffic impacts to this residential area. A Transportation Impact Analysis has been performed and improvements to Estes Drive including a dedicated center turn lane will be provided.

- Maintain and improve air quality and water quality, and manage stormwater to heal local waterways and conserve biological ecosystems within the town boundaries and the Extra Territorial Jurisdiction (NOC.2)
- Reduce the carbon footprint of all Town-owned or managed services and properties; require that all new development meets standards; and support residents in minimizing their personal footprints (NOC.7)
- Protect neighborhoods from the impact of development such as stormwater runoff, light and noise pollution, and traffic (NOC.8)

Good Places, New Spaces

This project is a result of coordination between the University (property owner) and the Town to utilize the property that fits the needs of both the users, visitors of the property, as well as adjacent property owners. Environmental protection is proposed by consciously limiting the development envelope and maintaining a vegetative buffer along the periphery of the site. This project will serve an integral role in the Town's growth by offering new space for critical Town services, and also serving as an open gathering space accessible to the community.

The proposed use aligns with the future land use map and the form and density is proposed in such a manner to meet Town needs while maintaining compatibility with adjacent properties.

- A joint Town/University development strategy that aligns initiatives for transportation, housing, environmental protection, and entrepreneurial programs (GPNS.4)
- Open and accessible common spaces for community gathering, cultural uses, and community development (GPNS.7)
- Future land use, form, and density that strengthen the community, social equity, economic prosperity, and natural environment (GPNS.8)

Town and Gown Collaboration

This project is a collaborative effort between the Town and University to meet respective organizational interests while respecting the land and adjacent properties. Prior to filing of this rezoning application the Town project team has met several times with community members, University stakeholders, and reported project progress to Town Council to receive feedback.

• The University, the UNC Health Care System, and the Town will coordinate closely to manage development in ways that respect history, traditions, and the environment while fostering revitalization and innovation (TGC.5)

Municipal Services Center Photographs

View of site from Justice Street

View of site from Hartig Street

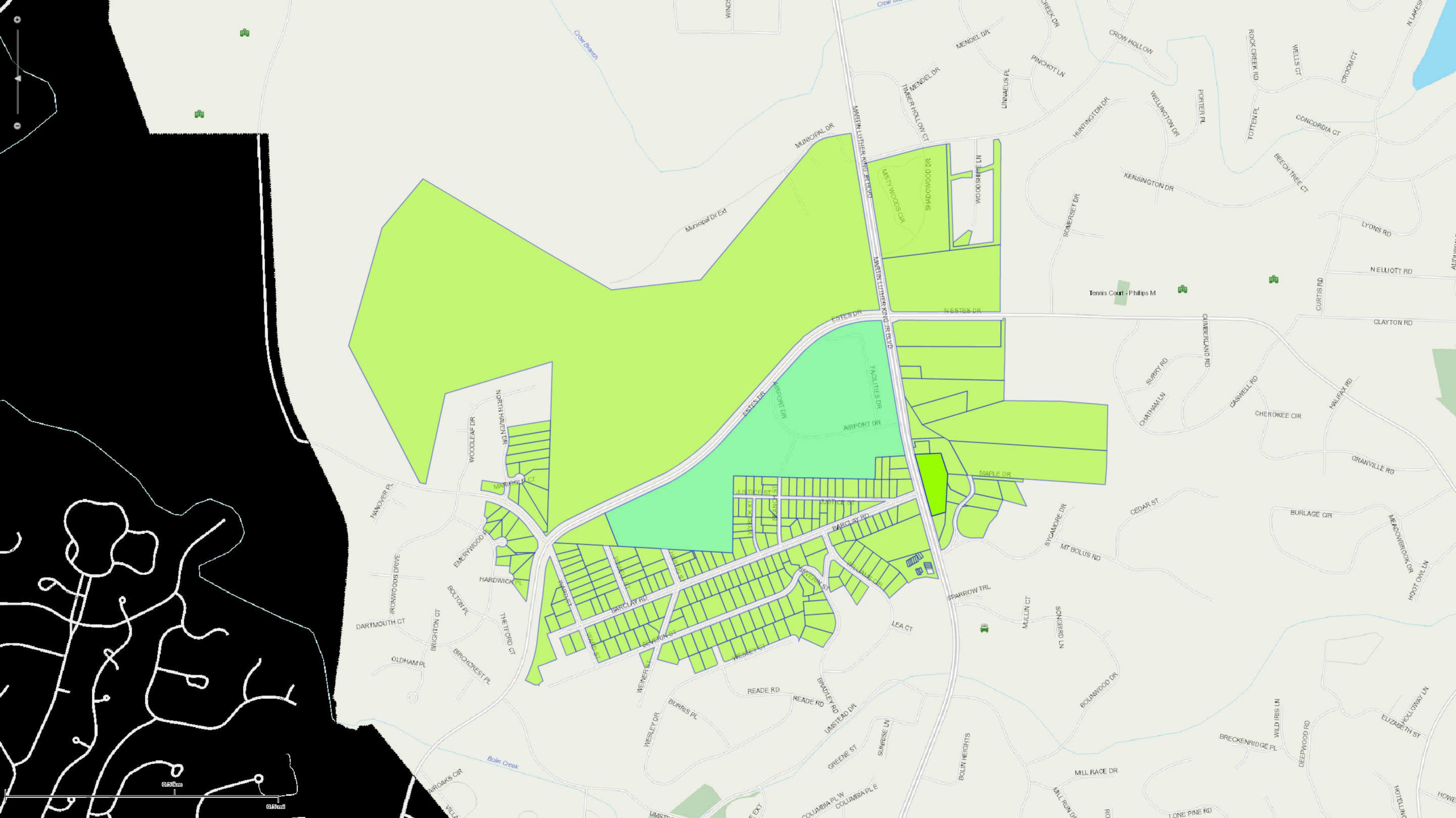
View of site from Powell Street

View from northeast

View from Southeast

View from Park & Ride

9.78E+09 GOFORTH I PO BOX 20 RALEIGH NC	2.76E+08
9.78E+09 POWELL AS 604 IRONN CHAPEL HILNC	27516
9.78E+09 DAVIS LESL 100 EASTRI CHAPEL HILNC	2.75E+08
9.78E+09 GARRETT N 108 HARDV CHAPEL HILNC	27516
9.78E+09 THACKER C 109 HARDV CHAPEL HILNC	27516
9.78E+09 FARLEY WII 105 HARDV CHAPEL HII NC	27516
9.78E+09 ADALSTEIN 104 EASTRI CHAPEL HII NC	2.75E+08
9.78E+09 HARDY RAL 616 IRONN CHAPEL HILNC	27516
9.78E+09 HEWETT C/ 104 BURLW CHAPEL HILNC	2.75E+08
9.78E+09 SHYAM KAI 101 EASTRI CHAPEL HILNC	27516
9.78E+09 WILLIAMS 102 BURLW CHAPEL HILNC	27517
9.78E+09 BAKER TAN 101 NORTH CHAPEL HII NC	2.75E+08
9.78E+09 GAERTNER 103 EASTRI CHAPEL HII NC	27516
9.78E+09 CHEN TSUN 105 EASTRI CHAPEL HII NC	2.75E+08
9.78E+09 ORANGE U 1220 MAR1CHAPEL HII NC	27514
9.78E+09 POON CHI 102 NORTH CHAPEL HII NC	27516
9.78E+09 BROWN M, 102 MARIG CHAPEL HILNC	2.75E+08
9.78E+09 WRIGHT ST 103 MARIG CHAPEL HILNC	27516
9.78E+09 KUCERA JO 104 NORTH CHAPEL HILNC	27516
9.78E+09 DENT GEOF 106 NORTH CHAPEL HILNC	2.75E+08
9.78E+09 SUBRAMAN 108 NORTH CHAPEL HILNC	2.731+08
9.78E+09 WHITEHEA 104 MARIG CHAPEL HILNC	2.75E+08
9.78E+09 BURK ALBE 105 MARIG CHAPEL HILNC	2.75E+08
9.78E+09 PENDZICH 110 NORTH CHAPEL HILNC	2.75E+08
9.79E+09 WASHINGT 320 SEVERI CHAPEL HILING	27516
9.79E+09 WANG TIAI 301 SEVERI CHAPEL HILNC	27516
9.79E+09 MCCOMBS 8211 TERR/NORTHVILL MI	48167
9.79E+09 AUFDERHA 805 WARD CHAPEL HILNC	27516
9.79E+09 DANIEL JOH 5 OAKHURS DECATUR GA	30030
9.79E+09 SOMERS S/ 405 BARCL CHAPEL HILNC	27516
9.79E+09 HUMPHRE'801 WARD CHAPEL HILNC	2.75E+08
9.79E+09 BROWN GE 304 WESLY Chapel Hill NC	27516
9.79E+09 RUSSELL EL 832 WARD CHAPEL HII NC	27516
9.79E+09 MORSE MA 824 WARD CHAPEL HILNC	27516
9.79E+09 HAWKINS [401 BARCL CHAPEL HII NC	27516
9.79E+09 ODONNELL 808 WARD CHAPEL HII NC	2.75E+08
9.79E+09 WEISENSTE 810 WARD CHAPEL HII NC	2.75E+08
9.79E+09 RUSSELL SC 820 WARD CHAPEL HII NC	27516
9.79E+09 TLALKA IRE 11711 DELI RALEIGH NC	27617
9.79E+09 RICHMONE 4718 TIMB DURHAM NC	27707
9.79E+09 SMITH ROE 2144 RETAICHARLOTTINC	2.83E+08
9.79E+09 HEWITT ST. 804 WARD CHAPEL HII NC	2.75E+08
9.79E+09 ECONOME PO BOX 16 CHAPEL HILNC	27516
9.79E+09 FRANTZ EN 325 BARCL CHAPEL HII NC	27516
9.79E+09 SLEDGE RO 328 BARCL CHAPEL HII NC	27514
9.79E+09 GUNN THO 324 BARCL CHAPEL HII NC	27516
9.79E+09 SCHARLOC 805 POWEI CHAPEL HII NC	2.75E+08

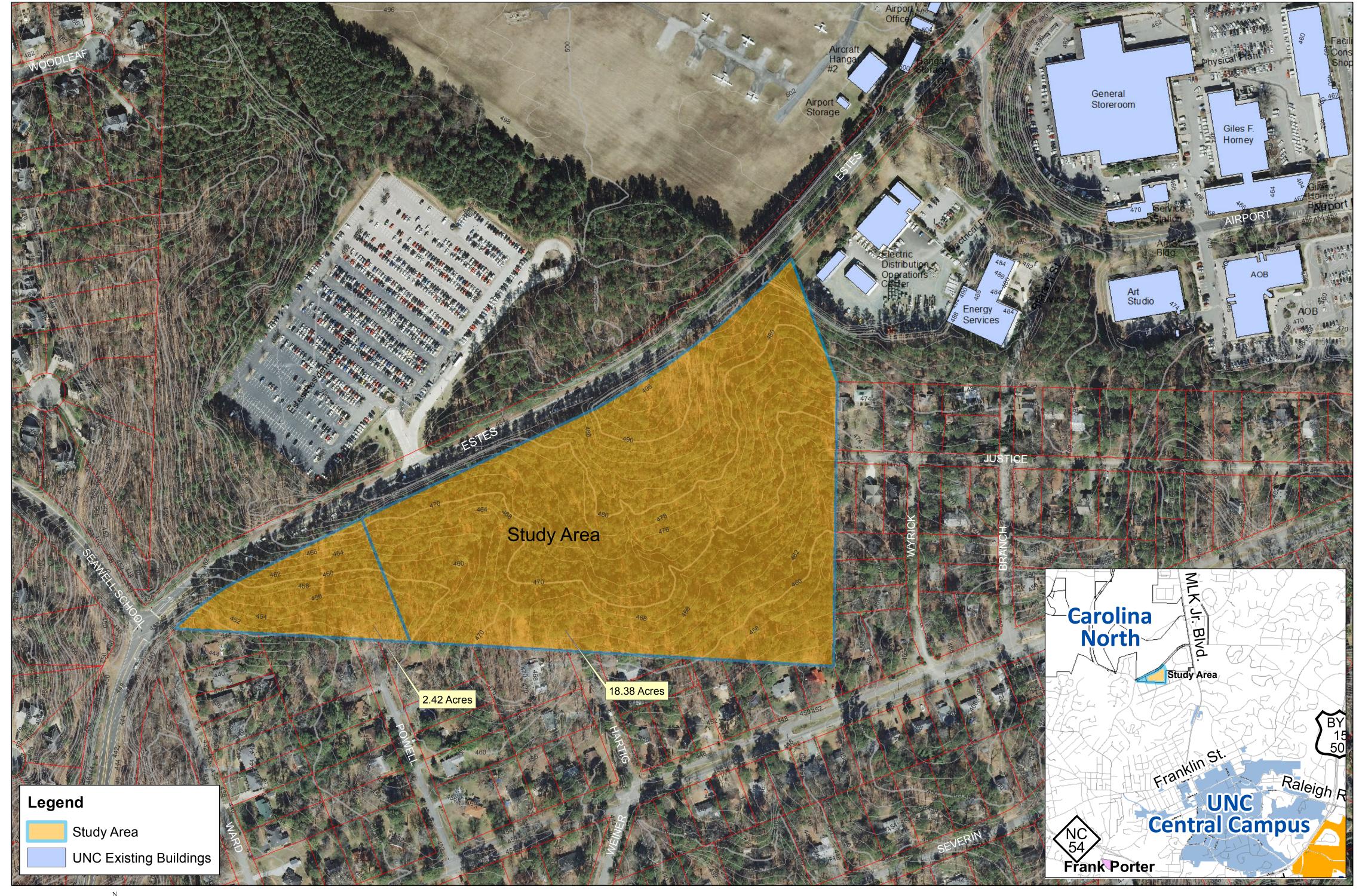

9.79E+09 ECONOME PO BOX 16 CHAPEL HILNC	27516
9.79E+09 FAHERTY K. 108 S HILLS HILLSBORO NC	2.73E+08
9.79E+09 WOOD JAN 817 POWEI CHAPEL HILNC	27516
9.79E+09 DE BRUYN 316 SEVERICHAPEL HII NC	2.75E+08
9.79E+09 BARCLAY W 2422 MOLI ROXBORO NC	27574
9.79E+09 SOUROULL 320 BARCL CHAPEL HII NC	2.75E+08
9.79E+09 THEISEN G(312 SEVERICHAPEL HILNC	27514
9.79E+09 BELL JOHN 317 BARCL CHAPEL HILNC	27514
9.79E+09 SQUIRES S18 POWELL CHAPEL HILNC	2.75E+08
9.79E+09 BEER KIM (308 SEVERI CHAPEL HII NC	27516
9.79E+09 MARKS JAY 3712 HAWICHAPEL HILNC	27516
9.79E+09 MUMBY DI 800 POWEI CHAPEL HII NC	2.75E+08
9.79E+09 ZELDIN LES 804 POWEI CHAPEL HII NC	27516
9.79E+09 RADZICKA , 506 MANO Carrboro NC	27510
9.79E+09 MOORING P O BOX 33LA GRANGINC	2.86E+08
9.79E+09 HINKLE DIA 304 SEVERI CHAPEL HII NC	2.75E+08
9.79E+09 FULCHER L 3931 KELLY DURHAM NC	27707
9.79E+09 FLAXMAN (312 BARCL CHAPEL HILNC	27516
9.79E+09 UNIVERSIT ENDOWME CHAPEL HILNC	27514
9.79E+09 SMITHERS 273 SEVERI CHAPEL HILNC	2.75E+08
9.79E+09 ROMEL JO/ 403 WESLE CHAPEL HII NC	27516
9.79E+09 MCCORMI(401 WESLE CHAPEL HII NC	27516
9.79E+09 MULCAHY, 300 SEVERI CHAPEL HILNC	27516
9.79E+09 SCHWARTZ 2017 S LAK CHAPEL HII NC	27514
9.79E+09 NAIDEN FR 308 BARCL Chapel Hill NC	27516
9.79E+09 NEEBE ALIC 1002 HIGH CHAPEL HILNC	27517
9.79E+09 MELVIN AN 3805 MANI CHAPEL HILNC	27516
9.79E+09 MULCAHY , 300 SEVERI CHAPEL HII NC	27516
9.79E+09 CLEMENTS 301 BARCL CHAPEL HII NC	27516
9.79E+09 HEARN RAN 933 AUTUN CLOVER SC	29710
9.79E+09 BURKE SIGIP O BOX 45 CHAPEL HII NC	27515
9.79E+09 MANTON F PO BOX 14 CARRBORC NC	27510
9.79E+09 LANE NANC 786 WEINE CHAPEL HII NC	2.75E+08
9.79E+09 SKAKLE SYE 269 SEVERI CHAPEL HILNC	2.75E+08
9.79E+09 WILLIAMS 1 WEINER SCHAPEL HII NC	27516
9.79E+09 NEAL ANNE 239 HEMPS CHARLOTTING	
	2.82E+08
9.79E+09 NEAL ANNE 239 HEMPS CHARLOTTING	2.82E+08
9.79E+09 MARKWAY 804 HARTICCHAPEL HII NC	27516
9.79E+09 HUMPHRIE 802 HARTICCHAPEL HII NC	27516
9.79E+09 BLACK SEM 265 SEVERI CHAPEL HII NC	27516
9.79E+09 HACKNEY J 104 CAROL CHAPEL HII NC	27514
9.79E+09 SCOTT JENI 231 BARCL CHAPEL HII NC	2.75E+08
9.79E+09 THIEDA PA 226 BARCL CHAPEL HII NC	27516
9.79E+09 BLACK SEM 265 SEVERI CHAPEL HII NC	27516
9.79E+09 DAYSON CL 257 SEVERI CHAPEL HII NC	27516
9.79E+09 OKUN CAR(260 SEVERI CHAPEL HII NC	27516
9.79E+09 VAUGHAN 229 BARCL CHAPEL HII NC	27516

9.79E+09 DIVARIS KII 227 BAF	RCL, CHAPEL HII NC	27516	
9.79E+09 FLASH BET 750 WE	AVI CHAPEL HII NC	2.75E+08	
9.79E+09 PARKS RON 8401 CE	DA CHAPEL HII NC	27516	
9.79E+09 SCHARLOC 253 SEV	'ERI CHAPEL HII NC	27516	
9.79E+09 RAPER JULI 248 SEV	'ERI CHAPEL HII NC	2.75E+08	
9.79E+09 BARFIELD (PO BOX	20 MCCALL SC	27570	
9.79E+09 MOORE AN 220 BAR	RCL, CHAPEL HII NC	27516	
9.79E+09 LEHNER RI(375 WE	SLE CHAPEL HII NC	27516	
9.79E+09 ANDERSON 247 SEV	'ERI CHAPEL HILNC	27516	
9.79E+09 GERARDEN 107 POI	KS CHAPEL HILNC	27516	
9.79E+09 KEARNS KA 223 BAF	RCL, CHAPEL HII NC	2.75E+08	
9.79E+09 OWEN JOH 4002 TR	OP COLUMBIA MO	6.52E+08	
9.79E+09 STANG FRE 218 BAR	RCL, CHAPEL HILNC	2.75E+08	
9.79E+09 CARPENTEI 377 WE	SLE CHAPEL HII NC	27516	
9.79E+09 LYON MILD 241 SEV	'ERI CHAPEL HILNC	27516	
9.79E+09 SOADY SHE 236 SEV	'ERI CHAPEL HILNC	27516	
9.79E+09 BARRY DANPO BOX		27510	
9.79E+09 SIMONSEN 216 BAF	RCL CHAPEL HILNC	27516	
9.79E+09 BRICE CARI 379 WE		27516	
9.79E+09 MATTHEW 235 SEV		27516	
9.79E+09 GARDNER \$4828 OI		2.77E+08	
9.79E+09 SWANSON 229 TH		27278	
9.79E+09 BROEK THC 215 BAF		_	
9.79E+09 SMITH JOA 1505 W		2.77E+08	
9.79E+09 GURGANU P O BO		27278	
9.79E+09 KILLOUGH 208 JUS		2.75E+08	
9.79E+09 CHANTON P O BOX		32302	
9.79E+09 RHODES M 998 WIL			
9.79E+09 BISHOP EL\ 4 WYRIG		27516	
9.79E+09 WILLIAMS 209 JUS		27516	
9.79E+09 LANE GREC 100 BUG	•	27516	
9.79E+09 MILLS FAM P O BOX		27349	
9.79E+09 UNIVERSIT' UNKNO		27514	
9.79E+09 LEDUC BRI/381 WE		27514	
9.79E+09 BEHRENDS 229 SEV		2.75E+08	
9.79E+09 CANOUTAS 224 SEV		2.751+08	
9.79E+09 JOLLEY VIR:115 WC		27713	
9.79E+09 ANDERSON 223 SEV		2.75E+08	
9.79E+09 MCIVER JO 218 SEV		2.7516	
9.79E+09 BAROFF RC 240 BU		27310	
		27512	
9.79E+09 REECE ROB 385 WE			
9.79E+09 SEVERIN ST31 ROG		27514	
9.79E+09 NEAL ANNE 239 HEN		28207	
9.79E+09 BARROW R 209 BAR		2.75E+08	
9.79E+09 STABLER DI 123 PRI		2.75E+08	
9.79E+09 PETTIFOR #389 WE		27516	
9.79E+09 PERKINS R(211 SEV	ERICHAPEL HII NC	27516	

9.79E+09 HANEY MA 208 SEVERI CHAPEL HII	NC 2.75E+08
9.79E+09 BROWN SU 304 WESLE CHAPEL HII	NC 27516
9.79E+09 MILLS NATI PO BOX 67 CARRBORC	NC 27510
9.79E+09 PALIOURAS 393 WESLE Chapel Hill	NC 27516
9.79E+09 MILLS NATI PO BOX 67 CARRBORC	
9.79E+09 MATTHEW 205 SEVERI CHAPEL HIL	
9.79E+09 PACE SHAN 721 BRADL CHAPEL HII	
9.79E+09 HEITSCH D(727 BRADL CHAPEL HII	NC 2.75E+08
9.79E+09 KCC VENTUPO BOX 12 RALEIGH	NC 27605
9.79E+09 MATTHEW: 205 SEVERI CHAPEL HII	NC 27514
9.79E+09 MATTHEW: 205 SEVERI CHAPEL HII	NC 27516
9.79E+09 ROBERTS L 749 WILLIA CHAPEL HII	NC 2.75E+08
9.79E+09 MCLEOD JC 737 BRADL CHAPEL HII	NC 27516
9.79E+09 LEITNER FR 112 TIMBE CHAPEL HII	
9.79E+09 COGGER LI:739 WILLIA CHAPEL HII	
9.79E+09 TORNERO \731 WILLIA CHAPEL HII	
9.79E+09 KEY REBEC 735 WILLIA CHAPEL HII	
9.79E+09 ELLIOTT CA 3 WYRICK SCHAPEL HII	
9.79E+09 WOLF MER 104 BLACK' CARRBORC	NC 2.75E+08
9.79E+09 SAUNDERS 385 MEAD(Chapel Hill	NC 27517
9.79E+09 FEW JAME: 517 ROBIN CHAPEL HII	NC 27516
9.79E+09 HEWETT M 803 BRANC Chapel Hill	NC 27516
9.79E+09 O'KEEFE D/ 805 BRANC CHAPEL HII	NC 27516
9.79E+09 STURGESS 3000 GALL(PITTSBORC	
9.79E+09 RADEMACI 7 BRANCH CHAPEL HIL	
9.79E+09 STARBACK 206 BARCL CHAPEL HII	
9.79E+09 THOMAS P. PO BOX 95 Chapel Hill	
9.79E+09 BROWN GE 200 JUSTIC CHAPEL HII	
9.79E+09 JAHANNIA 800 BRANC CHAPEL HII	
9.79E+09 BARNEY KR 5 BRANCH CHAPEL HII	NC 27516
9.79E+09 SUMMERS 1923 EPHE CHAPEL HII	NC 27517
9.79E+09 KALOUDIS . 96 LORRAII MONTCLAI	NJ 7043
9.79E+09 OBLER JEFF 1830 17TH WASHINGT	DE 20009
9.79E+09 BROWN GE 304 WESLE CHAPEL HII	NC 27516
9.79E+09 NISBET A P 919 OXBOV CHAPEL HII	NC 27516
9.79E+09 ABERNETH 143 GOAH CHAPEL HIL	
9.79E+09 GERARDEN 107 POLKS Chapel Hill	
9.79E+09 ROBERTS D 749 WILLIA CHAPEL HII	
9.79E+09 CARTER MI 102 SEREN CHAPEL HII	
9.79E+09 KIM EUN A 212 E WINI CHAPEL HII	
9.79E+09 BERRY ANN 132 JUSTIC CHAPEL HII	
9.79E+09 WALKER C/ 716 CASWECHAPEL HII	NC 27514
9.79E+09 GIBSON KE 1755 RIDGIATLANTA	GA 3.03E+08
9.79E+09 CAMPBELL 406 BROAL Carrboro	NC 27510
9.79E+09 SHAPLEY Q 130 JUSTIC CHAPEL HII	NC 2.75E+08
9.79E+09 CRANNY TI 328 UMSTECHAPEL HII	
	NC 27510
	2,310

9.79E+09 FLASH BET 750 WEAVI CHAPEL HII	NC	2.75E+08
9.79E+09 MCADAMS 8505 ORAN CHAPEL HII	NC	2.75E+08
9.79E+09 TAL LLC 1924 MT SI Chapel Hill		27514
9.79E+09 BAKER JAS(124 JUSTIC CHAPEL HIL		27516
9.79E+09 EDMONDS 740 WILLIA CHAPEL HIL		27516
9.79E+09 WHITE JOH 2207 WHIT RALEIGH		2.76E+08
9.79E+09 MERTZ JAN 15541 QUE FORT MYEF		3.39E+08
9.79E+09 DE MARCO 120 JUSTIC Chapel Hill		27514
9.79E+09 SPARROW 727 WILLIA CHAPEL HIL	NC	27516
9.79E+09 SCHNURR E736 WILLIA CHAPEL HIL	NC	27516
9.79E+09 BRINKHOU 1162 FEARI PITTSBORC	NC	27312
9.79E+09 JOHNSON F734 WILLIA CHAPEL HII	NC	27516
9.79E+09 LEONARD [304 SEVERI CHAPEL HII	NC	2.75E+08
9.79E+09 OCHOA TO 730 WILLIA CHAPEL HII	NC	27516
9.79E+09 SINGH MOI 728 WILLIA CHAPEL HIL		27516
9.79E+09 CICCONE A 33 SPINNIN MARLTON		8053
9.79E+09 MALINOW'.83 GRASSY CHAPEL HIL		27517
9.79E+09 DINO ROCK 875 MARTI CHAPEL HII		27514
9.79E+09 ELKINS J W 2511 COLG FAYETTEVII		2.83E+08
9.79E+09 DINO ROCk 103 MARIG CHAPEL HIL	NC	27516
9.79E+09 A&W REAL 315 PALAF, CHAPEL HIL	NC	27516
9.79E+09 WEHR PETI 300 SUNSE HOLLY SPR	NC	27540
9.79E+09 HUENING LUNIT 19 CHAPEL HII	NC	2.75E+08
9.79E+09 SAVIT PROI 510 APPLE(MEBANE	NC	27302
9.79E+09 SALEM COL 875 MARTI CHAPEL HIL	NC	27514
9.79E+09 WORLEY DI 9004 ONEA RALEIGH	NC	2.76E+08
9.79E+09 KRAMER SE875 MLK JF CHAPEL HIL		27516
9.79E+09 WILSON N/ 4060 E HAF BURLINGTO	_	27215
9.79E+09 LI LI 3852 WINCJAMESTOW		27213
	_	
9.79E+09 ZIEMENDO 875 MARTI CHAPEL HIL		27514
9.79E+09 JOHNSON F1549 TAYL(HIAWASSEI		3.05E+08
9.79E+09 JW&S HOLI 2207 WHIT RALEIGH	NC	27608
9.79E+09 SIMON ERI 119 JUSTIC CHAPEL HIL	NC	27516
9.79E+09 THORNHILI 405 JOHNS CHAPEL HII	NC	27514
9.79E+09 BULBROOK 118 JUSTIC Chapel Hill	NC	27514
9.79E+09 KNIGHT AL 119 BARCL CHAPEL HIL	NC	27516
9.79E+09 MILLS FAM P O BOX 52SNOW CAN	NC	27349
9.79E+09 MOORE SC 816 PINEHI CHAPEL HII	NC	27517
9.79E+09 STUBBS TH 308 MUIRF MEBANE	NC	27302
9.79E+09 ORTIZ MAR 115 BARCL Chapel Hill	NC	27516
9.79E+09 KAIROS VEI 601 W ROS CHAPEL HII		27516
9.79E+09 RESNICK M 102 GURNE Chapel Hill		27517
9.79E+09 WILLIAMS . 110 JUSTIC CHAPEL HIL		27516
9.79E+09 JOLLEY VIR 115 WOOD DURHAM		27713
9.79E+09 ROBERTS D 749 WILLIA CHAPEL HIL		2.75E+08
9.79E+09 STATE OF N 1321 MAIL RALEIGH	NC	2.77E+08
9.79E+09 STATE OF N 1321 MAIL RALEIGH	NC	2.77E+08

9.79E+09 STRATFORI PO BOX 98 RALEIGH	NC	27624
9.79E+09 PETTY KRIS 100 BARCL CHAPEL HII	NC	27516
9.79E+09 MILLS NATI 602 DAVIE Carrboro	NC	27510
9.79E+09 CHAPEL HII 302 OAK TI CHAPEL HII	NC	27517
9.79E+09 CHAPEL HII 302 OAK TI CHAPEL HII	NC	27517
9.79E+09 FGV VII LLC 870 MARTI Chapel Hill	NC	27517
9.79E+09 LEGACY CR 316 SWIFT DURHAM	NC	27713
9.79E+09 SULIK MEL/ 199 MERIW VASS	NC	28394
9.79E+09 CEDAR RID PO BOX 13 DURHAM	NC	2.77E+08
9.79E+09 CEDAR RID PO BOX 13 DURHAM	NC	2.77E+08
9.79E+09 CARVER CH 890 MARTI CHAPEL HII	NC	27514
9.79E+09 MEDICAL F CB#7565 8; CHAPEL HII	NC	27516
9.79E+09 FGV VII LLC 870 MARTI CHAPEL HII	NC	27514
9.79E+09 CORNERST SUITE 200 CHAPEL HII	NC	27514
9.79E+09 EMMERSO CUSTODIAI CHAPEL HII	NC	27514
9.79E+09 CHIMCO II 940 MARTI CHAPEL HII	NC	27514
9.79E+09 PEGASUS PSUITE 200 (CHAPEL HII	NC	27514
9.79E+09 SAWMILL EPO BOX 15 CHAPEL HII	NC	27514
9.79E+09 AMITY UNI 825 ESTES CHAPEL HII	NC	27514
9.79E+09 BUTLER KA 404 WOODAPEX	NC	27523
9.79E+09 CHAPEL HII 92 RIVER R SUMMIT	NJ	7901
9.79E+09 GOFORTH J PO BOX 20 RALEIGH	NC	27619
9.79E+09 CHILUKURI 15 MT BOL CHAPEL HII	NC	27514
9.79E+09 KIRK WILLI, 121 MAPLE CHAPEL HII	NC	2.75E+08
9.79E+09 CHARMFOI 2375 CRES SANFORD	FL	32771
9.79E+09 NEXT LEVE 4411 E LA FANAHEIM	CA	92807
9.79E+09 GOFORTH I PO BOX 20 RALEIGH	NC	2.76E+08
9.79E+09 GIJOLU LLC 319 PROVII CHAPEL HII	NC	27514
9.79E+09 PEACE JAM 11020 CHA LOS ANGEL	CA	90077
9.79E+09 SAWMILL [POBOX 15 CHAPEL HII	NC	27514
9.79E+09 CHAPEL HII 980 MARTI CHAPEL HII	NC	27514
9.79E+09 LOTZ DANII 119 MAPLE CHAPEL HII	NC	27514
9.79E+09 RICHARDS(8 KENDALL Chapel Hill	NC	27517
9.79E+09 WU YUE 122 WOOD CHAPEL HII	NC	27514
9.79E+09 COKER WO 117 WOOD CHAPEL HIL	NC	27514



Legal Description: Facilities Parcel Division

Beginning at an iron pipe located in the southern right of way of Estes Drive Extension (S.R. 1780) running thence S 21° 31′ 42″ E 346.01 feet to an iron pipe; thence S 86°46′ 22″ E 1109.76 feet to a point; thence N 00° 41′ 32″ E 744.68 feet to a point; thence N 33° 28′ 00″ W 319.16 feet to a point in the southern right of way of Estes Drive Extension (S.R. 1780); thence with the southern right of way of Estes Drive Extension (S.R. 1780) in a general northwesterly direction along a 2019.02 foot radius curve to the right, said curve having a chord bearing and distance of S 53° 57′ 42″ W 586.01 feet, to a point in the southern right of way of Estes Drive Extension (S.R. 1780); thence continuing with the southern right of way of Estes Drive Extension S 64° 46′ 47″ W 685.46 feet to an iron pipe, the place and point of beginning, containing 18.13 acres, more or less.

Legal Description: Former Dixon Property

Beginning at an iron pipe located in the southern right of way of Estes Drive Extension (S.R. 1780) running thence S 11° 23′ 00″ E 348.61 feet to an iron pipe, thence N 76° 30′ 50″ W 161.71 feet to an iron pipe; thence N 76° 30′ 50″ W 86.10 feet to an iron pipe located in the eastern right of way of Powell Street; thence N 76° 51′ 00″ W 66.45 feet to an iron pipe located in the western right of way of Powell Street; thence N 76° 29′ 00″ W 247.69 feet to an iron pipe; thence N 76° 29′ 00″ W 216.68 feet to an iron pipe located in the southern right of way of Estes Drive Extension (S.R. 1780); thence with the southern right of way of Estes Drive Extension (S.R. 1780) in a general northeasterly direction along a 557.97 foot radius curve to the right, said curve having a chord bearing and distance of N 62° 17′ 17″ E 248.62 feet, to an iron pipe in the southern right of way of Estes Drive Extension (S.R. 1780); thence continuing with the southern right of way of Estes Drive Extension (S.R. 1780) N 75° 09′ 40″ E 321.76 to an iron pipe, the point and place of beginning, containing 2.42 acres, more or less.

Proposed Guiding Principles for the Municipal Services Center Development Agreement DRAFT – 1.18.2018

Residents of the Elkin Hills neighborhood and other concerned citizens who have participated in meetings about the municipal services center request that the following guiding principles be incorporated into the development agreement for this project. These guiding principles take into consideration prior documents adopted by UNC-related entities.¹

Guiding Principles

- A. After discussions with residents, the Town and the University, the final agreed-upon principles will be voted on by the Chapel Hill Town Council and incorporated into the development agreement as its guiding principles. These principles will also serve as one of the design drivers for the project.
- B. The Town and the University will continue to consult with and seek feedback from the neighborhood if and when any additional buildings beyond the municipal services center building are under consideration.

C. Site

- 1. Preserve in perpetuity at least 50% of the site² as natural, non-fragmented and contiguous space³ serving as both a buffer to the neighboring residential properties, and as preservation of the natural environment for wildlife and a sense of forest and greenspace.
- 2. Allow a maximum of 50% to be razed for development.

D. Design with Empathy

- 1. The impact on neighbors should be kept front and center in all planning and implementation.
- The project should not decrease the market values of the residential properties adjacent and near-adjacent to the site. The residents request the Town to seek a qualified opinion from an impartial, licensed appraiser.
- 3. Manage development of the site to minimize impacts on adjacent neighborhood and the environment,⁴ using measurable indicators of impact, including both lighting and noise impacts (e.g., sirens used by the fire and police departments) and maximize aesthetics in accordance with the high standards set by the University.
 - a) Situate buildings away from the neighborhood and by preference along Estes Drive Extension with minimum setbacks from the street.
 - b) Extend the 100-foot required buffer to at least 200 feet.
 - c) Give strong preference to higher buildings rather than lower structures that cover more surface area.
 - d) Restrict the use and storage of hazardous materials such as fuels and chemicals.
 - e) Limit the use of fences.

E. Environmental Leadership

- 1. Demonstrate a leadership position in environmentally sensitive development regarding air quality, and energy production and consumption.⁵⁶
 - a) Construct buildings to meet high environmental standards, such as the AIA-2030 carbon reduction energy performance standards as recommended to the Town by the Environmental Stewardship Advisory Board (ESAB).⁷
 - b) Give strong preference to a multi-storied parking garage or parking under each building on the site, rather than expanded surface parking.

- c) Construct surface parking which optimizes storm water control including the use of permeable surfaces wherever possible.
- d) Where technically possible, incorporate green energy options into site design, e.g., solar panels on roofs, solar carports over surface parking areas.
- 2. Demonstrate a leadership position in environmentally sensitive development regarding landscaping and maintaining natural areas.
 - a) Retain as many mature and medium-height native trees and hardwoods as possible, particularly between the developed area and the buffer for the Elkin Hills neighborhood.⁸
 - b) Use only native plants in new and replacement landscaping for the site (as recommended by UNC's NC Botanical Garden).

F. Exceed Storm Water Requirements

- 1. Demonstrate a leadership position regarding sustainable water management, waste water treatment and reuse,⁹ and creek water quality.
 - a) Exceed storm water management regulations on the site to eliminate or greatly decrease the risk of flooding and damage to property adjacent to and downstream from the site. Ensure that development of the site will result in no net increase in storm water discharge¹⁰ and flooding of the adjacent neighborhoods, and no net increase in loading of sediment and nutrients into local streams.¹¹
 - b) Reclaim and re-use rain and storm water (e.g., flushing within buildings, watering of vegetation, etc.).
 - c) Take prudent and reasonable steps, including improvement of stream channels in the Elkin Hills neighborhood and other neighborhoods downstream from the site, to improve management of run-off and to limit impact on Bolin Creek.

¹ These documents include: A) Carolina North 2007 Plan; B) REPORT OF THE LEADERSHIP ADVISORY COMMITTEE FOR CAROLINA NORTH January 19, 2007; C) UNC response to Horace Williams Citizens Committee report, 25 January 2006, Natural areas/parks and recreational facilities; D) Faculty Council Resolution 2002-6. Urging the University Administration to Commit Itself to Sustainability Measures in its Institutional Policies and Practices. PROPOSED BY THE BUILDINGS AND GROUNDS COMMITTEE (April 4, 2002).

² UNC response to Horace Williams Citizens Committee report, 25 January 2006, Natural areas/parks and recreational facilities, Principle 1, p. 5

³ REPORT OF THE LEADERSHIP ADVISORY COMMITTEE FOR CAROLINA NORTH, January 19, 2007, V. OPEN SPACE, NATURAL AREAS, PARKS AND RECREATION, p. 5

⁴ UNC response to Horace Williams Citizens Committee report, 25 January 2006, Development principle 1, p. 4

⁵ REPORT OF THE LEADERSHIP ADVISORY COMMITTEE FOR CAROLINA NORTH, January 19, 2007, V. OPEN SPACE, NATURAL AREAS, PARKS AND RECREATION, p. 4

⁶ Three zeros environmental initiative; Frequently asked questions; https://threezeros.unc.edu/faq/

⁷ CAROLINA NORTH PLANNING PROCESS SUMMARY OF KEY INTERESTS BY CATEGORY [FEBRUARY 11, 2009], p. 184

⁸ Sustainability at UNC. Grounds. https://sustainability.unc.edu/initiatives/operations/grounds/

⁹ UNC response to Horace Williams Citizens Committee report, 25 January 2006, Water and Sewer / Stormwater Management / Air Quality Principle 1, p. 5

¹⁰ UNC response to Horace Williams Citizens Committee report, 25 January 2006, Water and Sewer / Stormwater Management / Air Quality Principle, Principle 2, p. 5

¹¹ REPORT OF THE LEADERSHIP ADVISORY COMMITTEE FOR CAROLINA NORTH, January 19, 2007, Environmental principles, p. 4

PUBLIC WORKS DEPARTMENT STORMWATER MANAGEMENT DIVISION

405 Martin Luther King, Jr. Blvd. Chapel Hill, NC 27514-5705 Telephone (919) 969-7246 Fax (919) 969-7276 www.townofchapelhill.org

February 28, 2018

Mr. Matthew West
Dewberry
2610 Wycliff Road, Suite 410
Raleigh, North Carolina 27607
mwest@dewberry.com

RE: Stream Determination for undeveloped parcel owned by UNC Endowment Fund on Estes Drive Extension, Chapel Hill, NC (PIN 9789-03-3163)

Dear Mr. West:

As requested, the Town Public Works Department has performed a stream determination for the property identified on the attached forms. This determination indicates whether different types of streams (perennial, intermittent, and/or ephemeral) or perennial waterbodies are present on the property in question or on nearby properties. These streams and their classifications are shown on the accompanying map. Stream segments regulated by the Town's Jordan Lake Watershed Riparian Buffer regulations are highlighted. Locations of all features on the map are approximate and must be field surveyed for precise location.

This stream determination information is used to determine the location and extent of the Resource Conservation District (RCD) and Jordan Lake Watershed Riparian Buffers. Specific land use regulations and restrictions apply within the boundaries of these protected areas. If you are considering any kind of work on this property, including clearing vegetation, paving, grading, or building, please consult with the Town Planning Department to determine the possible extent of the Resource Conservation District (RCD) and Jordan Lake Watershed Riparian Buffer on this property and the applicable corresponding regulations.

This stream determination will remain in effect for five years from the date of the site visit, after which a new stream determination with site visit will be required.

In accordance with the Town's procedures, you may appeal this administrative decision to the Town Manager. If you wish to do so, you must file your written appeal accompanied by any materials you believe support your appeal, within **30 days** of receipt of this letter.

If you have questions regarding stream determinations, please contact me at (919) 969-7202 or aweakley@townofchapelhill.org. If you have questions regarding the Town's Resource Conservation District (RCD) or the Jordan Watershed Riparian Buffer regulations, please contact the Planning Department at (919) 968-2728, or view information online at: http://www.townofchapelhill.org/town-hall/departments-services/public-works/stormwater-management/regulations-ordinances.

Regards,

Allison Schwarz Weakley Stormwater Analyst

AllisonWeakley

PUBLIC WORKS DEPARTMENT STORMWATER MANAGEMENT DIVISION

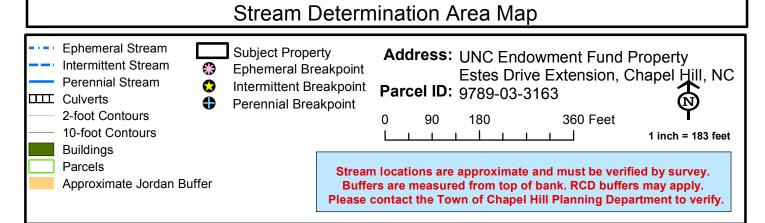
405 Martin Luther King, Jr. Blvd. Chapel Hill, NC 27514-5705 Telephone (919) 969-7246 Fax (919) 969-7276 www.townofchapelhill.org

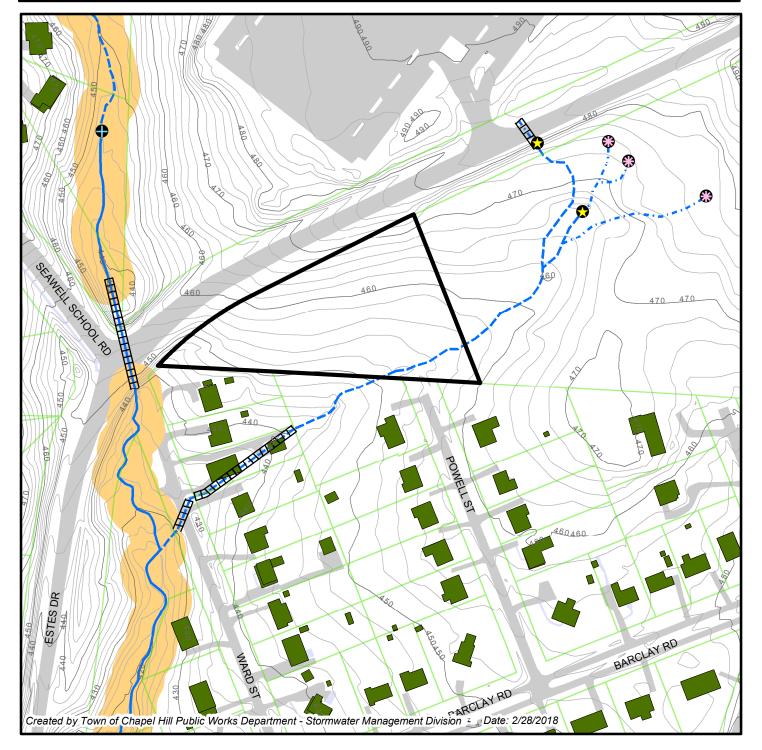
STREAM DETERMINATION SITE VISIT RESULTS

Property Information		
Parcel ID Number (PIN)	Address / Location Description	
9789-03-3163	Estes Drive Extension	
These are the results of a site visit conducted on 2/23/2018 by Town Sta	to the properties listed above for a stream determination aff:	
☐ No perennial, intermittent, or epon or near the property(ies) in quest	hemeral streams or perennial waterbodies were identified ion.	
Perennial, intermittent, or ephen or near the property(ies) in question	neral streams, or perennial waterbodies, were identified on and shown on the attached map(s).	
Riparian Buffers, and their approxi	r Town flow classifications, presence of Jordan Watershed mate locations is attached. Origins or breakpoints that marked on the map. Stream classification forms and are also attached.	
Other conditions exist which may a Jordan Watershed Riparian Buffer:	fect the location of the Resource Conservation District or	
	he area. Precise location of the Base Flood Elevation and istrict must determined by a field survey commissioned by	
	ittent stream are piped in the area, as shown on the map. ciated Jordan Watershed Riparian Buffer.	
	have been identified in the area. A formal review by a nal Wetland Delineation is recommended if impacts to	
AllisonWeakley		
Town Staff Signature		

Town Staff signature

PUBLIC WORKS DEPARTMENT STORMWATER MANAGEMENT DIVISION


405 Martin Luther King, Jr. Blvd. Chapel Hill, NC 27514-5705 Telephone (919) 969-7246 Fax (919) 969-7276 www.townofchapelhill.org


STREAM DETERMINATION RECORDS REVIEW

Property Information		
Parcel ID Number (PIN)	Address / Location Description	
9789-03-3163	Estes Drive Extension	
	ISGS 1:24,000 Topographic maps, and County Soil Survey maps, I mination will be required for the property(ies) listed above for	
 classification or determination, or unide	bodies, streams or waterbodies identified as requiring a new ntified flowlines (possible streams) are shown within 150 feet of s GIS, the USGS 1:24,000 Topographic map, or the County Soil	
	ooundary was set on a recorded final plat for the property in waterbodies shown on the USGS 1:24,000 Topographic map or e property.	
A stream determination has been done for this property, a property uphill or upstream, or a nearby property as of February 23, 2013 or later, and that stream determination applies to this property. A opy of the documentation for the relevant site visit(s) is available upon request.		
Relevant PIN(s): 9789-24-7373 (site visit	10-1-2016)	
	r Town flow classifications, presence of Jordan Watershed elocations is attached. Origins or breakpoints that have been hap.	
Other conditions exist which may affect Watershed Riparian Buffer:	t the location of the Resource Conservation District or Jordan	
_ · · · · · · · · · · · · · · · · · · ·	rea. Precise location of the Base Flood Elevation and associated determined by a field survey commissioned by the owner or a	
Segments of perennial or intermitte associated Jordan Watershed Riparian B	nt stream are piped in the area. These segments do not have an uffer.	
	e been identified in the area. A formal review by a professional ation is recommended if impacts to wetlands are likely.	
AllisonWeakley		
	2/28/2018	

Date

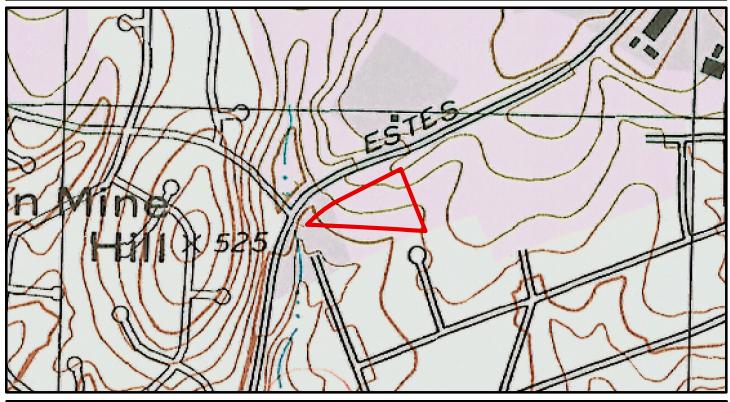
Version 6/5/2017

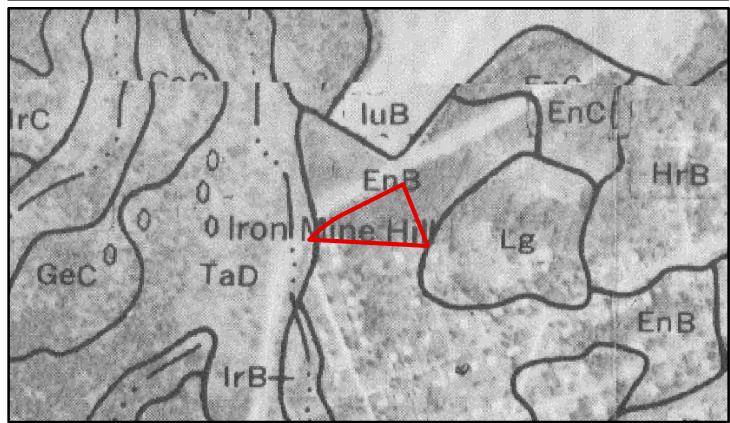
USGS 24K Topographic / County Soil Survey Maps

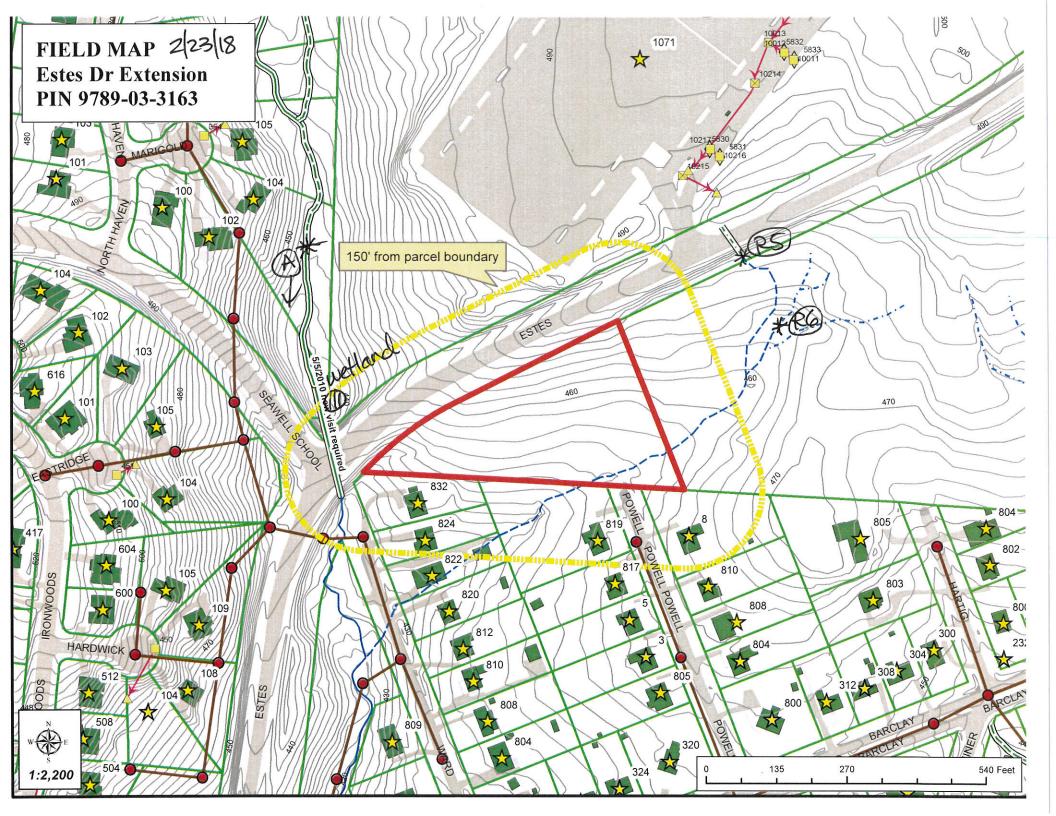
Subject Property

150 300 450 600 Feet

Address: UNC Endowment Fund Property

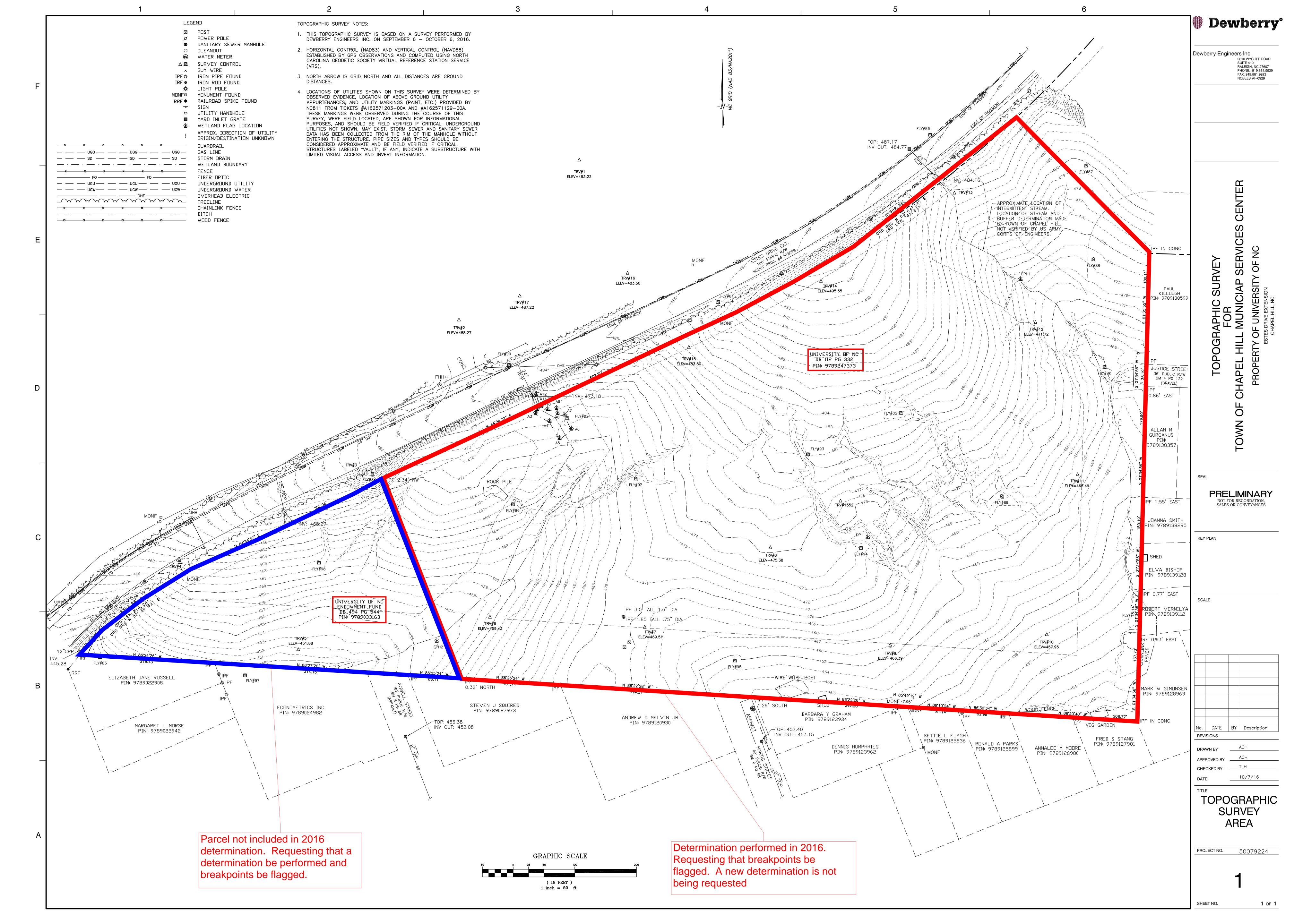

Estes Drive Extension, Chapel Hill, NC


Parcel ID: 9789-03-3163



1 inch = 500 feet

Created by Town of Chapel Hill Public Works Department - Stormwater Management Division- 2/26/2018

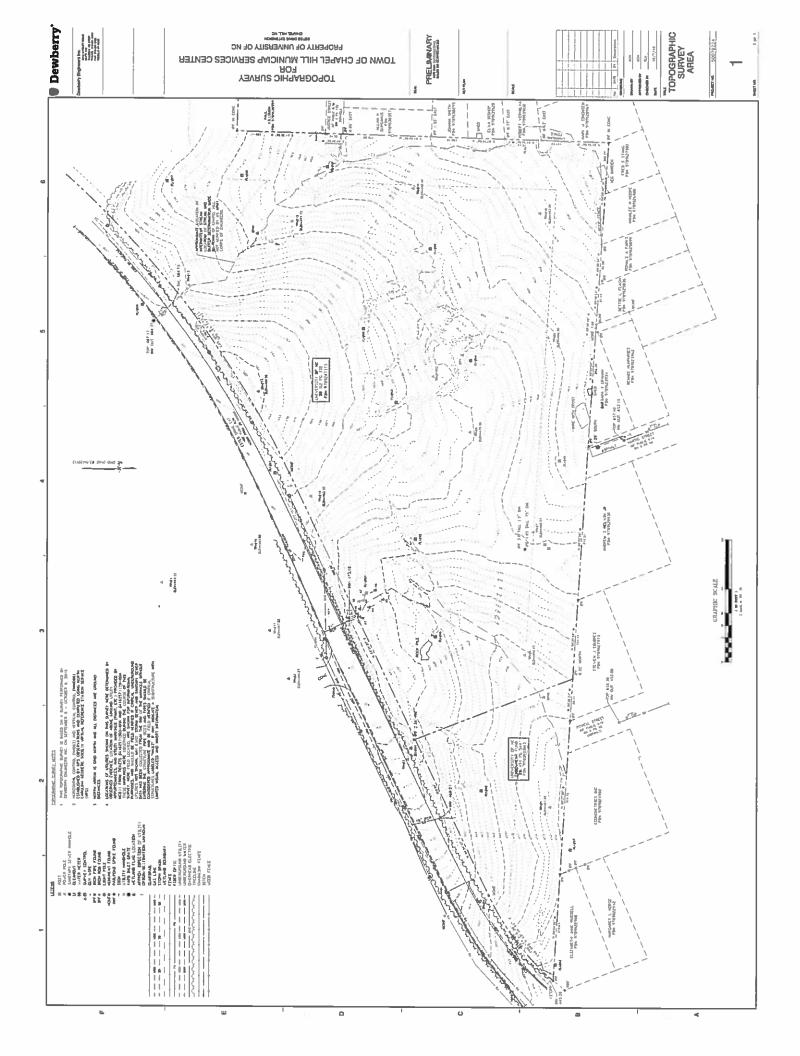


201802231134

Feature Estes Dr. Ext NC DWO Stream Identification Form Version 4.11 Date: Project/Site: Latitude: MUER County: **Evaluator:** Longitude: ~ **Total Points:** Stream Determination (circle one) Other Stream is at least intermittent Ephemeral Intermittent Perennial e.g. Quad Name: if ≥ 19 or perennial if ≥ 30* Weak **Absent Moderate** A. Geomorphology (Subtotal = Strong 1a. Continuity of channel bed and bank 0 2 3 2. Sinuosity of channel along thalweg 0 1 2 3 3. In-channel structure: ex. riffle-pool, step-pool, 2 0 3 1 ripple-pool sequence 0 3 4. Particle size of stream substrate 2 5. Active/relict floodplain 0 2 3 (1 6. Depositional bars or benches 0 3 0 2 7. Recent alluvial deposits 3 0 1 8. Headcuts 3 2(1) 9. Grade control 0 0.5 1.5 0 10. Natural valley 0.5 1 1.5 11. Second or greater order channel No = 0Yes = 3 artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = 12. Presence of Baseflow absent upper reach 0 in lower reac 13. Iron oxidizing bacteria 0 3 14. Leaf litter 1 1.5 0.5 0 15. Sediment on plants or debris 0 0.5 (1.5) 16. Organic debris lines or piles 0 0.5 1.5 17. Soil-based evidence of high water table? No = 0Yes = 3 C. Biology (Subtotal = 18. Fibrous roots in streambed 0 2 19. Rooted upland plants in streambed 3 1 0 20. Macrobenthos (note diversity and abundance) 0 1 2 3 21. Aquatic Mollusks 0 2 3 22. Fish 0 0.5 1 1.5 23. Crayfish 0 0.5 1 1.5 24. Amphibians 0.5 0 1.5 25. Algae aloundant in lower 0 0.5 1.5 26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 Other = 0 *perennial streams may also be identified using other methods. See p. 35 of manual Notes: Sketch: Feature begins cheadout (flagged)

405 Martin Luther King, Jr. Blvd. Chapel Hill, NC 27514-5705 Telephone (919) 969-7246 Fax (919) 969-7276 www.townofchapelhill.org

REQUEST FOR STREAM DETERMINATION


Stream determinations provide information used to determine whether the Town's Resource Conservation District (RCD) or Jordan Watershed Riparian Buffer Protection regulations apply to a property. Town staff will typically conduct a field visit to classify streams on the property(ies) indicated below within two weeks of a request, depending on weather conditions, staff availability, and scope of the request. Please note that stream determinations cannot be conducted within 48 hours of a rain event. There is no fee for stream determinations conducted by Town staff.

A stream determination report indicates the results of a stream classification. Stream classifications expire after five years. If a stream determination has been completed on or near the property(ies) listed below within the last five years, a site visit may not be required unless local hydrology has changed significantly or the stream classification has expired. If a site visit is not required, the stream determination will be based on a records review.

Requests may be emailed (<u>aweakley@townofchapelhill.org</u>), faxed, dropped off at Town Hall or the Stormwater Office, or mailed to the above address in care of the "Stormwater Analyst."

Requestor's Name:	Dewberry			
Mailing Address:	2610 Wycliff Ro	oad, Suite 410		
City, State, ZIP:	Raleigh, NC 276	07		
Phone / FAX / Email:	919.424.3770 / 9	919.881.9939 / mwe	st@dewberry.co	ım
Check method(s) for report to be sent:	US Ma	il 🏻 Email	☐ FAX	☐ Call for pickup
Signature of property	owner or design	ated legal agent gr	anting permiss	ion to Town Staff to enter
the property(jes) indic	cated below for b	urposes of a Strea	m Determinatio	1119/18
(S	ignature)		_	(Date)
Owner Name(s):				4
Company Name (if app	licable): Univers	(Please pr ity of North Carolin	int) a at Chapel Hill	
Property Information	1	· · · · · · · · · · · · · · · · · · ·		
Fill in both columns, <u>or</u> fi	II in Parcel ID Numbe	r (PIN) and attach a site	map indicating loc	ation.
Parcel ID Num	ber (PIN)	Ad	dress / Location	Description
9789033163		Estes Drive Ext		
9789247373		Estes Drive Ext		

Where the total area of the property(ies) to visit is over 3 acres, please attach an as-built drawing or a topographic map with current landmarks.

405 Martin Luther King, Jr. Blvd. Chapel Hill, NC 27514-5705 Telephone (919) 969-7246 Fax (919) 969-7276 www.townofchapelhill.org

10/7/2016

Cindy Hoffman, PLA, A SLA Dewberry 2610 Wycliff Road, Suite 410 Raleigh, NC 27607-3366

RE: Stream Determination for Parcel #9789-24-7373

Dear Ms. Hoffman:

As requested, the Town Public Works Department has performed a stream determination on the property identified on the attached forms. This determination indicates whether different types of streams (perennial, intermittent, and/or ephemeral) or perennial waterbodies are present on the property in question or on nearby properties. These streams and their classifications are shown on the accompanying map. Stream segments regulated by the Jordan Lake Stream Buffer ordinance are highlighted. Locations of all features on the map are approximate and must be field surveyed for precise location.

This stream determination information is used to determine the location and extent of the Resource Conservation District and the Jordan Lake Watershed Riparian Buffer. Specific land use regulations and restrictions apply within the boundaries of these protected areas. If you are considering any kind of work on your property, including clearing vegetation, paving, grading, or building, please consult with the Town Planning Department to determine the possible extent of the Resource Conservation District and Jordan Lake Watershed Riparian Buffer on your property and corresponding regulations.

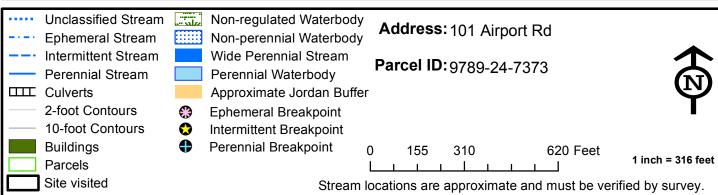
This classification will remain in effect for five years from the date of the site visit before a request for reclassification will be considered, unless the stream channel characteristics are significantly altered as a result of watershed changes.

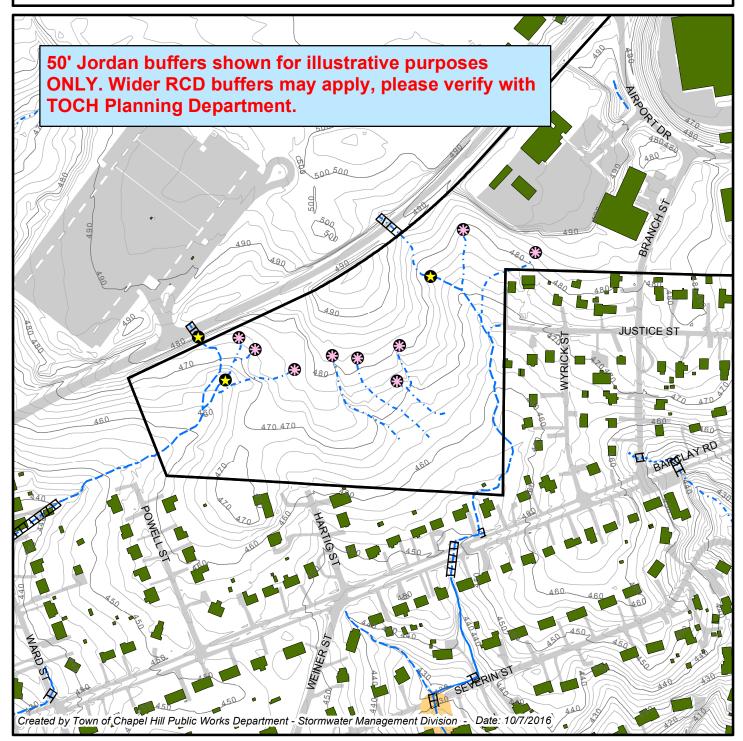
In accordance with the Town's procedures, you may appeal this administrative decision to the Town Manager. If you wish to do so, you must file your written appeal accompanied by any materials you believe support your appeal, within <u>30</u> days of receipt of this letter.

If you have questions regarding stream determinations, please contact me at (919) 969-5083. If you have questions regarding the Town's Resource Conservation Districts or the Jordan Watershed Riparian Buffer regulations, please contact the Planning Department at (919) 968-2728, or view information online at http://www.townofchapelhill.org/town-hall/departments-services/public-works/stormwater-management/regulations-ordinances.

Regards,

Dave Milkereit Stormwater Specialist




405 Martin Luther King, Jr. Blvd. Chapel Hill, NC 27514-5705 Telephone (919) 969-7246 Fax (919) 969-7276 www.townofchapelhill.org

STREAM DETERMINATION SITE VISIT RESULTS

Property Information	
Parcel ID Number (PIN)	Address / Location Description
9789-24-7373	101 Airport Rd/Estes Dr Extension
	t to the properties listed above for a stream 10/6 & 10/7/2016 by Town Staff:
☐ No perennial, intermittent, or e identified on or near the property(i	phemeral streams or perennial waterbodies were es) in question.
	emeral streams, or perennial waterbodies, were les) in question and shown on the attached map(s).
Jordan Watershed Riparian Buf Origins or breakpoints that have	their Town flow classifications, presence of fers, and their approximate locations is attached. e been flagged in the field are marked on the map. I additional site visit notes and maps are also
Other conditions exist which may bistrict or Jordan Watershed Ripa	affect the location of the Resource Conservation rian Buffer:
	the area. Precise location of the Base Flood ce Conservation District must determined by a field er or a representative.
	mittent stream are piped in the area, as shown on the ve an associated Jordan Watershed Riparian Buffer.
	ds have been identified in the area. A formal review dictional Wetland Delineation is recommended.
Town Stoff cianature	10/7/2016
Town Staff signature	date

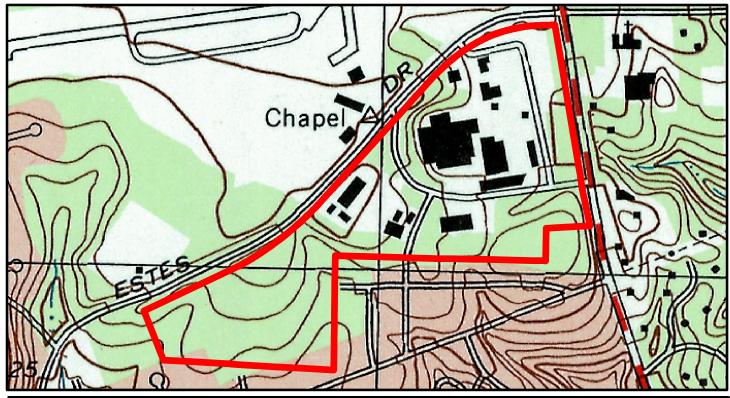
Stream Determination Area Map

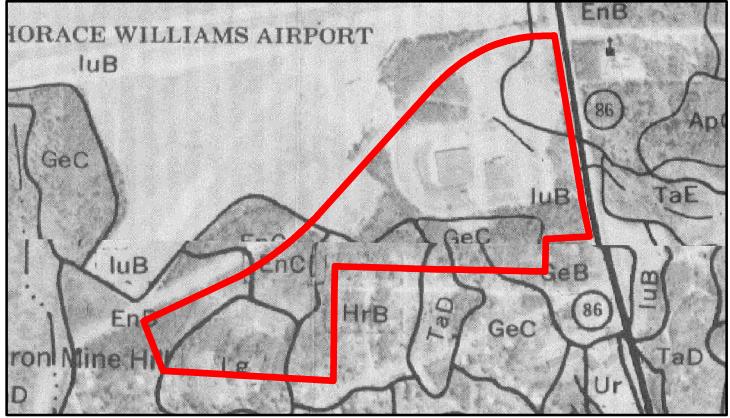
USGS 24K Topographic / County Soil Survey Maps

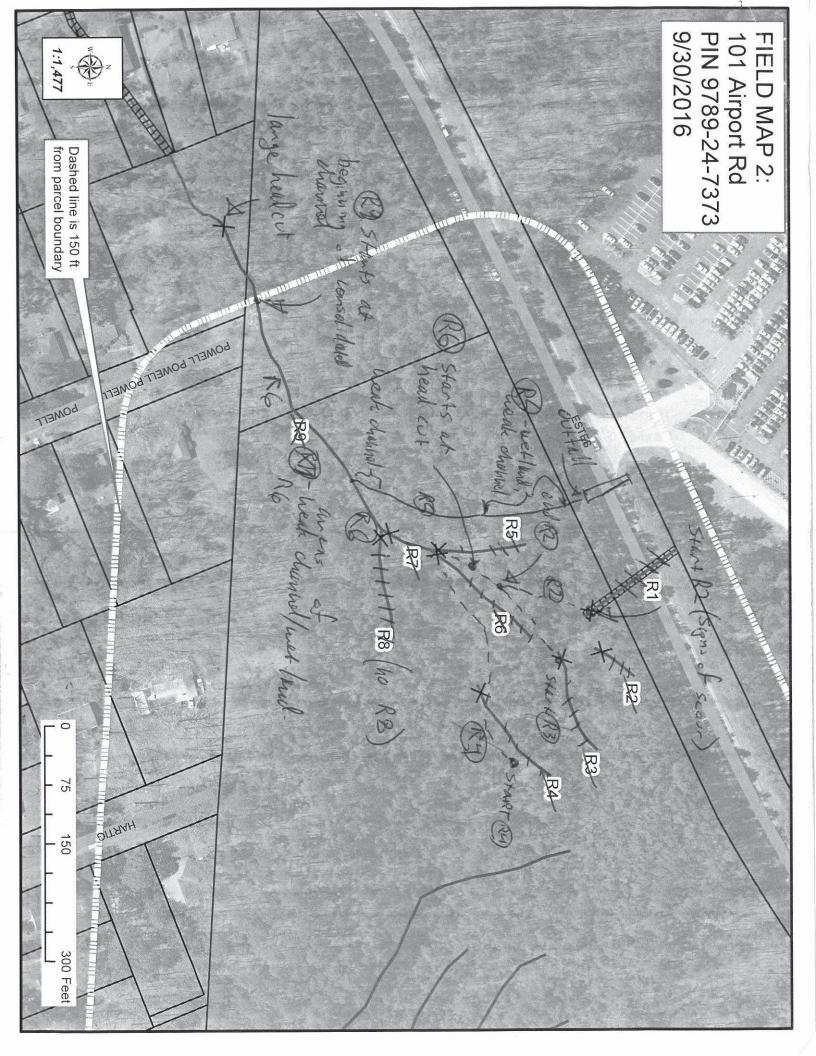
Site Par

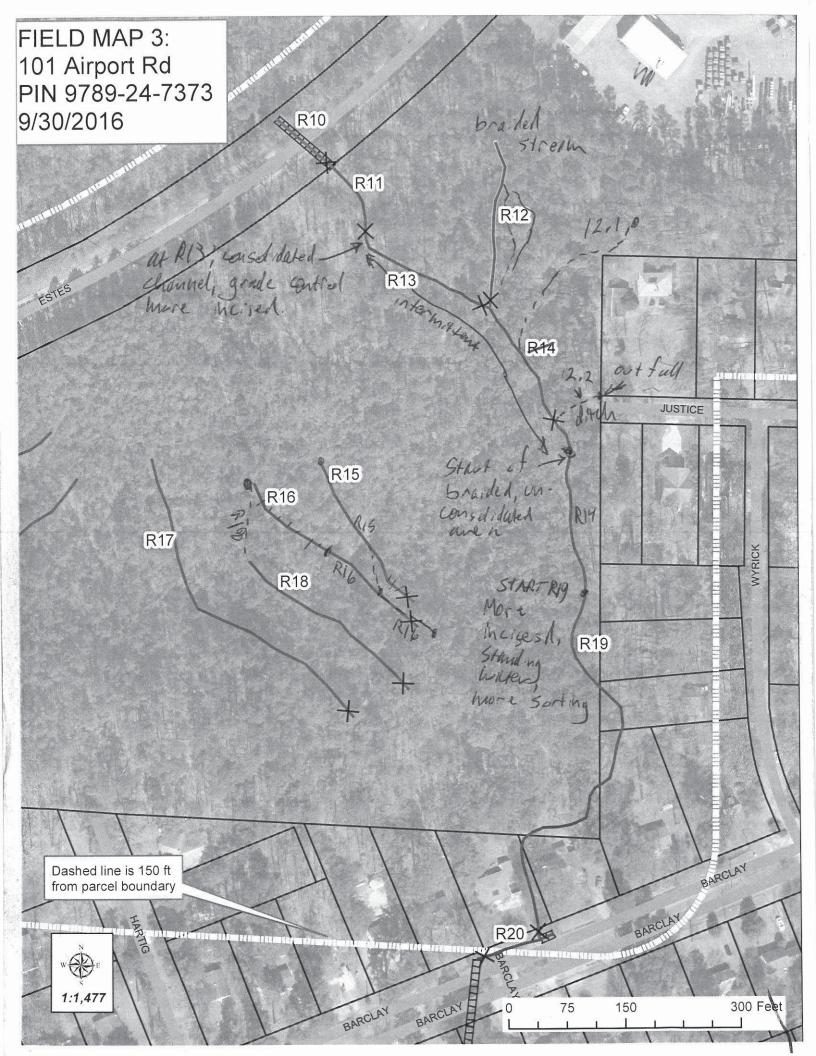
Site Parcel Boundary

190 380 570 760 Feet


1 inch = 625 feet


Address: 101 Airport Rd


Parcel ID: 9789-24-7373



Created by Town of Chapel Hill Public Works Department - Stormwater Management Division- 9/29/2016

	Project Site9789 - 24 - 7373		Latitude		
Evaluator: DM	County:		Longitude:		
Total Points: Stream is at least intermitie it 28, 15 fel 19 or perennial fel 30"	Stream Determin	Other Felg Suad Name:			
A. Geomorphology (Subtotal = 16.5,	Absent	Weak	Moderate	Strong	
Continuity of channel bed and bank	0	1	(2)	3	
2 Sinuosity of channel along thalweg	9	1	(2)	3	
3 In-channel structure ex riffe-pool step-pool ripple-pool sequence	0	1	2	3	
4. Particle size of stream substrate	0	(1)	2	3	
5 Active relict floodolain	0	1	2	3	
5. Depositional bars or benones	0	(1)	2	3	
7. Recent alluvial decosits	0	(1)	2	3	
B. Headouts	0	1	2	3	
Grade control	0	0.5	①	1.5	
D Natural valley	0	(5)	1	1.5	
1. Second or greater order channel	No(€)		Y'es = 3		
antificial ditones are not rared, see dispussions in manual B. Hydrology (Subtotal =		1 +	2	3	
2. Presence of Base ^{fl} ow	0		2		
3. Iron okidizing basteria	<u></u>	1)	0.5	3 i 0	
4. Leaf litter	1.5		<u> </u>	1.5	
15. Sediment on plants or depris	S !	Q <u>\$</u> >	(1)	1.5	
18 Organio depris lines prolles	0 1	0.5	ALC: THE CO.		
6 Organio depris lines or piles 7. Spil-based evidence of high water table?		0.5 = 0	ALC: THE CO.	(E)	
13. Organic depris lines or piles 17. Spil-based evidence of high water table? C. Biology (Subtotal = <u>6.75</u>)	N/o	= 0	ALC: THE CO.	(±))	
16 Organio depris lines or piles 17. Spil-based evidence of nigh water table? C. Biology (Subtotal = 6.75) 13. Fibrous roots in streamoed	No 3	= 0	ALC: THE CO.	(<u>3</u>)	
16 Organic decris lines or piles 17. Soil-based evidence of high water table? 2. Biology (Subtotal = 6,75) 13. Fibrous roots in streamped 13. Rooted upland plants in streamped	3 1 3	(3)	1 1	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
Organic decris lines or piles Organic decris lines Organic decris lines or piles Organic decris lines Organic decris line	3 3 (0)	(3) (2) 1	f es 1 1 2	(a) (b) (c) (a) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	
16. Organic depris lines or piles 17. Spil-based evidence of high water table? 18. Biology (Subtotal = 6.75) 18. Fibrous roots in streamoed 19. Rooted upland plants in streamoed 20. Macrobenthos inote diversity and abundance) 21. Aquatio Mollusks	3 3 (2)	(3) (2) 1	1 1	(= 3) (1 0 (1 3 (1 3	
13. Organic depris lines or piles 17. Spil-based evidence of high water table? 18. Biology (Subtotal = 6.75) 18. Fibrous roots in streamoed 19. Rooted upland plants in streamoed 20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks 22. Fish	3 3 0 0	(3) (2) 1 1 0.5	f es 1 1 2	(= 3) (0) (1) 3 (1) 5	
16 Organic decris lines or piles 17. Spil-based evidence of high water table? 18. Biology (Subtotal = 6.75) 18. Fibrous roots in streamoed 19. Rooted ubland plants in streambed 20. Macrobenthos (note diversity and abundance) 21. Aquatic Molfusks 22. Fish 23. Orayfish	3 3 (2)	2 2 1 1 0.5 0.5	f es 1 1 2	(= 3) 0 0 3 1 3 1 5	
13. Organic depris lines or piles 17. Spil-based evidence of high water table? 18. Biology (Subtotal = 6.75) 19. Ribrous roots in streamoed 19. Rooted upland plants in streambed 20. Macrobenthos inote diversity and abundance) 21. Aquatio Molfusks 22. Fish 23. Orayfish 24. Amphibians	3 3 0 0	2 2 1 1 0.5 0.5 0.5	f es 1 1 2	(= 3) (0) (1) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
13. Organic depris lines or piles 17. Spil-based evidence of high water table? 18. Biology (Subtotal = 6.75) 19. Biorous roots in streamped 19. Rooted upland plants in streamped 20. Macrobenthos inote diversity and abundance) 21. Aquatio Mollusks 22. Fish 23. Crayfish 24. Amphibians 25. Algae	3 3 0 0	= 0 (2) 1 1 0.5 0.5 0.5 0.5	f as 1 1 2 2 1 1 1 1 1 1	= 3) 0 3 1 3 1 5 1 5 1 5	
13. Organic depris lines or piles 17. Spil-based evidence of high water table? 18. Biology (Subtotal = 6.75) 19. Ribrous roots in streamoed 19. Rooted upland plants in streambed 20. Macrobenthos inote diversity and abundance) 21. Aquatio Molfusks 22. Fish 23. Orayfish 24. Amphibians	3 3 3 (0) (0) (0) (0) (0)	2 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5	f as 1 1 2 2 1 1 1 1 1 1	= 3) 0 3 1 3 1 5 1 5 1 5	

2016/005258

NC DWO Stream Identification Form Version 4.11

Date: (0/5/16	Project Site9789	9-24-737	3 Latitude	
Evaluator: DM	County:		Longitude	
Total Points: Stream is at least intermitted: 17, 76	Stream Determin Ephemeral Interr	ation (sirsle on mittent Perenn	e) Other lal e.g. Suad Name:	
A. Geomorphology (Subtotal = //)	Absent	Weak	Moderate	Strong
13 Continuity of channel bed and bank	0	(1)	2	3
2 Sinuosity of phannel along thalweg	0	1	(2)	3
3 In-channel structure ex riffle-pool step-pool	o I		2	3
nobie-pool sequence	- Yi			100
4 Particle size of stream substrate	. 0		2	3
5 Active relict floodolain	0		2	3
6. Depositional bars or benones		1	2	3
7. Recent alluvial decosits	0	1	(2)	3
8. Headouts	0	1	(2)	3
9 Grade control	0	C 5		1.5
10. Natural valley	(0)	0.5	1	1.5
11. Second or greater order channel	5011	No E3 Yes = 3		
fartificial ditches are not rated see discussions in manu B. Hydrology (Subtotal =)				
12. Presence of Basefow	0	1	2	3
13 Iron oxidizing basteria	(0)	1	2	3
14. Leaf litter	1.5	1	05	9
15 Sediment on plants or depris	0	0.5	1	1.5
16 Organio depris lines pripiles	0	0.5	1	(15)
17. Soil-based evidence of high water jable?	No:	= 0	res	= 3
C. Biology (Subtotal = 4,15)		(#		
13 Fibrous roots in streamped	3	(2)	1 (1)	0
19. Rooted upland plants in streambed	3	2		2
20. Macrobenthos (note diversity and abundance)	0	1	2	3
21. Aquatic Moitusks	C3	1	2	3
22. Fish	0	0.5	1	1 5
23 Crayfish	a	0.5	v 1	1.5
24. Amphibians	0	0.5	1	1.5
	0	0.5	0	15
25 Algae	J) OBL = 1.5 Other =	

Skietch.

Notes:

Date: 10/6/16	Project Site	39-24-73	73 Latitude			
Evaluator: DM	County:		Longitude			
Total Points: Stream is at least intermitien in fix 19 or generating fix 30°	Stream Determination (circle one) Other Ephemeral Intermittent Perennial e.g. Cuad Name:					
2 /						
A. Geomorphology (Subtotal = 0.9)	Absent	Weak	Moderate	Strong		
13 Continuity of channel bed and pank	0	0	2	3		
2. Sinuosity of channel along thalweg	0	0	2	3		
3 In-channel structure ex nif e-popi step-popi noble-popi seguence	0	1	2	3		
4. Particle size of stream substrate	. 0		2	3		
5. Aptive relict floodolain.	()	1	2	3		
6. Depositional bars or benones	(0)	1	2	3		
7. Recent alluvial decosits	(2)	1	2	3		
8. Headouts	(0)	1	2	3		
9 Grade control	0 1	CD3	1	1 5		
10. Natural valley		0.5	1	1,5		
11. Second or greater order shannel	1 115=9		i Yes	Yes = 3		
* artificial ditches are not rated, see discussions in manual B. Hydrology (Subtotal =						
12. Presence of Baseflow	0	1	2	3		
13 Iron oxidizing basteria	6	1	2	3		
14, Leaf litter	1.5	1	(5)	0		
15 Sediment on plants or depris	(0)	0.5	1	1.5		
18 Organio depris lines pripiles	Ő I	0.5	(1)	1.5		
17. Soil-based evidence of high water jable?	614	()	. Yes	= 3		
C. Biology (Subtotal = 2 + 15)	St.					
13 Fibrous roots in streamped	3	(3)	1	i g		
19. Rooted upland plants in streambed	(3)	2	1	٥		
20. Macrobenthos (note diversity and abundance)	(0)	1	2	3		
21. Aquatic Mollusks	0	1	2	3		
22. Flan	(9)	0.5	1	1.5		
23 Grayfish	Ò	0.5	1	1.5		
24. Amphibians	, A	0.5	1 1	1.5		
25 Algae	0	0.5	1	1.5		
26 Wetland plants in streambed	į.	FACW = Q73	GBL = 1.5 Other = 1	0		
"perennial streams may also be dentified using other meth	rods Seep 35 of manua	lla .				
Notes:						

Sketch

Date: 10/6/16	Project Site978	39-24-7373	Latitude	
Evaluator: DM	County		Longitude	
Total Points: Stream is at least intermine it if ≥ 19 or perennial if ≥ 30" (6.15)		nation (sircle one) rmittent Perennial	Other e.g. Guad Namel	
A. Geomorphology (Subtotal = 8	Absent	Weak	Moderate	Strong
1* Continuity of channel bed and bank	0	1	(2)	3
2. Sinuosity of channel along thalweg	0	1	(2)	3
3 In-channel structure ex riffe-pool step-pool noble-pool seguence	0	1	0	3
4. Particle size of stream substrate	3	1	2 1	3
5. Active religt floodolain	0	0	2	3
6. Depositional bars or becones	(4)	1 2	2 (3
7. Recent alluvial decosits	(0)	1	2	3
8. Headouts	1 (0)	1	2	3
9. Grade control	0	0.5	0	1 5
10. Natural valley	(4)	G 5	1 :	1.5
11. Second or greater order channel	i ii	= 0	Yes =	3
artificial ditches are not rated, see discussions in manual				
B. Hydrology (Subroja) = 4,9				
12. Presence of Baseflow	0	1	2	3
13 Iron oxidizing basteria	(3)	1	2	3
14. Leaf litter	1.5	1	(05)	0
15 Sediment on plants or decris	0	0.5	1	1,5
16. Organic depris lines or piles	0 1	0.5	(D)	1.5
17. Soil-based evidence of high water table?	5 510	= 0	Yes =	7
C. Biology (Subtotal = 3,25)	£	9		
13 Fibrous roots in streamoed	3	2	1	0
13. Rooted upland plants in streambed	1 <u>3</u> 7	2	1	٥
20. Macrobenthes (note diversity and abundance)	<u>Ö</u>	1	2	3
21. Aquatic Mollusks	<u> </u>	1 1	2	3
22. Fish		0.5	1	1.5
23 Crayfish	0	0.5	1	1.5
24. Amphibians	0	0.5	1	1 5
25 Aiçae	0	03		1.5
28 Wetland plants in streambed	Ü.		BL=15 Other=0	
and the second s	s Saan lanimania	i .		

Skatch.

Notes:

Date: 10/6/16	Project Site978	39-24-7373	Latitude	
Evaluator: DM	County:		Longitude	
Total Points: Stream is at least intermitted: 13.25 if 2 19 or perennia, if 2 30"		nation (sircle one) rmittent Perennial	Other e.g. Guad Name:	
A. Geomorphology (Subtotal = 5,5)	Absent	Weak	Moderate	Strong
A. Geomorphology (335.5.a) = 13 Continuity of channel bed and bank	0	0	2	3
2 Sinuosity of channel along that weg	0 1	0	2	3
3 In-channel structure ex riffe-poor step-poor mobile-poor sequence	0	0	2	3
4. Particle size of stream substrate	; 0 :	(1)	2	3
5 Active/religt floodplain	(D)	1	2	3
6. Depositional bars or benones	0	1	2	1 3
7. Recent alluvial deposits			2	. 3
3. Headouts	0	0	2	3
9. Grade control	0	(0.5)	1	1.5
10. Natural valley	0	0.5	1	1.5
11. Second or greater order channel	1 1:	(ED)	γ'as = 3	
famificial ditories are not rated, see discussions in manual B. Hydrology (Subtotal = 4 r 0)				
12. Presence of Baseflow	0	1	2	3
13. Iron oxidizing basteria	(0)	1	2	3
14. Leaf litter	1.5	1 1	(05)	<u> </u>
15. Sediment on plants or depris	8	0.5	1	1.5
16. Organic depris lines proiles	0 1	<u> </u>	11	1.5
17. Soil-based evidence of nigh water table?	Ni:) = J	Ýes	3
C. Biology (Subtotal = 3.75)		**		
13 Fibrous roots in streamped	3	2	\bigcirc	0
19. Rooted upland plants in streambed	3	(2)	1	0
20. Macrobenthos (note diversity and abundance)	0	1	2	3
21. Aquatio Moilusks	<u> </u>	1	2	3
22. Fisa	0	0.5	1	1.5
23. Crayfish	0	2.5		15
24. Amphibians	0	0.5	1	1.5
25 Aigae	3) 5	1	1.5
26 Wetland plants in streambed		FACW = 275) OF	BL = 15 Other =	Ü
fperennial streams may also be dentified using other metho	ids See o 35 of manua	li .		
Notes:				

Skatoh.

Date: 10/	6/16	Project Site 9789-24-7373	Latitude
Evaluator:	DM	County:	Longitude
Total Points: Stream is at least into if ≥ 19 or perennial if		Stream Determination (sircle one) Ephemeral (Intermittent Perennial	Other Felg Suad Name:

A. Geomorphology (Subtotal =i 13 Continuity of channel bed and bank 2 Sinuosity of channel along thalwag 3 In-channel structure lex riffle-book step-book ripple-book sequence 4 Particle size of stream substrate 5 Active/religt floodplain 6. Depositional bars or behanes 7 Recent alluvial deposits 8. Headouts 9 Grade pontrol 10 Natural valley			2 2 2 2 2 2 2 2	
2 Sinuosity of channel along thalweg 3 In-channel structure lex riffle-cool step-pool ripole-pool seguence 4 Particle size of stream substrate 5 Active/religt floodolain 6 Depositional bars or benches 7 Recent alluvial deposits 8 Headouts 9 Grade control 10 Natural valley		1 1 1 1	2 2 2 2 2 2	3 3 3 3
3 In-channel structure ex riffe-book step-book mode-book sequence 4 Particle size of stream substrate 5 Active/relict ficodokain 6 Debositional bars or benches 7 Recent alluvial deposits 8 Headouts 9 Grade control 10 Natural valley		1 1 1 1	2 2 2 2 2	3 3 3
Particle size of stream substrate Active/relict floodolain Depositional bars or beneres Recent alluvial deposits Headouts Grade control Natural valley		1 1 1	2 2 2	3
5. Active/reliot floodolain 6. Depositional bars or benenes 7. Recent alluvial deposits 8. Headouts 9. Grade control 10. Natural vailey		1	2 2	3
3. Depositional bars or benefies 7. Recent alluvial deposits 3. Headouts 9. Grade control 10. Natural vailey	0	1	2	
7. Recent alluvial decosits 3. Headouts 9. Grade control 10. Natural valley	0	1		
3. Headouts 9. Grade control 10. Natural valley	0			3
1) Natural valley			2	3
		0.5		1.5
	(D)	0.5	1	1.5
11. Second or greater order channel	i Ni	3 (3)	Yes Yes	= 3
amificial ditones are not rated, see discussions in manual				
B. Hydrology (Subscial = 7.5)				
12. Presence of Basefow	0	1	2	3
13. Iron oxidizing basteria	0	(1)	2	3
14. Leaf litter	1.5	C P	0.5	13
15 Sediment on plants or deoris	0	(0,5)	1	1.5
16. Organio depris lines pripiles	0 .	0.5		1.5
17. Soil-based evidence of high water table?	51.	o = 0	Yes(= 3/
D. Biology (Subtotal = 8,75)		V		
13 Fibrous roots in streamped	(3)	2	11	0
19. Rooted upland plants in streambed	(3)	2	1	0
20. Macrobenthos (note diversity and adundance)	0	(1)	2	3
21. Aquatic Mollusks	(3)	1	2	3
22. Fisc	0	0.5	1	1 5
23 Crayfish	0	0.5	1	1.5
24. Amphibians	O O	0.5	1	1 5
25 Algae	0	0.5	0	1.5
28. Wetland plants in streambed	i.	FAOW = 075) GBL = 1.5 Other =	0

Skatch.

Date: /0/6//6	Project Site 9 789-24-7373		Latitude		
Evaluator: DM	County:		Longitude:		
Total Points: Stream is at least intermittent if ≥ 19 or perennia: if ≥ 30° 18,25	Stream Determin Ephemera) Inter	nation (circle one) mittent Perennial	Other e.g. Guad Name:		
2 6	Absent	Weak	Moderate	Strong	
A. Geomorphology (Subtotal = 8 + 5)	O	1	(2)	3	
1° Continuity of channel bed and bank	0		(2)	3	
2. Sinuosity of channel along that weg	- U				
3 In-channel structure ex. riffle-pool, step-pool, ripple-pool sequence	0		2	3	
Particle size of stream substrate	0 1	(1)	2	3	
5 Active/relict floodolain	(0)	1	2	3	
6. Depositional bars or benches	0	1	2	3	
7. Recent alluvial deposits	0 i	(h)	2	3	
8. Headouts	0 1	6	2	3	
9 Grade control	0	(0.5)	1	1.5	
10. Natural valley	(0)	0.5	1	1.5	
11. Second or greater order channel	No = 0)		Yes = 3		
artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal =)					
12. Presence of Baseflow	0	1	2	3	
13. Iron oxidizing bacteria	(0)	1	2	3	
14. Leaf litter	1.5	(1)	0.5	0	
15 Sediment on plants or depris	07 1	0.5	1	1.5	
16. Organic debris lines or piles	0	(0.5)	1	1.5	
17. Soil-based evidence of high water table?		= 0	Yes = 3		
O. Biology (Subtotal = 5.75)					
13 Fibrous roots in streambed	3	2	(1)	1 0	
Rooted upland plants in streambed	(3)	2	1	0	
20. Macrobenthos (note diversity and abundance)	3	1	2	3	
21. Aquatio Mollusks	8	1	2	3	
22. Fish	0	0.5	1	1.5	
23. Crayfish	8	0.5	1	1.5	
24. Amphibians	0	0.5	1	1.5	
25. Algae	0	0.5	(1)	1.5	
26 Wetland plants in streambed		FACW = 0.75) OB	L = 15 Other =	0	
*perennial streams may also be identified using other metho	ogs See p 35 of manual				
Nintae:					
Notes:					

Date:	10/6/16	Project Site 789-24-7373	Latituda
Evaluator:	DM	County:	Longitude
Total Points Stream is at lea if ≥ 19 or perent	stime milie ii 1 6 0 6	Stream Determination (sircle one) Ephemeral Intermittent Perennial	Other

A. Geomorphology (Subtotal = 8 1	Absent	1	Weak	Moderate	Strong
1. Continuity of channel bed and bank	. 0		(1)	2	3
2 Sinusity of channel along that weg	0	1	1	(2)	3
3 In-channel structure lex niffle-cool step-bool mobile-bool sequence	0		0	2	3
Particle size of stream substrate	0		(1)	2	3
5 Active religt floodgiain	0	1	1	2	3
6. Depositional bars or benones	- 0		d	2	3
7. Recent alfuvia: desosits	0	1	0	2	3
3. Headouts	(0)		1	2	3
9 Grade control	0		C 5	0	1.5
10. Natural valley	. 0		0.5	1	1,5
11. Second or greater order shannel)10 7	3)	Yas	5 = 3
*artificial ditones are not rated, see dispussions in manual B. Hydrology: (Subtotal =					
12. Presence of Baseflow	0		1	2	3
13. Iron oxidizing basteria	(3)		1	2	3
14. Leaf litter	1.5	1	1	(0,5)	0
15 Sediment on plants or depris	(D)		0.5	1	1_5
18 Organic depris lines or piles	0		0.5	. 0	1.5
17. Soil-based evidence of high water table?		No =	0	/a	3 = 3
C. Biology (Subtotal = 6.75)					
13 Fibrous roots in streamped	3		(2)	1	<u> </u>
19. Rooted upland plants in streambed	1 3		2	11	3
20. Macrobenthos inote diversity and abundance)	(9)		1	2	3
21. Aquatic Mollusks	(0)		1	2	3
22. Fish	9		0.5	1	1 5
23 Crayfish	0		0.5	1	1.5
24. Amphibians			0.5	1 1	15
25 Alcae	0		0.5	0	1.5
26 Wetland plants in streamped	3		FACW =075	OBL = 1.5 Other:	= 1)
foerennial streams may also be dentified using other metho	ods Seep 35 of n	nanual.			
Notes:					

S∢etch.

2016/006/220

RIS

NC DWQ Stream Identification Form Version 4.11

Date: 10	16/2016	Project Site 9789-24-7373	Latitude
Evaluator:	DM	County:	Longitude
Total Points: Stream is at least ii if ≥ 19 or perannia.		Stream Determination (sircle one) Ephemeral Intermittent Perennial	Other e g: Suad Name:

A Geomorphology (Sustainle 14 / 1	Absent	W	eak	Moderate	Strong
A. Geomorphology (Subtotal = 7, 9, 1) 13 Continuity of channel bed and bank	0	(1)	2	3
2 Sinuosity of channel along that weg	0	1	1	(2)	3
3 In-channel structure ex riffle-pool step-pool	0		1	3	3
rippie-popi sequence		1	-m		
4. Particle size of stream substrate	. 0	<u> </u>	1/	2	3
5 Active/reliet floodolain	<u> </u>		1	2	3
6. Depositional bars or benones	(0)		1 :	2	3
7. Recent alluvia, decosits	. 0	(1)	2	3
8. Headouts	(7)	1	1	2	3
9 Grade control	٥		(3)	1	1.5
1) Natural valley	(2)		5	1	1.5
11. Second or greater order channel	i j	No(=0)	1	Yes	= 3
artificial ditanes are not rated, see dispussions in manual		T-MARKET !			
B. Hydrology (Subtotal = 4.5)					
12. Presence of Basellow	0		1 <u>i</u>	2	3
13 Iron oxidizing basteria	C)		1	2	3
14. Leaf litter	1.5		1	(03)	0
15. Sediment on plants or depris	Q) 5	1	1.5
18 Organic depris lines or piles	G).5	0	1.5
17. Soil-based aildence of high water table?		No = 0	II.	Y as	([3]
C. Biology (Subtotal = 2,15)					
13 Fibrous roots in streamped	3		2	(1)	0
19. Rooted upland plants in streambed	3		2		0
20. Macrobenthos inote diversity and abundance)	0		1	2	3
21. Aquatic Mollusks	(A)		1	2	3
22. Fisa	. 0).5	1	1.5
23 Crayfish	(3)		0.5	1	1.5
	(m)		0.5	1	1 5
	N. J.		F N		1 -
21. Amphibians 25. Akcae	O O		(5)	1 BL = 15 Other =	1.5

Sketch.

RU

Date: 10/6/16	Project/Site: 789-24-7373		Latitude:	
Evaluator: DM	Stream Determination (circle one) Ephemeral Intermittent Perennial		Longitude:	
Total Points: Stream is at least intermittent i ≥ 19 or perennial if ≥ 30*			Other e.g. Quad Name:	
A. Geomorphology (Subtotal = 4.5)	Absent	Weak	Moderate	Strong
a. Continuity of channel bed and bank	0	0	2	3
. Sinuosity of channel along thalweg	(0)	1	2	3
. In-channel structure: ex. riffle-pool, step-pool,	0	(1)	2	3
ripple-pool sequence				- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
. Particle size of stream substrate	0	1	2	3
. Active/relict floodplain	(0)	1	2	3
. Depositional bars or benches	0	1	2	3
. Recent alluvial deposits	0	1	2	3
. Headcuts	0	1	2	3
. Grade control	0	0.5	1	1.5
Natural valley	0	0.5	1	1.5
Second or greater order channel	No	0 = 0	Yes =	= 3
artificial ditches are not rated; see discussions in manual				
3. Hydrology (Subtotal =)				
2. Presence of Baseflow	0	1	2	3
3. Iron oxidizing bacteria	(0)	1	2	3
4. Leaf litter	1.5	(1)	0.5	0
5. Sediment on plants or debris	(0)	0.5	1	1.5
6. Organic debris lines or piles	0	0.5	(1)	1.5
7. Soil-based evidence of high water table?	No = 0 Yes = 3			
C. Biology (Subtotal = 6,25)		Shippe		
8. Fibrous roots in streambed	3	2	1	0
9. Rooted upland plants in streambed	(3)	2	1	0
0. Macrobenthos (note diversity and abundance)	0	1	2	3
1. Aquatic Mollusks	0	1	2	3
2. Fish	(0)	0.5	1	1.5
3. Crayfish	0	0.5	1	1.5
4. Amphibians	(0)	0.5	1	1.5
5. Algae	0	0.5)	1	1.5
6. Wetland plants in streambed		FACW = 0.75; OBI	_ = 1.5 Other = 0	
*perennial streams may also be identified using other method	ls. See p. 35 of manua			
Votes:			- The	
10.00				
Sketch:				

RIZ

Date: 10/6/16	Project/Site.9789-24-1373		Latitude:	
Evaluator: DM	County: Stream Determination (circle one) Ephemeral Intermittent Perennial		Longitude:	
Total Points: Stream is at least intermittent if ≥ 19 or perennial if $\geq 30^*$			Other e.g. Quad Name:	
A. Geomorphology (Subtotal = 4.5)	Absent	Weak	Moderate	Strong
1ª. Continuity of channel bed and bank	0		2	3
Sinuosity of channel along thalweg	0	1	2	3
3. In-channel structure: ex. riffle-pool, step-pool,		4		
ripple-pool sequence	0		2	3
Particle size of stream substrate	0	1	2	3
5. Active/relict floodplain	0	1	2	3
6. Depositional bars or benches	0	1	2	3
7. Recent alluvial deposits	Ö	<u>(1)</u>	2	3
8. Headcuts	0	(1)	2	3
9. Grade control	0	0.5	1	1.5
10. Natural valley	0)	0.5	1	1.5
11. Second or greater order channel	No €	0)	Yes =	= 3
artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal =)				
12. Presence of Baseflow	(0)	1	2	3
13. Iron oxidizing bacteria	<u>_0</u>	1	2	3
14. Leaf litter	1.5	1	0.5	0
15. Sediment on plants or debris	0.	0.5	1	1.5
16. Organic debris lines or piles	0	0.5	1	1.5
17. Soil-based evidence of high water table?	No =	0	Yes	= 3)
C. Biology (Subtotal =)				
18. Fibrous roots in streambed	(3)	2	1	0
19. Rooted upland plants in streambed	3	2	1	0
20. Macrobenthos (note diversity and abundance)	(0)	1	2	3
21. Aquatic Mollusks	(0)	11	2	3
22. Fish	0)	0.5	1	1.5
23. Crayfish	0)	0.5	1	1.5
24. Amphibians	0)	0.5	1	1.5
25. Algae	(0)	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75; OB	L = 1.5 Other = 0)
*perennial streams may also be identified using other meth	lods. See p. 35 of manual.			
Notes:				
Sketch:				
Cholon				

12,1

NC DWQ Stream Identification Form	Version 4.11			(
Date: 10/6/16	Project/Site:9789-24-7373		Latitude:			
Evaluator: DM	County:		Longitude:			
Total Points: Stream is at least intermittent if ≥ 19 or perennial if ≥ 30*		nation (circle one) rmittent Perennial	Other e.g. Quad Name:			
A. Geomorphology (Subtotal = 4,5)	Absent	Weak	Moderate	Strong		
1 ^{a.} Continuity of channel bed and bank	0	(1)	2	3		
Sinuosity of channel along thalweg	0	(1)	2	3		
In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	0	2	3		
4. Particle size of stream substrate	(0)	1	2	3		
5. Active/relict floodplain	(0)	1	2	3		
6. Depositional bars or benches	(0)	1	2	3		
7. Recent alluvial deposits	0	0	2	3		
8. Headcuts	(0)	1	2	3		
9. Grade control	O	0.5	1	1.5		
10. Natural valley	0	0.5	1	1.5		
11. Second or greater order channel	No	(0) €	Yes :	= 3		
^a artificial ditches are not rated; see discussions in manual						
B. Hydrology (Subtotal =)						
12. Presence of Baseflow	0	1	2	3		
13. Iron oxidizing bacteria	0	1	2	3		
14. Leaf litter	1.5	1	(0.5)	0		
15. Sediment on plants or debris	0	0.5	1	1.5		
16. Organic debris lines or piles	0	(0.5)	1	1.5		
17. Soil-based evidence of high water table?						
C. Biology (Subtotal = 4,25)						
18. Fibrous roots in streambed	3	2	1	0		
19. Rooted upland plants in streambed	3	(2)	1	0		
20. Macrobenthos (note diversity and abundance)	0	Ī l	2	3		
21. Aquatic Mollusks	(0)	1	2	3		
22. Fish	0	0.5	11	1.5		
23. Crayfish	0	0.5	1	1.5		
24. Amphibians	0)	0.5	1	1.5		
25. Algae	0	(0.5)	1	1.5		
26. Wetland plants in streambed		FACW = 0.75; OBI	L = 1.5 Other = 0)		
*perennial streams may also be identified using other method:	s. See p. 35 of manua	l.				
Notes:						
Sketch:			+ 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			

NC DWQ Stream Identification Form	Version 4.11			
Date: 10/6/16	Project/Site:		Latitude:	
Evaluator: DM	County:		Longitude:	
Total Points: Stream is at least intermittent if ≥ 19 or perennial if ≥ 30*	Stream Determination (circle one) Ephemeral Intermittent Perennial		Other e.g. Quad Name:	
A. Geomorphology (Subtotal =)	Absent	Weak	Moderate	Strong
1 ^a Continuity of channel bed and bank	0	1	2	3
2. Sinuosity of channel along thalweg	(0)	1	2	3
In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3
Particle size of stream substrate	(0)	1	2	3
5. Active/relict floodplain	0	1	2	3
6. Depositional bars or benches	0	1	2	3
7. Recent alluvial deposits	0	1	2	3
8. Headcuts	0	1	2	3
9. Grade control	(0)	0.5	1	1.5
10. Natural valley	(0)	0.5	1	1.5
11. Second or greater order channel	No	=0	Yes :	= 3
^a artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal = 5.9)				
12. Presence of Baseflow	0	0	2	3
13. Iron oxidizing bacteria	(0)	1	2	3
14. Leaf litter	1.5	1	0.5	0
15. Sediment on plants or debris	0	0.5	1	1.5
16. Organic debris lines or piles	0	0.5	1	1.5
17. Soil-based evidence of high water table?	No = 0 Yes = 3			
C. Biology (Subtotal =)	774-111-1-1-1			
18. Fibrous roots in streambed	3	2)	1	0
19. Rooted upland plants in streambed	(3)	2	1	0
20. Macrobenthos (note diversity and abundance)	(0)	1	2	3
21. Aquatic Mollusks	(0)	1	2	3
22. Fish	Ø	0.5	1	1.5
23. Crayfish	0	0.5	1	1.5
24. Amphibians	0	0.5	1	1.5
25. Algae	0	0.5	1	1.5
26. Wetland plants in streambed	FACW = 0.75; OBL = 1.5 Other = 0			
*perennial streams may also be identified using other methods	s. See p. 35 of manua	I.		
Notes:		H		
Sketch:				

405 Martin Luther King, Jr. Blvd. Chapel Hill, NC 27514-5705 Telephone (919) 969-7246 Fax (919) 969-7276 www.townofchapelhill.org

REQUEST FOR STREAM DETERMINATION

Stream determinations are used to determine whether the Resource Conservation District or the Jordan Stream Buffer will apply to a property, and the areas protected if that is the case. There is no fee for stream determinations. By default, we will search records and notify you if a site visit is not needed for a property.

property.	viii search records and notiry you it a site visit is not needed for a
needed if a determination has been done	conduct a stream determination. A new site visit may not be in the last five years. Turnaround time is within two weeks for conditions, staff availability, and size of the lots.
	ownofchapelhill.org), faxed, dropped off at Town Hall or the e address care of "Stormwater Specialist".
Requestor's Name: <u>Dewberry</u>	
Mailing Address: 2610 Wycliff Roa	d. Suite 410
City, State, ZIP: Raleigh, NC 2760	07
Phone / FAX / Email: 919-424-376	57/choffman@dewberry.com
Check method(s) for report to be sent:	il 🔀 Email 🗌 FAX 🔲 Call for pickup
Signature of property owner or design the property(jes) indicated below for property (Signature) Owner Name(s): (Please print)	mated legal agent granting permission to Town Staff to enter ourposes of a Stream Determination: 6 24 0 (Date) Marklein
Property Information fill in both columns, or fill in Parcel ID Numb	er (PIN) and attach a site map indicating location
Parcel ID Number (PIN)	Address / Location Description
Western Portion 9789247373	101 Airport Road/Estes Drive Extension

Where the **total area** of the property(ies) to visit is **over 3 acres** please attach an as-built drawing or a topographic map with current landmarks.

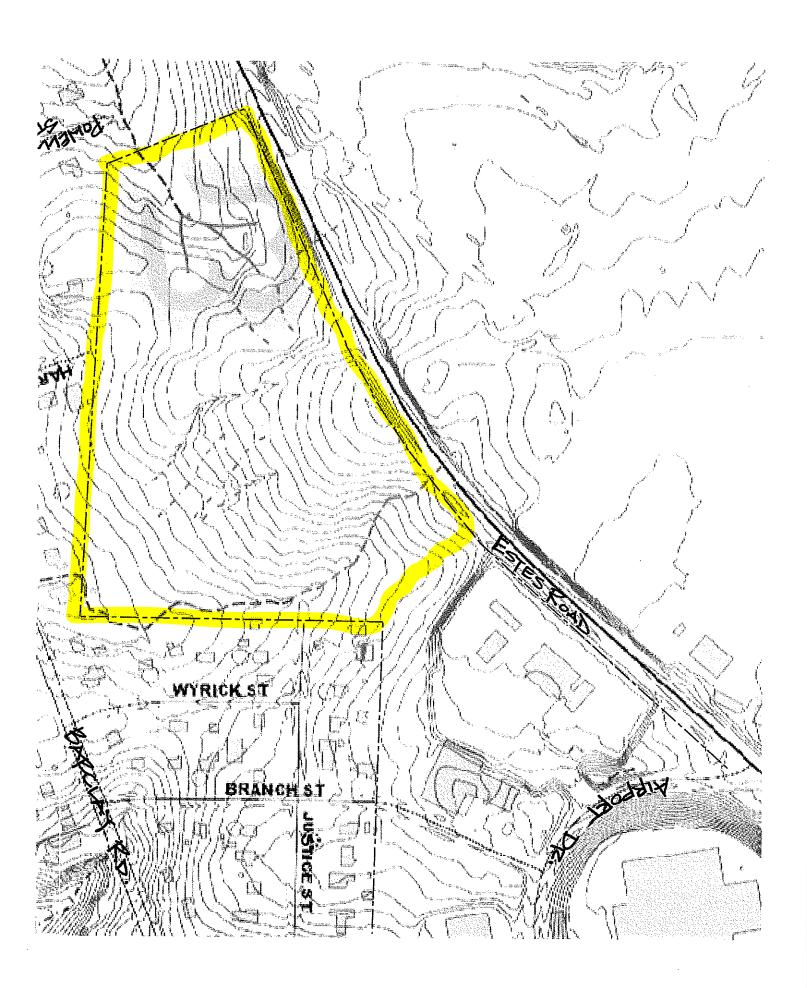


Exhibit X - Impact Analysis on the Value of Contiguous Properties of a Proposed Municipal Services Center

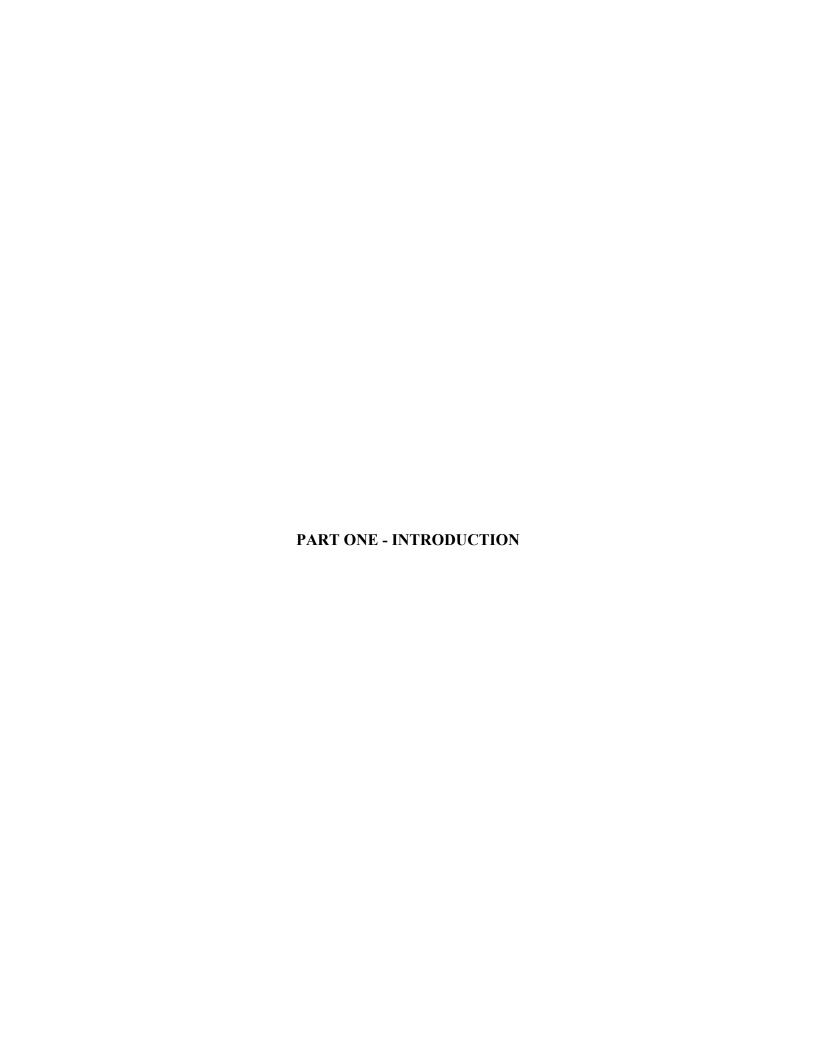
IMPACT ANALYSIS

ON THE VALUE OF CONTIGUOUS PROPERTIES OF A PROPOSED MUNICIPAL SERVICES CENTER

LOCATED ON

ESTES DRIVE CHAPEL HILL, NORTH CAROLINA

AS OF


APRIL 2, 2018

FOR

TOWN OF CHAPEL HILL 405 MARTIN LUTHER KING, JR. BOULEVARD CHAPEL HILL, NC 27514

BY

DAVID A SMITH, MAI, SRA POST OFFICE BOX 51597 DURHAM, NORTH CAROLINA 27717-1597

DAVID A. SMITH, MAI, SRA

P.O. BOX 51597 DURHAM, NORTH CAROLINA 27717-1597 PHONE (919) 493-1534 smithappraiser@verizon.net

April 3, 2018

Town of Chapel Hill 405 Martin Luther King, Jr. Boulevard Chapel Hill, NC 27514

As requested, I have inspected the properties contiguous to a proposed municipal services center to be located on Estes Drive in Chapel Hill, North Carolina.

The purpose of this analysis is to determine if a proposed municipal services center is "located, designed, and proposed to be operated so as to maintain or enhance the value of contiguous property." The intended use of this report is to assist the approving body in determining the effect of the proposed municipal services center. The intended users of this report are officers and employees of the Town of Chapel Hill and anyone they designate.

As requested, a summary report has been prepared. This is not an appraisal, but a consulting assignment.

The property was last inspected on April 2, 2018 which is the effective date of this report and analysis. Based on an inspection of the property and the contiguous properties, an analysis of data gathered and facts and conclusions as contained in the following report of 17 pages, and subject to the assumptions and limiting conditions as stated, it is my opinion that the **proposed municipal services center will maintain or enhance the value of contiguous property.**

I certify that I have personally inspected the property and the contiguous properties. I further certify that I have no interest either present or contemplated in the properties and that neither the employment to make this analysis nor the compensation is contingent upon the result of the analysis.

Respectfully submitted,

David 9. Smith

David A. Smith, MAI, SRA NC State-Certified General Real Estate Appraiser #A281

TABLE OF CONTENTS

PART ONE-INTRODUCTION	PAGE
Letter of Transmittal	1
Table of Contents	2
Certification of Value	3
PART TWO-PREMISES OF THE APPRAISAL	
Statement of Competence	4
Extraordinary Assumptions and Hypothetical Conditions	4
General Assumptions and Limiting Conditions	4
Purpose and Intended Use of the Report	5
Definition of Value	5
Date of Analysis and Date of Report	6
Property Rights	6
Scope of Work	7
PART THREE-PRESENTATION OF DATA	
Description of Property	8
Contiguous Properties	9
PART FOUR-ANALYSIS OF DATA AND CONCLUSIONS	
Effect of the Proposed Municipal Services Center	11
Conclusion and Summary	12
Qualifications of the Appraiser	13
ADDENDA	
Photographs	
Flood Topo Map	
Aerial Map	
Plat	

CERTIFICATION

I certify that, to the best of my knowledge and belief,...

The statements of fact contained in this report are true and correct.

The reported analyses, opinions, and conclusions are limited only by the reported assumptions and limiting conditions, and are my personal, impartial, and unbiased professional analyses, opinions, and conclusions.

I have no present or prospective interest in the property that is the subject of this report, and no personal interest with respect to the parties involved.

I have no bias with respect to the property that is the subject of this report or to the parties involved with this assignment.

My engagement in this assignment was not contingent upon developing or reporting predetermined results.

My compensation for completing this assignment is not contingent upon the development or reporting of a predetermined value or direction in value that favors the cause of the client, the amount of the value opinion, the attainment of a stipulated result, or the occurrence of a subsequent event directly related to the intended use of this appraisal.

My analyses, opinions, and conclusions were developed, and this report has been prepared, in conformity with the *Uniform Standards of Professional Appraisal Practice*.

I have made a personal inspection of the property that is the subject of this report.

No one provided significant real property appraisal assistance to the person signing this certification.

The reported analysis, opinions, and conclusions were developed, and this report has been prepared, in conformity with the requirements of the Code of Professional Ethics and the Standards of Professional Appraisal Practice of the Appraisal Institute.

The use of this report is subject to the requirements of the Appraisal Institute relating to review by its duly authorized representatives.

As of the date of the report, I have completed the requirements of the continuing education program of the Appraisal Institute.

This assignment was not made, nor was the appraisal rendered on the basis of a requested minimum valuation, specific valuation, or an amount, which would result in approval of a credit transaction.

David A. Smith, MAI, SRA

David 9. Smith

STATEMENT OF COMPETENCE

I have completed all of the requirements to become a state certified-general appraiser for the State of North Carolina and all of the requirements for the MAI designation. In addition I have successfully completed USPAP courses and continuing education seminars for over thirty years. More detailed information about these courses and seminars are in the qualifications section of this report. I have prepared similar analyses and feel competent to perform this analysis.

EXTRAORDINARY ASSUMPTIONS AND HYPOTHETICAL CONDITIONS

An extraordinary assumption is an assumption, directly related to a specific assignment, which if found to be false, could alter the appraiser's opinions or conclusions. A hypothetical condition is something that is contrary to what exists but is supposed for the purpose of the analysis. This analysis assumes that the property will be improved with the municipal services center as planned. No other extraordinary assumptions or hypothetical conditions are made.

GENERAL ASSUMPTIONS AND LIMITING CONDITIONS

The report has been made with the following general assumptions:

- 1. Possession of this report, or a copy thereof, does not carry with it the right of publication.
- 2. The appraiser by reason of this report is not required to give further consultation or testimony or to be in attendance in court with reference to the property in question unless arrangements have been previously made.
- 3. Neither all nor any part of the contents of this report (especially any conclusions, the identity of the appraiser, or the firm with which the appraiser is connected) shall be disseminated to the

public through advertising, public relations, news, sales or other media without the prior written consent and approval of the appraiser.

- 4. Definitions used in this report have been taken from *The Dictionary of Real Estate Appraisal*, 5th ed., published by the Appraisal Institute, copyright 2010.
- 5. Descriptions of the site and proposed improvements is based on a personal inspection of the property, public records and information supplied by the Town of Chapel Hill. This includes a set of plans entitled "Town of Chapel Hill, Municipal Services Building, Site and Building Design" dated February 22, 2018. For purposes of this report this information is assumed to be correct. Copies of these plans are in the addenda.

PURPOSE, INTENDED USE AND USERS OF THE REPORT

The purpose of this analysis is to determine if a proposed municipal service center will maintain or enhance the value of contiguous properties. The intended use of the appraisal is to assist the approving body in determining the effect of the proposed center. The intended users of this report are offices and employees of the Town of Chapel Hill and anyone they designate.

DEFINITION OF VALUE

The opinion of value in this appraisal is the market value. The definition of market value is that used by federally regulated financial institutions

The most probable price which a property should bring in a competitive and open market under all conditions requisite to a fair sale, the buyer and seller each acting prudently and knowledgeably, and assuming the price is not affected by undue stimulus. Implicit in this definition is the consummation of a sale as of a specified date and the passing of title from seller to buyer under conditions whereby:

- 1. buyer and seller are typically motivated;
- 2. both parties are well informed or well advised, and acting in what they consider their own best interests;
- 3. a reasonable time is allowed for exposure in the open market;
- 4. payment is made in terms of cash in United States dollars or in terms of financial arrangements comparable thereto; and
- 5. the price represents the normal consideration for the property sold unaffected by special or creative financing or sales concessions granted by anyone associated with the sale.

DATE OF ANALYSIS AND DATE OF REPORT

The effective date of the analysis is April 2, 2018. The date of the report is April 3, 2018.

PROPERTY RIGHTS

The ownership interest considered in this report is the fee simple interest. The contiguous properties may be leased or have other property rights transferred, but the effect is for the fee simple value of the properties. The definition of fee simple as used in this report is:

Absolute ownership unencumbered by any other interest or estate, subject only to the limitations imposed by the governmental powers of taxation, eminent domain, police power, and escheat.

SCOPE OF WORK

The scope of the report involves collection and confirmation of data relative to the municipal services center property and the contiguous properties. I inspected the property and the plans provided and observed the contiguous properties from the street right-of-ways. I performed an analysis based on properties that are contiguous to an existing municipal facility to determine the effect on other properties. From this information, I determined that the proposed use will maintain or enhance the value of contiguous properties.

DESCRIPTION OF PROPERTY

Since the purpose of this report is to determine the effect of the proposed municipal services center on contiguous properties and not the property where the center will be located, only a brief description of the municipal services center property is given. It consists of two parcels with tax IDs of 9789-03-3163 and 9789-24-7373. The first parcel is owned by the University of North Carolina Endowment Fund Trustees, contains 2.5 acres and is heavily wooded. The second is owned by the University of North Carolina and contains 59.33 acres. The eastern section of this parcel is improved with facilities for the University of North Carolina but the western area where the proposed municipal services center will be located is unimproved and heavily wooded.

The property is located on the south side of Estes Drive a short distance north of the Estes /Seawell School Road intersection. Four roads dead end into the property, Justice Street, Hartig Street, Powell Street and Ward Street. Traffic would enter and leave the site at two points on Estes Drive roughly in the middle of the site.

The building will be three and a half stories in height and contain about 72,000 square feet of enclosed area. The exterior walls will be mostly glass. Three will be several paved surface parking lots with a total of 285 to 330 spaces.

The land will be leased to the Town by the University. Uses on the property include: Police Headquarters, Fire Administration, Parks and Recreation Administration and other small town functions (wellness clinic, omsbud, etc). The police will leave the property at 6 pm and the patrol is out in the community until 6 am. The building is not occupied 24/7 although there may occasionally be an individual officer or cleaning service on site.

The Town plans to pursue LEED designation for the Municipal Services Center and has committed to minimum light, sound, noise pollution through building design, technology, and the preservation of existing perimeter vegetation as well as additional landscaping around the disturbed area of the site.

The Town will also build a storm water treatment system. Currently, storm water is unmanaged and exits the property in the southeastern corner occasionally flooding the residential properties in that location. Post-development storm water runoff cannot exceed pre-development runoff and might actually be mitigated or improved.

Future facilities could include: A UNC building with similar office/administrative uses, a smaller town or university building with similar uses, or a fire station on the western end of the site with access to Estes Drive.

Copies of the site plan, tax cards, zoning map, aerial, floodplain map of the property from the GIS records are in the addenda. Photos of the property are also in the addenda.

CONTIGUOUS PROPERTIES

The proposed municipal services center is located in Orange County and in the city limits of Chapel Hill. The property is located on the south side of Estes Road across the street from the Chapel Hill Airport. Some of the site is part of a larger parcel and only those properties that adjoin that portion of the parcel where the center will be constructed are considered.

There are sixteen properties that will be contiguous to the proposed municipal services center. I did not enter any of the buildings but observed them all from the street. All are improved with single family dwellings. The following information is from tax records. One of the dwellings was built in 2002 but the rest were constructed between 1941 and 1962. One is 2,026 square feet in size but the rest range from 700 to 1,728 square feet in size. The average age is 67 years and the average size is 1,099 square feet. All of the properties appear to be in good condition and the neighborhood is a stable middle class one. The dwellings are occupied by a mixture of owners and tenants. A chart of the contiguous properties is on the following page. Photographs of some of the dwellings are in the addenda.

DAVID A. SMITH, MAI, SRA

Pin	Address	Size	Land	Building	Total	Year	Building
0700122024	004 IIt.' . Ct	0.20	Value	Value	Value	Built	Size
9789123934	804 Hartig St	0.28	\$100,000	\$172,000	\$272,000	1954	2,026
9789022908	832 Ward St	0.47	\$100,000	\$124,100	\$224,100	1956	1,333
9789027973	8 Powell St	0.72	\$100,000	\$112,100	\$212,100	1962	1,148
9789120930	805 Hartig St	0.81	\$100,000	\$154,300	\$254,300	1941	1,456
9789125836	224 Barclay Rd	0.37	\$100,000	\$88,400	\$188,400	1942	806
9789125899	222 Barclay Rd	0.31	\$100,000	\$102,200	\$202,200	1942	962
9789126980	220 Barclay Rd	0.31	\$100,000	\$125,800	\$225,800	1947	1,385
9789127981	218 Barclay Rd	0.21	\$100,000	\$126,800	\$226,800	1955	1,401
9789128969	216 Barclay Rd	0.46	\$100,000	\$92,200	\$192,200	1942	800
9789139112	1 Wyrick St	0.31	\$100,000	\$77,200	\$177,200	1947	768
9789139128	4 Wyrick St	0.3	\$100,000	\$47,000	\$147,000	1947	750
9789138295	807 Wyrick St	0.3	\$100,000	\$79,800	\$179,800	1947	775
9789138599	208 Justice St	0.5	\$100,000	\$163,300	\$263,300	2002	1,728
9789139599	206 Justice St	0.31	\$100,000	\$74,000	\$174,000	1942	700
9789230579	204 Justice St	0.33	\$100,000	\$100,900	\$200,900	1942	850
9789138357	211 Justice St	0.22	\$100,000	\$39,000	\$139,000	1952	700

EFFECT OF THE PROPOSED MUNICIPAL SERVICES CENTER

The potential adverse effects from any proposed use are environmental hazards, odor, noise, lighting, traffic and visual impact. Based on the information supplied, there will be no environmental hazards or increased odor associated with the proposed use. Lighting and visual impact will be minor and not more than a typical office building which is currently allowed without further approval. Traffic and noise should also not be higher than if the building was used as an office building. Police leave at 6 pm and do not return until 6am. There will be no direct access between the center and the adjacent neighborhood.

In order to estimate the effect of the proposed municipal services center on contiguous properties, I researched sales of dwellings in close proximity to existing municipal facilities. A short distance to the east of the proposed center are similar facilities for UNC. These facilities are contiguous to properties along the north side of Justice Street. I located three contiguous properties on Justice Street and compared them with four properties on the south side of Justice Street that are not contiguous to the facilities. The properties are similar in most respects. I only considered properties that sold since 2010 and were built between 1942 and 1955. I adjusted them for differences in market conditions (time) and divided the result by the square footage of the dwellings. A chart showing these properties is on the following page.

The three properties on the north side of Justice Street (contiguous to the municipal facilities) give an average adjusted selling price of \$191.44 per square foot. Those on the south side (not contiguous to the facilities) give and average adjusted selling price of \$187.07 per square foot or about 2.00% less. That is the properties that are contiguous to the municipal facilities actually sold for more. However, this is a very small difference and is within the margin of error.

Pin	Address	Land Size	Date Sold	Sal	les Price	Year Built	Build Sq Ft	Market	Adjusted
								Condition	
	CONTIGUOUS TO MUNICIPAL FACITLITES								
9789230579	204 Justice	0.33	6/13/2012	\$	175,000	1942	850	14.51%	\$235.76
9789234596	134 Justice	0.31	12/21/2015	\$	299,500	1948	1790	5.71%	\$176.86
9789239576	120 Justice	0.32	12/12/2010	\$	295,000	1955	2158	18.27%	\$161.68
								Average	\$191.44
	NOT CONTIGUOUS TO MUNICIPAL FACILITIES								
9789234307	135 Justice	0.31	10/27/2014	\$	158,000	1942	1216	8.58%	\$141.09
9789235358	131 Justice	0.31	8/10/2017	\$	342,000	1942	2064	1.61%	\$168.36
9789236326	129 Justice	0.31	7/30/2012	\$	165,000	1942	1121	14.19%	\$168.08
9789239434	123 Justice	0.33	7/25/2013	\$	190,000	1942	784	11.73%	\$270.76
								Average	\$187.07

CONCLUSION AND SUMMARY

To determine if the proposed municipal services center will maintain or enhance the value of contiguous property, I considered properties near the proposed center that are currently contiguous to similar municipal facilities. I compared properties contiguous to these facilities with those that are not contiguous and found little difference in the selling prices. Based on this it is my opinion that the proposed municipal services center will not adversely affect the property values of those dwellings that will be contiguous to the center and the proposed use will maintain the value of the contiguous property.

DAVID A. SMITH, MAI, SRA

DAVID A SMITH & ASSOCIATES, INC. P.O. BOX 51597 DURHAM, NORTH CAROLINA 27717-1597 PHONE (919) 493-1534 smithappraiser@frontier.com

QUALIFICATIONS OF DAVID A. SMITH, MAI, SRA

The appraiser, David A. Smith, has been involved in the appraisal of real estate for over thirty years. He worked with his father, Charles W. Smith, from 1976 to 2003. After the retirement of Charles W. Smith in 2003 he formed Smith & Whitfield, Inc. and later David A. Smith & Associates. In 1988 he was awarded the RM designation. With the merger of the American Institute of Real Estate Appraisers and the Society of Real Estate Appraisers in January of 1991, the RM designation was changed to the SRA designation. In 1991 he was awarded the MAI designation of the Appraisal Institute. He became a state-certified real estate appraiser in 1991 the year the state first began licensing real estate appraisers and his certification number is A281.

He has also trained and supervised several appraisers and has prepared all types of appraisal reports. His primary focus is Durham County and the adjoining counties of Orange, Person, Granville and Chatham.

EDUCATION: Graduate Episcopal High School, Alexandria, VA, 1976 A.B., Duke University, Durham, NC, 1981

APPRAISAL INSTITUTE COURSES:

Real Estate Appraisal Principles (Exam 1A-1/8-1), University of North Carolina, 1981 Residential Valuation (Exam 8-2), University of North Carolina, 1981 Basic Valuation Procedures (Exam 1A-2), University of North Carolina, 1983 Standards of Professional Practice (Exam SPP), University of North Carolina, 1983 Capitalization Theory & Techniques, A (Exam 1B-A), University of Colorado, 1984 Capitalization Theory & Techniques, B (Exam 1B-B), University of Colorado, 1984 Valuation Analysis and Report Writing (Exam 2-2), University of North Carolina, 1987 Case Studies in Real Estate Valuation (Exam 2-1), University of North Carolina, 1987 Advanced Sales Comparison & Cost Approaches, Atlanta, Georgia, 2002 General Appraiser Market Analysis and Highest and Best Use, Atlanta, Georgia, 2007 Online Business Practices and Ethics, Chicago, Illinois, 2007 Appraisal Curriculum Overview, 2009 Condemnation Appraising: Principles & Applications, Greensboro, NC, 2011

APPRAISAL INSTITUTE SEMINARS:

Highest and Best Use, 1988

Industrial Valuation, 1988

Rates, Ratios and Reasonableness, 1988

Valuation of Leased Fee Interests, 1989

Current Problems in Industrial Valuation, 1989

Methods of Subdivision Analysis, 1989

Expert Witness in Litigation, 1989

Discounted Cash Flow, 1990

RTC Appraisal Standards, 1990

Preparation and Use of the UCIAR Form, 1990

Standards of Professional Practice Update, 1990

Commercial Construction Overview, 1991

Appraising Troubled Properties, 1991

Appraisal Regulations of the Federal Banking Agency, 1992

Real Estate Law for Appraisals, 1992

Appraising Apartments, 1993

Discounted Cash Flow Analysis, 1994

Appraiser's Legal Liabilities, 1994

Understanding Limited Appraisals, 1994

Analysis Operating Expenses, 1995

Future of Appraisals, 1996

Highest and Best Use Applications, 1996

Standards of Professional Practice, Parts A & B, 1997

Litigation Skills for the Appraiser, 1997

Eminent Domain & Condemnation Appraising, 1998

Matched Pairs/Highest & Best Use/Revisiting Report Options, 1998

Valuation of Detrimental Conditions, 1998

Appraisal of Nonconforming Uses, 2000

How GIS Can Help Appraisers Keep Pace with Changes in R E Industry, 2001

Feasibility Analysis, Market Value and Investment Timing, 2002

Analyzing Commercial Lease Clauses, 2002

Standards of Professional Appraisal Practice, 2002

Effective Appraisal Writing, 2003

Supporting Capitalization Rates, 2004

National USPAP Update, 2004

Rates and Ratios: Making Sense of GIMs, OARs, and DCFs, 2005

The Road Less Traveled: Special Purpose Properties, 2005

National USPAP Update, 2006

Appraisal Consulting: A Solutions Approach for Professionals, 2006

What Clients Would Like Their Appraisers to Know, 2007

Valuation of Detrimental Conditions, 2007

Business Practice and Ethics, 2007

Office Building Valuation: A Contemporary Perspective, 2008

Subdivision Valuation, 2008

National USPAP Update, 2009

Effective Appraisal Writing, 2009

Appraisal Curriculum Overview, 2009

Discounted Cash Flow Model: Concepts, Issues and Apps., 2010

National USPAP Update, 2010

Rates and Ratios: Making sense of GIMs, OARs and DCFs, 2011

National USPAP Update, 2012 Business Practices and Ethics, 2012

Marketability Studies: Advanced Considerations & Applications, 2013

Real Estate Valuation Conference, 2013

National USPAP Update, 2014

OTHER SEMINARS:

Commercial Segregated Cost Seminar, Marshall & Swift, 1988 Appraisal Guide and Legal Principles, Department of Transportation, 1993 The Grammar Game, Career Track, 1994

MEMBERSHIPS:

Appraisal Institute, MAI #09090 Appraisal Institute, SRA/RM #2248 Durham Board of Realtors North Carolina Association of Realtors National Association of Realtors

CERTIFICATION:

State Certified General Real Estate Appraiser for North Carolina, #A281

OTHER:

NC Property Tax Commission, 2013 – Present
Durham Civilian Police Review Board, 2009 - Present, Past Chair
Durham County Board of Equalization and Review, 2013 – Present
Durham Public Schools Budget Advisory Committee, 2013 - Present
City of Durham Audit Oversight Committee, 2002 – 2006
Durham Board of Adjustment, 1994 - 2002
Durham City/County Zoning Commission, 1990 – 1995
John Avery Boys and Girls Club, 1994-2002
Historical Preservation Society, 1992 - 1995
Vice President of the Candidates, 1989, NC Chapter 40
President of the Candidates, 1990, NC Chapter 40
Candidate of the Year, 1990, NC Chapter 40

RECENT CLIENTS (within the past five years):

LENDING INSTITUTIONS
American National Bank & Trust Company
AMEX Financial
BB&T

Citizens National Bank

CommunityOne Bank NA

Fidelity Bank

First South Bank

Harrington Bank

KeySource Commercial Bank

Live Oak Banking Company

Mechanics & Farmers Bank

Pacific International Bank

PNC Bank

RBC Bank

Self-Help

State Farm Bank

SunTrust Bank

Wells Fargo Bank

MUNICIPALITIES AND OTHER GOVERNMENT AGENCIES

Chapel Hill Transit

City of Durham

NC Department of Administration

Durham County

Durham Public Schools

Durham Technical Community College

Housing Authority of the City of Durham

NCDOT

Orange County

Orange Water and Sewer Authority

Person County

Town of Chapel Hill

OTHER

Allenton Management

AND Associates

Barcosnic

Builders of Hope

BCG Properties

Blanchard, Miller, Lewis & Styers Attorneys at Law

Blue Cross & Blue Shield of NC

Boulevard Proeprties

Bugg & Wolf Attorneys at Law

Carolina Land Acquisitions

CRC Health Corporation

Development Ventures Inc.

Duke Energy

Durham Academy

Durham Rescue Mission

Durham Technical Community College

Edward Jones Trust Company

Farrington Road Baptist Church

Forest History Society GBS Properties of Durham, LLC Hayden Stanziale Georgia Towers, LLC Hawthorne Retail Partners Integral **Investors Title Insurance IUKA** Development Joelepa Associates LP John and Mary Hebrank LCFCU Financial Partners Manor Associates McDonald's USA Mt. Gilead Baptist Church Northgate Realty, LLC Property Advisory Services, Inc. Rand Enterprises Research Triangle Foundation Sehed Development Corporation Simba Management Southwest Durham Partners, LLC Stirling Bridge Group, LLC Styers, Kemerait & Mitchell, PLLC Talbert & Bright Attorneys at Law Teer Associates Thalle Construction The Bogey Group **TKTK Accountants** Treyburn Corporate Park, LLC

Trinity Properties
UNC Hospitals
Voyager Academy
Wilhekan Associates

In addition, Mr. Smith has made appraisals for other lending institutions, municipalities, individuals, corporations, estates and attorneys. Appraisal assignments have been made throughout the Triangle, North Carolina, and South Carolina.

Properties appraised include all types of single family residential, multi-family residential, office, retail, commercial, industrial, churches, schools and other specialty type uses, vacant and improved, existing and proposed.

Appraisal assignments were for a variety of purposes including: mortgage loans, estate planning, condemnation, bankruptcy and equitable distribution.

Street Scene along Estes Drive

Street Scene along Estes Drive

Hartig Street Dead End into Property

805 Hartig Street

804 Hartig Street

Powell Street Dead End into Property

819 Powell Street

820 Powell Street

Ward Street Dead End

832 Ward Street

Justice Street Dead End into Property

211 Justice Street

200 Justice Street

Municipal Buildings Contiguous to Justice Street

Municipal Building Contiguous to Justice Street

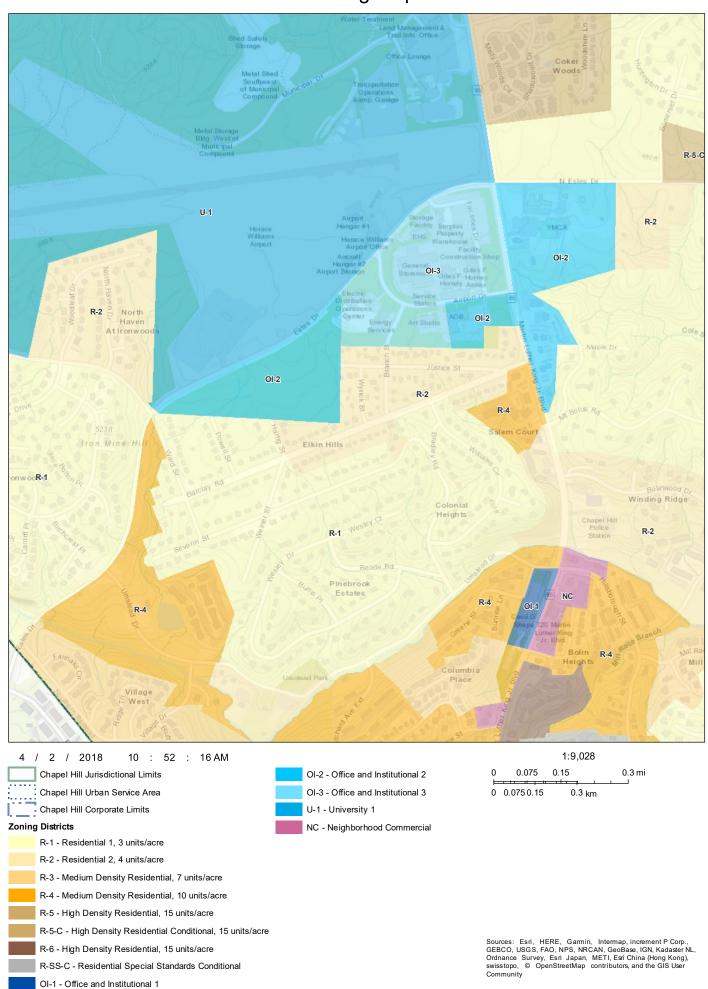
Municipal Building Contiguous to Justice Street

Justice Street Property Seen from Contiguous Parking Lot

Justice Street Property Seen from Contiguous Parking Lot

0.16 mi

0.04


0.2 km

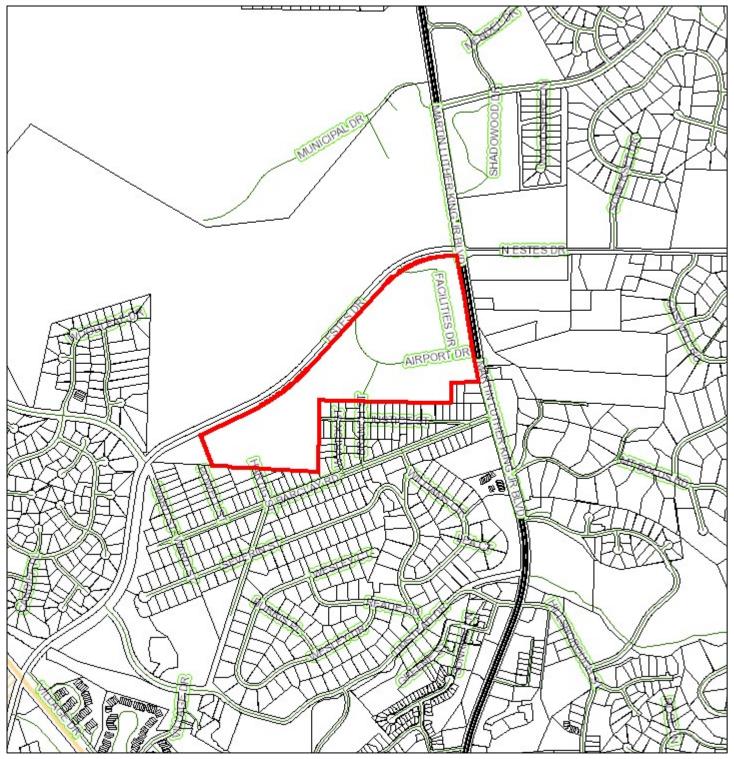
0.1

0.05

April 2, 2018

Zoning Map

GIS/Tax Data



This map contains parcels prepared for the inventory of real property within Orange County, and is compiled from recorded deed, plats, and other public records and data. Users of this map are hereby notified that the aforementioned public primary information sources should be consulted for verification of the information contained on this map. The county and its mapping companies assume no legal responsibility for the information on this map.

April 2, 2018

PIN:	9789033163	SIZE:	2.5 A	BUILDING COUNT:		
OWNER 1:	UNIVERSITY OF N C ENDOWMEN	T PURED PREUS	T ≝9 ∕544	LAND VALUE:	\$0	
OWNER 2:		RATECODE:	22	BLDG_VALUE:	\$0	
ADDRESS 1:	ENDOWMENT FUND TRUSTEES	DATE SOLD	: 12/14/1984	USE VALUE:	\$0	
ADDRESS 2:		BLDG SQFT	:	TOTAL VALUE:	\$0	
CITY: (CHAPEL HILL	YEAR BUILT	:		1:4,800	
STATE, ZIP: LEGAL DESC:	NC 27514 S/S SR 1780			0 0.04 	0.08 0.2 k	0.16 mi

Tax/GIS Map

This map contains parcels prepared for the inventory of real property within Orange County, and is compiled from recorded deed, plats, and other public records and data. Users of this map are hereby notified that the aforementioned public primary information sources should be consulted for verification of the information contained on this map. The county and its mapping companies assume no legal responsibility for the information on this map.

April 2, 2018

SIZE: 59.233 A **BUILDING COUNT:** PIN: 9789247373 \$355,400 UNIVERSITY OF N C DEED REF: 000/000 LAND VALUE: OWNER 1: \$0 BLDG_VALUE: RATECODE: 22 OWNER 2: USE VALUE: \$0 PROPERTY OFFICE DATE SOLD: 10/22/2002 ADDRESS 1:

\$355,400

TOTAL VALUE: ADDRESS 2: BLDG SQFT: CITY: CHAPEL HILL YEAR BUILT: 1:12,000

0.2 STATE, ZIP: 0.1 0.4 mi LEGAL DESC: S/W INT HWY 86 & ESTES DR 0.15 0.6 km

- MUNICIPAL SERVICES BUILDING 72,000 SQ. FT. X 3.5 FLOORS
- TOWN FUTURE BUILDING 28,000 SQ. FT. X 3.5 FLOORS
- UNIVERSITY FUTURE BUILDING 100,000 SQ. FT. X 3 FLOORS
- SURFACE PARKING

SITE SECTION 'B'

SITE SECTION 'A'

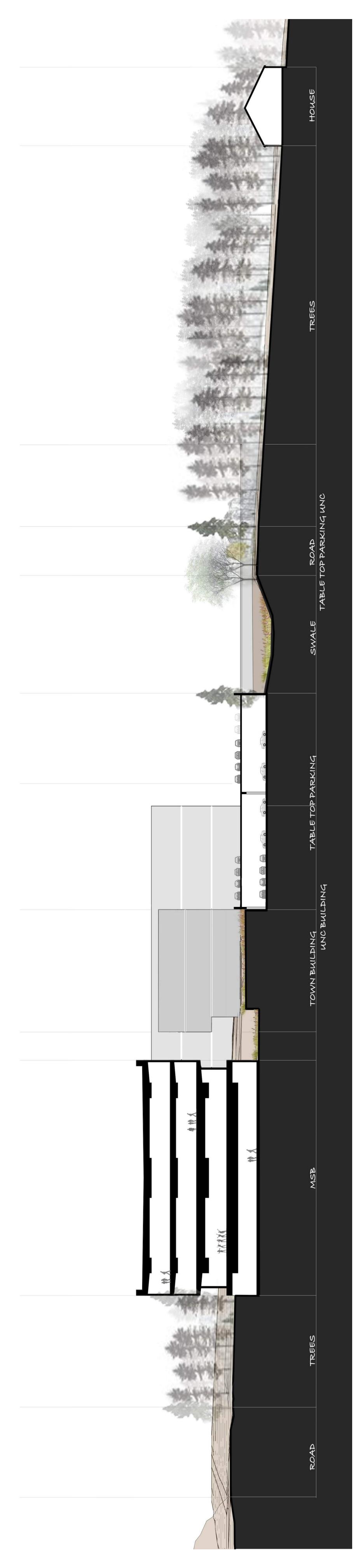
a

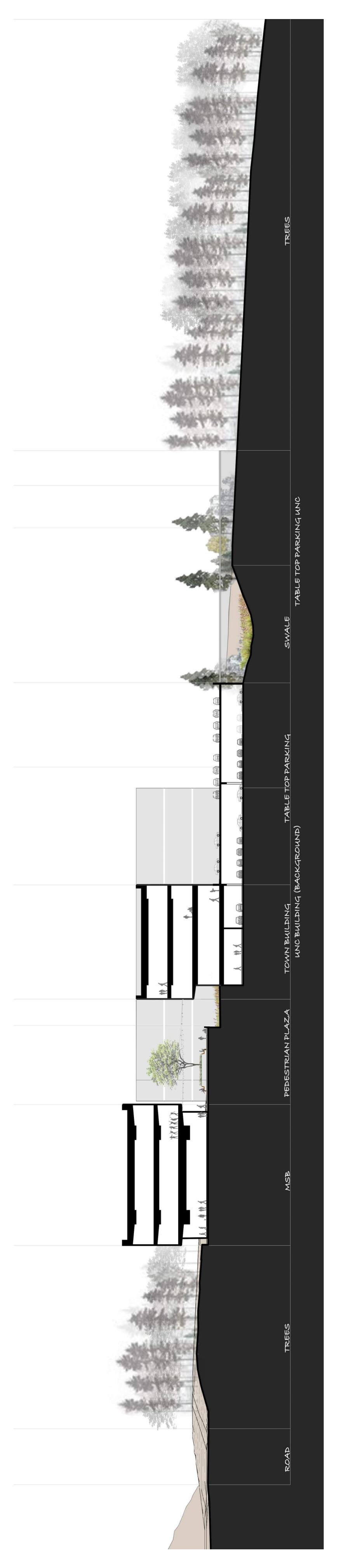
0

S

W

S


- TABLE TOP STRUCTURED PARKING
- STORM WATER CONTROL MEASURE SCM
- STREAM CENTERLINE



SITE SECTIONS0 3 . 0 1 . 2 0

SITE SECTIONS 0 3 . 0 1 . 2 0

TOWN OF CHAPEL HILL MUNICIPAL SERVICES CAMPUS

TRAFFIC IMPACT STUDY

Prepared for:

The Town of Chapel Hill
Public Works Department - Engineering

Prepared by: HNTB North Carolina, PC

343 East Six Forks Road Suite 200 Raleigh, NC 27609

NCBELS License #: C-1554

February 2018

TOWN OF CHAPEL HILL MUNICIPAL SERVICES CAMPUS

TRAFFIC IMPACT STUDY

Prepared for:

The Town of Chapel Hill Public Works Department - Engineering


Prepared by:

HNTB North Carolina, PC

343 East Six Forks Road Suite 200 Raleigh, NC 27609

NCBELS License #: C-1554

February 2018

Town of Chapel Hill: Traffic Impact Study Town of Chapel Hill Municipal Services Campus - Proposed Institutional Development

Table of Contents

		<u>Page</u>
	ST OF FIGURES	
LIS	ST OF TABLES/APPENDICES	ii
I.	Existing Conditions	1
	A. Project Overview	1
	B. Site Location and Study Area	
	C. Site Description	
	D. Existing and Proposed Uses in Vicinity of Site	2
	E. Existing and Committed Surface Transportation Network	
	F. Existing Traffic Conditions	5
		_
II.	Future Build-Out Year Conditions	6
	A. Future Ambient Area-Wide Traffic Growth Estimation	
	B. Approved Background Development Traffic Estimation	
	C. Proposed Project Traffic	
	i.) Trip Generation	
	ii.) Adjustments to Trip Generation Rates	
	iii.) Trip Distributioniv.) Trip Assignment	o
	D. Future Traffic Forecasts with the Proposed Development	
	2. Fataro France Foresado Martino Froposoa Bovolopinone Institution	
III.	Impact Analyses	9
	A. Peak Hour Intersection Level-of-Service Analysis	a
	i.) Methodology	
	ii.) 2017 Existing Conditions Results	11
	iii.) 2021 No-Build Scenario (Condition 2) Results	
	iv.) 2021 Build Scenario (Condition 3) Results	
	v.) 2021 Build + Mitigation Scenario (Condition 4) Results	
	B. Access Analysis	
	C. Signal Warrant Analysis	
	D. Sight Distance Analysis	
	E. Crash AnalysisF. Other Transportation-Related Analyses	10
	G. Special Analysis/Issues Related to the Project	17
	e. opodia. / inalijolo loddo Holatou to tilo i rojosti	
IV.	Mitigation Measures/Recommendations	18
	A. Planned Improvements	
	B. Background Committed Improvements	19
	C. Applicant Committed Improvements	19
	D. Necessary Improvements	

i

List of Figures

F	ia	u	re

- 1) Project Study Area
- 2) Preliminary Site Plan
- 3) Existing Laneage & Geometrics
- 4) Study Area Pedestrian & Bicycle Facilities
- 5) Study Area Transit Routes
- 6) Town of Chapel Hill Estes Drive Improvements Schematic Detail
- 7) 2017 Existing Peak Hour Traffic Volumes
- 8) 2021 Ambient Growth Peak Hour Traffic Volumes
- 9) Background Development Locations
- 10) 2021 Total Background Generator Peak Hour Traffic Volumes
- 11) 2021 Peak Hour Traffic Without Site Phase 1
- 12) 2021 Site Trip Distribution Percentages Phase 1
- 13) 2021 Peak Hour Site Traffic Assignment Phase 1
- 14) 2021 Peak Hour Traffic With Site Phase 1
- 15) 2021 Committed Improvements
- 16) Necessary Improvements

List of Tables

Table		<u>Page</u>
1)	Existing Study Area Roadways	2
2)	Existing Study Area Intersection Details	3
3)	Current Study Area Weekday Transit Service	4-5
4)	Traffic Count Information	6
5)	Study Area Background Development Status	7
6)	Phase 1 Weekday Peak Hour Vehicle Trip Generation Summary	8
7)	Level of Service (LOS) Characteristics	10
8)	Capacity Analysis Results - Condition 1 – 2017 Existing Traffic	12
9)	Capacity Analysis Results - Condition 2 – 2021 Traffic Without Site	13
10)	Capacity Analysis Results - Condition 3 – 2021 Traffic With Site (Phase 1)	14
11)	Capacity Analysis Results - Condition 4 – 2021 Traffic With Site & Mitigation	15
12)	Study Area Crash Rate Comparison – Estes Drive Extension Corridor	17
13)	Other Transportation-Related Analyses	18

Appendices

- A. Figures
- B. Traffic Count Data
- C. Background Traffic Generator Data
- D. Scenario Volume Development Spreadsheet Output
- E. Synchro Signalized Analysis Output
- F. Synchro Unsignalized 2010 HCM Analysis Output
- G. Peak Hour Signal Warrant Analysis
- H. Crash Data

February 2018 jj

I. EXISTING CONDITIONS

A. Project Overview

A new municipal services campus for the Town of Chapel Hill is being proposed along the Estes Drive Extension near its intersection with Seawell School Road. The project proposes to create multiple buildings for Town services and potential uses for future office space for the University of North Carolina – Chapel Hill (UNC). **Figure 1** (found in *Appendix A*) shows the general location of the site. Phase 1 of the project is anticipated to be fully complete by 2020. This report analyzes the Phase 1 build-out scenario for the year 2021 (one year after anticipated completion of Phase 1), the no-build scenario for 2021, as well as 2017 existing year traffic conditions. Future phased development of the site will require updates to this Phase 1 traffic impact study when that development occurs.

The proposed site concept plan shows a provision for two full movement access driveways that connect to the Estes Drive Extension. No other vehicular access connections are proposed. The site driveways are proposed to have internal connectivity with on-site parking areas. **Figure 2** displays the preliminary concept plan of the Town of Chapel Hill Municipal Services Campus and nearby land uses and roadways. The site is expected to provide approximately 168 parking spaces on surface lots in its first phase.

B. Site Location and Study Area

This report analyzes and presents the transportation impacts that the Town of Chapel Hill Municipal Services Campus will have on the following intersections in the project study area:

- Estes Drive Extension and Seawell School Road
- Estes Drive Extension and UNC Student RR Lot / Future West Site Driveway
- Estes Drive Extension and Potential Future Carolina North Access / Future East Site Driveway
- Estes Drive Extension and Airport Drive
- Estes Drive Extension / Estes Drive and NC 86 (Martin Luther King, Jr. Boulevard)
- NC 86 (Martin Luther King, Jr. Boulevard) and Airport Drive

The impacts of the proposed site at the study area intersections will be evaluated during the AM, noon, and PM peak hours of an average weekday. The following study is based on background traffic for the existing year, 2017, the year following the estimated Phase 1 site build-out (2020), as well as the estimated Phase 1 site-generated traffic produced by the Town Services Campus.

There are several Town-approved or anticipated future developments in, or just beyond, the immediate project study area that were considered to be constructed by 2021 and may generate additional background traffic. An area-wide ambient future traffic growth percentage of 1.0 percent per year was applied to the existing volumes, based on historical average annual daily traffic (AADT) growth rate data provided by the Town of Chapel Hill and NCDOT, and consistent with recent traffic impact studies near the project study area.

C. Site Description

The Town Municipal Campus site is currently owned by UNC and contains a large amount of undeveloped, wooded land. It borders Carolina North property to the north and single-family residential developments to the west and south. It also borders UNC property to the east. Additional residential subdivisions, commercial and institutional developments are present along the NC 86 (Martin Luther King, Jr. Boulevard) corridor in the project study area.

February 2018

The site has frontage along the Estes Drive Extension which will provide all vehicular access. The proposed site concept, shown in Figure 2, indicates all parking for Phase 1 will be accommodated on-site, through the use of surface parking facilities. The two proposed site driveways will include internal connections to parking areas adjacent to the proposed campus buildings. The proposed driveways are located to form future fourlegged intersections with the existing UNC Parkand-Ride facility and a future connection to Carolina North development.

D. Existing and Proposed Uses in Vicinity of Site

The land uses and development in the study area are primarily residential and institutional, with some commercial areas located along Martin Luther King, Jr. Boulevard. The Existing Land Use Plan shown in the 2021 Town of Chapel Hill Comprehensive Plan and adopted June 25, 2012, indicates that the proposed site is designated as "Institutional". The Future Land Use Plan, that is also a part of the Town Comprehensive Plan, indicates that the parcel would be considered as "University". The Comprehensive Plan also indicates that this parcel is a "Future Focus Discussion Area - S. MLK Jr. Boulevard / Homestead Road to Estes Drive". The parcel is currently zoned "OI-2" - delineating it as "office and institutional use".

E. Existing and Committed Surface Transportation Network

Airport Drive

The Town of Chapel Hill Municipal Services Campus project study area features several major and minor arterial roadways serving areas throughout the Town of Chapel Hill and points beyond, as well as a number of collector and local access streets. Table 1 summarizes pertinent information on the study area roadway facilities.

On-Street Sidewalk Functional Study Area **Road Name** Classification* **Cross-Section** Other Principal N.C. 86 5 lane undivided with Υ 29,000 35 Ν **TWLTL** (Martin Luther King, Jr. Blvd) Arterial 2 lane undivided Υ Estes Drive Minor Arterial 16,000 35 Ν Estes Drive Extension Minor Arterial 2 lane undivided 13,000 35 Ν Ν 2 lane undivided / Seawell School Road Minor Collector 3 lane undivided with Υ 4,100 35

Table 1. Existing Study Area Roadways

Local

TWLTL

2 lane undivided

N/A

25

S

Ν

February 2018 2

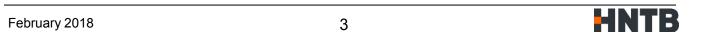
S - Some Sidewalk/Parking Present TWLTL - Two-Way Left-turn Lane

^{* -} As defined on the NCDOT Functional Classification web page http://ncdot.maps.arcgis.com/home/webmap/viewer.html

AADT data was taken from 2015 AADT mapping produced by the NCDOT Traffic Survey Unit. **Figure 3** shows the existing lane configuration, traffic control, and speed limits for these study area roadways. Detailed descriptions of several of the major study area roadways are as follows:

- N.C. Highway 86 (Martin Luther King Jr, Blvd) is a principal arterial in the study area, serving areas from I-40 (via Martin Luther King Jr. Boulevard) to downtown Chapel Hill and the US 15-501 corridor to the south. In the study area vicinity, Martin Luther King, Jr. Boulevard is a five-lane undivided section (with two-way left-turn lane). There are multiple driveway access points along the roadway and several major street intersections. No on-street parking is permitted along N.C. 86 in the project study area. Several bus stops are located along the facility. The posted speed limit is 35 mph in the study area.
- Estes Drive / Estes Drive Extension is a minor arterial that connects areas of west and north Chapel Hill. In the study area, Estes Drive and Estes Drive Extension are undivided facilities with two-lane cross-sections near NC 86 and both have a 35 mph speed limit. Auxiliary turn-lanes are present at major intersections. Sidewalk is present on at least one side of the roadway along Estes Drive, but no sidewalk is present along Estes Drive Extension. Several bus stops are located along the facilities.
- Seawell School Road is a collector roadway that provides access to residential neighborhoods and multiple schools along the facility. It is primarily a two-lane facility, with some sections having a continuous center left-turn lane. Some sections of sidewalk are also present. The posted speed limit is 35 mph on Seawell School Road.
- **Airport Drive** is a two-lane local access roadway for UNC properties and residential neighborhoods just south of the Estes Drive Extension and west of NC 86.

Intersections


Table 2, below, summarizes all five existing study area intersections, traffic control features, and pedestrian amenities at each. Laneage details and intersection turn bay lengths are also detailed on **Figure 3**.

Traffic Ped Signal Signal Cross Intersection Control **Phases** Operation walk Signals Estes Drive Extension and Free-Run No No Signal Seawell School Road Estes Drive Extension and **TWSC** N/A N/A No No UNC Student RR Lot **TWSC** Estes Drive Extension and Airport Drive N/A N/A No No Estes Drive Extension / Estes Drive and 8 Coordinated Yes (1) Signal Yes (1) NC 86 (Martin Luther King, Jr. Boulevard) NC 86 (Martin Luther King, Jr. Boulevard) and **TWSC** N/A N/A No No Airport Drive

Table 2. Existing Study Area Intersection Details

TWSC = Two-Way Stop Controlled Intersection

The project study area along the Estes Drive Extension features a mixture of signalized and unsignalized intersections. The N.C. 86 (Martin Luther King, Jr. Boulevard) corridor features coordinated signal operation for weekday peak hours.

Bicycle Routes and Sidewalks

Specific bicycle facilities are present in the immediate study area, with sharrow markings in both directions along Martin Luther King, Jr. Boulevard south of Estes Drive Extension. No other bicycle facilities are currently present. Pedestrian sidewalk is found along both sides of Martin Luther King Jr. Boulevard through the study area. Additional connectivity exists along the Estes Drive corridor from Martin Luther King, Jr. Boulevard eastward on the south side of the road. Sidewalk is also present on one side of Seawell School Road north of the Estes Drive Extension. A crosswalk and pedestrian signal is present across Estes Drive at the Martin Luther King, Jr. Boulevard intersection. **Figure 4** displays a schematic of existing pedestrian and bicycle facilities in the project study area.

Transit Routes

Current Chapel Hill Transit (CHT) Routes A, G, HS, NU, NS and T serve the project study area along NC 86 (Martin Luther King, Jr. Boulevard) and the Estes Drive Extension with weekday bus service (T Route also provides Saturday service). Several bus stops, with a range of amenities (shelters, benches), are present in the study area. **Table 3** details the six current CHT routes serving the study area. Most buses run on 10, 20, 30, or hour headways during weekday peak service periods. Only the HS and NU Routes currently provide service directly to the proposed site along the Estes Drive Extension.

GoTriangle provides regional bus service to the immediate study area via the 420 Route that runs along NC 86 between Chapel Hill and Hillsborough. Service for this route occurs at 30 minute headways during peak weekday periods. GoTriangle also provides express bus service from Chapel Hill to Raleigh on the CRX Route that operates along NC 86 (Martin Luther King, Jr. Boulevard) in the study area on 30 minute headways during weekday peak hours.

Table 3. Current Study Area Weekday Transit Service

	Headw	ays (mi	inutes)		
Route	AM Peak	PM Peak	Off Peak	Study Area Stops	Destinations
Chapel	Hill Tran	sit			
А	10-20	30	30	NC 86 Corridor	Downtown Chapel Hill UNC Campus/Hospitals Area
G	35	50	45-50	NC 86 Corridor Estes Drive	Downtown Chapel Hill Glen Lennox/University Place
HS	30	30**	30	Estes Drive Extension Seawell School Road	Rogers Road AreaHomestead RoadNC 86 Corridor
NS	10	20	10	NC 86 Corridor	UNC Campus/Hospitals AreaEubanks Park and RideSouthern Village Park and Ride
NU	20	20	20	 UNC RR Lot Airport Drive	UNC Main Campus UNC Hospitals
Т	25-30	35	35	NC 86 Corridor	Tymberline Shopping Center Downtown Chapel Hill E. Chapel Hill HS/Cedar Falls Pk

Source: CHT 2017 Fall Ride Guide

Table 3 (Continued). Current Study Area Weekday Transit Service

Headways (minutes		nutes)			
Route	AM Peak	PM Peak	Off Peak	Study Area Stops	Destinations
GoTriangle					
420	30	30	N/A	NC 86 Corridor	Hillsborough Downtown Chapel Hill/UNC Campus
CRX	15-35	15- 35	N/A	None (Express Service)	Downtown Chapel Hill/UNC CampusEubanks Park-and-RideRaleigh

Source: http://www.gotriangle.org/maps-and-schedules

Figure 5 displays transit routes and bus stops that currently exist in the project study area. The potential for transit trips are accounted for in the Town of Chapel Hill Municipal Services Campus site in the following sections of this report, as the proximity and frequency of transit service directly near proposed site may account for a measurable portion of site trips.

Recommended/Committed Surface Transportation Improvement Projects

There is one committed/programmed NCDOT State Transportation Improvement Program (STIP) project – STIP EB-5886, which will construct a multi-use path, additional sidewalks and bicycle lanes along the Estes Drive Extension from N Greensboro Street to NC 86 (Martin Luther King, Jr. Blvd). Right-of-way acquisition is scheduled for 2020 and construction for 2021. This improvement was considered to be complete for the 2021 analysis year.

The Town of Chapel Hill, in cooperation with NCDOT, also has a transportation improvement project to construct sidewalk and bicycle lanes along Estes Drive east of NC 86 (Martin Luther King Jr. Blvd), which will also include laneage improvements to the Estes Drive/NC 86 intersection. This project was considered to be complete for the 2021 analysis year. **Figure 6** shows a schematic representation of the improvements from the January 2016 Public Hearing Map.

There are no private development-related projects to improve roadway facilities in the study area that are expected to be complete by 2021. Several development projects near the study area have recommended, as part of their traffic impact study reports, reoptimization of traffic signals along the NC 86 (Martin Luther King, Jr. Blvd) corridor. This was considered to be included as part of the Town project improvements at this intersection.

There are numerous additional recommended improvements to transportation facilities in Town of Chapel Hill Municipal Services Campus project study area that may occur as the Carolina North development progresses just to the north of the project study area. However, any additional improvements due to Carolina North were considered post-2021 Phase 1 analysis year for the purposes of this study.

F. Existing Traffic Conditions

Figure 7 shows the existing AM, noon, and PM peak hour traffic volumes for the study area intersections. The counts used to determine these volumes were conducted in February 2018 for all study area intersections during the weekday periods 7:00 - 9:00 AM, 11:30 AM – 1:30 PM, and 4:00 – 6:00 PM. This data, along with all turning movement count output is found in **Appendix B**. **Table 4** provides a detailed listing of each intersection count, peak hour, and count date.

7:35 - 8:35 AM

11:45 - 12:45 PM

4:45 - 5:45 PM

11/14/17

Town of Chapel Hill Municipal Services Campus - Proposed Institutional Development

Traffic Count Location	Period Counted	Peak Hour	Date of Count
Estes Drive Extension and	AM Peak	7:40 – 8:40 AM	
	Noon Peak	12:05 – 1:05 PM	11/14/17
Seawell School Road	PM Peak	4:55 – 5:55 PM	
Fatos Drive Extension and	AM Peak	7:40 – 8:40 AM	
Estes Drive Extension and UNC Student RR Lot	Noon Peak	12:05 – 1:05 PM	11/14/17
ONC Student RR Lot	PM Peak	4:35 – 5:35 PM	
	AM Peak	7:40 – 8:40 AM	
Estes Drive Extension and Airport Drive	Noon Peak	12:05 – 1:05 PM	11/14/17
	PM Peak	4:35 – 5:35 PM	
Fotos Drive Extension / Fotos Drive and	AM Peak	7:30 – 8:30 AM	
Estes Drive Extension / Estes Drive and NC 86 (Martin Luther King, Jr. Boulevard)	Noon Peak	12:15 – 1:15 PM	11/14/17
ine of (martin Luther King, Jr. Boulevard)	PM Peak	4·55 – 5·55 PM	

Table 4. Traffic Count Information

Traffic count information shows traffic flows on N.C. 86 (Martin Luther King, Jr. Boulevard) were heavy during the AM and PM peak count periods, with southbound flows into downtown Chapel Hill heaviest in the AM peak and northbound return flows heaviest in the PM peak. Traffic on Estes Drive and the Estes Drive Extension was moderate to heavy during the peak commuting periods. Traffic flows were light to moderate on the remaining study area roadways that function as collector or local access streets.

AM Peak

Noon Peak

PM Peak

Turning movement counts were also collected on November 14, 2017 in the field for the two existing driveways serving the Chapel Hill Police Station along NC 86 (Martin Luther King, Jr. Blvd) just south of the project study area. Turning movements entering and exiting the site were compiled for the peak hours corresponding to highest adjacent street traffic for use in trip generation estimation in **Section II. C** of this report. Raw count data for the driveways is also found in **Appendix B**.

II. FUTURE BUILD-OUT YEAR CONDITIONS

NC 86 (Martin Luther King, Jr. Boulevard)

and Airport Drive

A. Future Ambient Area-Wide Traffic Growth Estimation

Based on information on average daily traffic collected by the Town of Chapel Hill and the NCDOT, a yearly ambient traffic growth rate of 1.0 percent per year was used for the short-term 2021 design year capacity analyses. This rate is based on previous and anticipated growth trends for this area from Town and NCDOT average daily traffic information from the period 2003-2015, and is generally consistent with recent traffic impact studies near the project study area. **Figure 8** shows ambient area-wide growth traffic volume projections.

B. Approved Background Development Traffic Estimation

Per information from Town of Chapel Hill staff and the Town's Development Activity Report, five potential future developments that are either currently in the concept plan phase, approved, under construction, or are expected to be built out and fully operational by the 2021 design analysis year were studied for the

February 2018 6 HNT

inclusion of specific background traffic for this report. The five developments are listed in **Table 5**, along with their current status and impact to 2021 traffic volumes.

Fall 2017 **Development Development TIS Status 2021 Traffic Impact** Name **Density** Status Chapel Hill Approved, Assume 100% built out -Retirement 100 Units No - Exempt Not specific generator Residences Constructed Assume 100% built out -Sawmill Concept 150 Units No Condominiums Plan Phase specific generator Yes - RS&H Concept 100k SF Office North Estes (2012) - Older Assume Build-Out Post 2021 Plan Phase Mixed-Use Center 100k SF Retail Concept Plan Approved. 25k SF Women's Health & Assume Included in Ambient Not Nο Wellness Center Redevelopment **Growth Projections** Constructed Approved, No Major Assume Any Impact Between Yes - VHB Carolina North Anticipated Phase 1 2017 and 2021 Included in (2009)Near-Term Ambient Growth Projections

Table 5. Study Area Background Development Status

Figure 9 shows the relative location of the background developments listed in **Table 5**. Total estimated background traffic volumes for the two background generators assumed to be complete by the 2021 analysis year in the project study area are shown in **Figure 10**. **Figure 11** shows the total background peak hour traffic volumes estimated for the 2021 Without Site analysis scenario. These volumes include the projected ambient area-wide traffic growth and the specific background generator estimates displayed in **Figure 10**.

Appendix C displays individual background traffic generator peak hour volumes estimates projected across the project study area. Traffic assignment from the two specific generator developments was estimated based on development density information and/or trip generation data provided for the Chapel Hill Retirement Residences and the Sawmill Condominiums projects. Background traffic assignment in the project study area was determined by using current turning movement peak hour volumes and engineering judgment.

C. Proposed Project Traffic

Activity

i. Trip Generation

Projected trips for the proposed government services facility expansion were generated based on the *ITE Trip Generation Manual* (Institute of Transportation Engineers, 9th Edition, 2013) and supplemented with field traffic count data for the existing Chapel Hill Police Station on NC 86 (Martin Luther King, Jr Blvd). Trip generation methodologies for estimated trips utilize the number of dwelling units and average rate methodology (per NCDOT recommendations) as trip-generating variables. **Table 6** shows the number of vehicular trips generated by existing Town of Chapel Hill Municipal Services Campus during the weekday AM, noon, and PM peak hours of adjacent streets, based on the generation methodologies described above. A peak hour truck percentage of two percent was estimated for all site-generated traffic.

Table 6 Phase 1 Weekday Peak Hour Vehicle Trip Generation Summary

ITE	Description	Donoity		Daily		Α	M Pea	k	N	oon Pea	ak	F	PM Peak	(
LUC	Description	Density	Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
710	General Office Building	48,467 SF	379	379	758	94	13	107	59**	62**	121**	23	110	133
N/A	Police Station – Field Data Adjusted	24,346 SF	146	146	292	32	3	35	28	22	50	15	40	55
Tot	al Phase 1	72,813 SF	525	525	1,050	126	16	142	87	84	171	38	150	188

^{** -} No ITE Data Available for Noon Peak Hour, Data is Average of AM and PM Results

ii.) Adjustments to Trip Generation Rates

Raw ITE trip generation estimates for daily and peak hour trips are typically adjusted for the following factors to reduce raw trip generation estimates to actual estimated vehicular trips produced by the Town of Chapel Hill Municipal Services Campus development.

a.) Internal Capture

The land uses proposed for Town of Chapel Hill Municipal Services Campus development would not exhibit the potential for internally captured trips for any on-site uses. No additional modifications or reductions were made to trip generation results to account for internal capture.

b.) Modal Split

The study area is well served by several CHT and Triangle Transit fixed bus routes with frequent existing service with connectivity to trip attractions in downtown Chapel Hill and the UNC Main Campus, although most routes are not currently easily accessible from the site parcel. Likewise, pedestrian and bicycle facilities exist in the study area but lack connectivity to the site parcel itself currently. To be conservative, no quantitative reductions in vehicular trips was made using these modes. However, it is recognized that some peak period trip-making will occur with the availability and potential future connectivity provided for non-motorized transportation.

c.) Pass-by Trips

No pass-by trips were accounted for in this study, since the proposed Town of Chapel Hill Municipal Services Campus is not a typical pass-by trip generator.

d.) Trip Generation Budget

Current plans for Town of Chapel Hill Municipal Services Campus are for the project to be built in multiple phases, but only Phase 1 is included in this analysis. Additional phases are not explicitly defined in terms of development densities or schedules, so this analysis will need to be updated when plans for those future phases are complete.

iii.) Trip Distribution

Trip distribution for site-related traffic was based existing daily and peak hour traffic patterns to determine the directional peak hour characteristics of traffic to and from the site from the major study area thoroughfares. No local trips to/from lower volume collector and residential streets were estimated, though the possibility exists a small portion of trip-making may occur to/from these local streets. Basic distribution estimates for site traffic flow utilized existing peak hour turning movement counts and overall comparison to local and regional trip attractors. Distribution estimates for the two

site driveways were based on assumptions of utilization of the closest driveway and adjacent proposed parking facilities to the Phase 1 site building. **Figure 12** presents the projected trip distribution traffic percentages for the proposed site in 2021.

iv.) Trip Assignment

Figure 13 shows the corresponding Phase 1 site traffic volumes distributed on the 2021 study area network. Total volumes into and out of the site correspond to total external vehicular trips generated, based on the trip generation methodology developed previously.

D. Future Traffic Forecasts with the Proposed Development

Figure 14 displays the 2021 Build-out+1 year projected study area traffic volumes with site traffic added. These traffic volumes represent the aggregate traffic growth over existing traffic volumes for a) ambient traffic growth, b) specific background development traffic assignments from those developments, and c) estimated site traffic assignment for Phase 1 of the Town of Chapel Hill Municipal Services Campus. **Appendix D** contains all the peak hour scenario volume development spreadsheets used in the estimation of 2021 traffic volumes for both the with and without site scenarios.

III. IMPACT ANALYSES

A. Peak Hour Intersection Level of Service Analysis

i.) Methodology

Evaluation of traffic operations on suburban arterial, collector, and local roadway facilities is most effective through the determination of level of service (LOS) criteria. The concept of level of service correlates qualitative aspects of traffic flow to quantitative terms. This enables transportation professionals to take the qualitative issues, such as congestion and substandard geometrics, and translate them into measurable quantities, such as operating speeds and vehicular delays. The 2010 *Highway Capacity Manual (HCM 2010)* characterizes level of service by letter designations A through F. Level of service A represents ideal low-volume traffic operations, and level of service F represents over-saturated high-volume traffic operations. Level of service is measured differently for various roadway facilities, but in general, level of service letter designations are described in **Table 7**.

The minimum acceptable peak hour intersection level of service established for this project is LOS D for signalized intersections or LOS E for critical movements at unsignalized intersections, or no increase in delay for signalized intersections operating below LOS D or unsignalized intersection critical movements operating below LOS E without the inclusion of site traffic. The following four conditions were evaluated:

Condition 1 - Existing Traffic

Condition 2 - 2021 Traffic without Site Traffic

Condition 3 - 2021 Traffic with Phase 1 Site Traffic Volumes Added

Condition 4 - 2021 Traffic with Phase 1 Site Traffic and Improvements

February 2018 9 HNTE

Table 7. Level of Service (LOS) Characteristics

Le	vel of Service Description	Per Vehicle Delay at Signal	Per Vehicle Delay at Stop Sign
LO	SA		
>	Free flow	4400000	4400000
>	Freedom to select desired speed and to maneuver is extremely high	< 10.0 sec	< 10.0 sec
>	General level of comfort and convenience for motorists is excellent		
LO	SB		
>	Stable flow	10.0 - 20.0	10.0 – 15.0
>	Other vehicles in the traffic stream become noticeable	sec	sec
\triangleright	Reduction in freedom to maneuver from LOS A		
LO	SC		
\triangleright	Stable flow	20.0 – 35.0	15.0 – 25.0
\triangleright	Maneuverability and operating speed are significantly affected by	20.0 - 33.0 sec	15.0 – 25.0 SeC
	other vehicles	360	360
\triangleright	General level of comfort and convenience declines noticeably		
LO	S D		
\triangleright	High density but stable flow	35.0 - 55.0	25.0 – 35.0
>	Speed/freedom to maneuver are very restricted	sec	sec
\triangleright	General level of comfort / convenience is poor	300	300
>	Small increases in traffic will generally cause operational problems		
_	SE		
	Unstable flow		
>	Speed reduced to lower but relatively uniform value	55.0 - 80.0	35.0 - 50.0
>	Volumes at or near capacity level	sec	sec
>	Comfort and convenience are extremely poor	300	300
>	Small flow increases or minor traffic stream disturbances will cause		
	breakdowns		
	<u>S</u> F		
>	Forced or breakdown flow		
>	Volumes exceed roadway capacity	> 80.0 sec	> 50.0 sec
>	Formation of unstable queues		
\triangleright	Stoppages for long periods of time because of traffic congestion		

The *Synchro Professional Version 9* operations analysis software was used to analyze peak hour conditions at signalized intersections. Synchro was also used to analyze peak hour conditions at unsignalized intersections, through the use of its HCM 2010 two-way stop controlled output function. The methodology of evaluating each condition for signalized intersections is presented below:

- Condition 1 Use current Town of Chapel Hill data for the cycle length, splits and offsets of individual signalized intersections and report LOS and delay values from Synchro.
- Conditions 2 and 3 Reoptimize the cycle lengths and splits of individual intersections in Synchro, if existing timing data does not provide adequate overall intersection LOS. Adjust cycle lengths, splits, and offsets, if necessary, if the signal is currently operating in a coordinated system. The optimized signal timing information will be held constant for both Conditions, to provide a means to compare effects of the proposed site traffic. No changes to free run traffic signal inputs were made for Conditions 2 and 3.

 Condition 4 – Optimize coordinated traffic signals for effects of recommended mitigation strategies that change existing/committed changes to lane geometrics. Evaluate the potential for different signal phasing schemes (left-turn lag phases, for example). Retain existing split minimums and any pedestrian timing values. Recommendations, if warranted, will be made to obtain at least LOS D for the intersection as a whole.

The net effect of this process is that direct comparisons, by movement, of delay and LOS between each of the three conditions are impossible because splits and cycle lengths can and do change between conditions. The pertinent statistic of this analysis is the *overall intersection level of service* and delay. Improvements to deficient intersections in Condition 3 were made by first attempting to adjust signal operations via changes in cycle lengths, splits and/or with acceptable adjustments to signal phasing. If that did not produce satisfactory results for all intersections, geometric improvements to improve intersection capacity were considered for the deficient intersections. **Appendix E** contains the Synchro signalized intersection output for all four conditions (where applicable).

Unsignalized intersections were analyzed using HCM methodologies. Their results were evaluated on a per-movement basis, since HCM methods do not produce an overall intersection level of service for unsignalized intersections. Thus, intersections with deficient (LOS F) movements in Condition 2 would need to be evaluated for improvements in Condition 3. This methodology differs from signalized intersections, where one or more movements at an intersection may be deficient in Condition 2, but as long as the overall intersection level of service does not fall below LOS D, no intersection improvements may be deemed necessary. *Appendix F* contains the Synchro 2010 HCM unsignalized output for all stop-controlled intersections under study.

ii.) 2017 Existing Conditions Results

Table 8 presents the results for the existing year traffic conditions as compiled from field data. The table lists LOS and delay values for those movements that are in existence at this time. Currently, all study area signalized intersections operate at an overall acceptable level of service for all of the analyzed 2017 peak hours, with the exception of NC 86 and Estes Drive, which operates at a LOS E in the 2017 PM peak hour. The stop-controlled approaches along Airport Drive with its intersections with Estes Drive Extension and NC 86 also operate at a deficient LOS F in at least one peak hour in 2017.

iii.) 2021 No-Build Scenario (Condition 2) Results

Table 9 presents the results for the 2021 analysis year estimated traffic conditions without the impacts of site-related traffic. This analysis includes ambient growth, and data for the future background site developments.

During Condition 2 - 2021 Without Site Traffic, delays marginally increase for most study area intersections/critical movements, with the same deficient LOS F stop-controlled approaches anticipated for Airport Drive intersections with Estes Drive Extension and NC 86. There were specific geometric improvements to the NC 86 and Estes Drive intersection area that are committed by the Town/NCDOT project to improve the Estes Drive corridor to the east. For traffic capacity analysis inputs, these are primarily auxiliary lane improvements to the intersection along with signal phasing and timing upgrades. These upgrades provide minor beneficial effects in terms of LOS and delay improvements, though they do mitigate the effect of additional projected background traffic to some extent. The NC 86 and Estes Drive intersection still is expected to operate at an overall LOS E in the 2021 PM peak hour in this scenario.

Table 8. Capacity Analysis Results for Study Area Intersections
Condition 1 – 2017 Existing Traffic

Intersections/Movements		LOS		Average Vehicular Delay (seconds/vehicle)			
	AM	Noon	PM	AM	Noon	PM	
Estes Drive Extension and Seawell School Road	В	Α	В	15.0	9.9	17.5	
SB LT SB RT EB LT EB THRU WB THRU WB RT	C C A B B A	B B A B A	C D A A C A	23.5 25.3 9.3 11.6 19.5 3.9	18,7 19,6 4.5 5.4 12.9 3.3	30.3 37.4 8.3 6.4 23.6 3.1	
Estes Drive Extension and UNC Student RR Lot	N/A	N/A	N/A	N/A	N/A	N/A	
EB LT SB LT SB RT	A C A	A C A	A D B	8.1 22.8 0.0	8.2 16.7 0.0	9.4 29.9 14.3	
Estes Drive Extension and Airport Drive	N/A	N/A	N/A	N/A	N/A	N/A	
WB LT NB LT-RT	ВС	A B	A F	10.3 24.8	8.2 14.9	8.5 50.7	
Estes Drive Extension / Estes Drive and NC 86 (Martin Luther King, Jr. Boulevard)	D	D	E	44.1	39.7	61.8	
EB LT EB THRU EB RT WB LT WB THRU WB RT NB LT NB THRU-RT SB LT SB THRU-RT	0 E 0 0 E 0 0 0 0	E E D D F D C C C B	F E D F F C D F C	51.3 78.0 36.3 47.4 55.5 20.2 40.7 42.7 40.1 37.4	59.3 79.4 47.3 52.5 91.9 43.1 23.2 26.5 25.2 18.7	109.2 57.2 38.2 42.5 126.3 96.4 32.1 45.4 98.7 31.1	
NC 86 (Martin Luther King, Jr. Boulevard) and Airport Drive	N/A	N/A	N/A	N/A	N/A	N/A	
EB LT EB RT NB LT	F C B	D B A	F В А	58.1 16.6 13.2	28.6 11.2 9.5	67.4 11.8 9.9	

N/A => Not Applicable, i.e. movement is non-existent or overall intersection values are not reported for unsignalized intersections **BOLD/ITALICS** – Movement or overall intersection is over Town TIS Guidelines threshold capacity

Table 9. Capacity Analysis Results for Study Area Intersections
Condition 2 – 2021 Traffic Without Site

Intersections/Movements		LOS		Average Vehicular Delay (seconds/vehicle)			
	AM	Noon	PM	AM	Noon	РМ	
Estes Drive Extension and Seawell School Road	В	В	В	15.5	10.1	18.6	
SB LT SB RT EB LT EB THRU WB THRU WB RT	C C A B B A	B C A B A	C D A A C A	24.6 26.4 9.8 12.1 19.6 3.8	19.3 20.3 4.5 5.4 12.9 3.2	31.7 39.5 9.2 6.5 24.3 3.0	
Estes Drive Extension and UNC Student RR Lot	N/A	N/A	N/A	N/A	N/A	N/A	
EB LT SB LT SB RT	A D A	A C A	A D B	8.1 32.2 0.0	8.3 17.5 0.0	9.5 32.6 14.7	
Estes Drive Extension and Airport Drive	N/A	N/A	N/A	N/A	N/A	N/A	
WB LT NB LT-RT	B D	A C	A F	10.5 27.0	8.3 15.5	8.6 65.3	
Estes Drive Extension / Estes Drive and NC 86 (Martin Luther King, Jr. Boulevard)	D	D	E	42.7	40.8	59.9	
EB LT EB THRU EB RT WB LT WB LT WB THRU WB RT NB LT NB THRU NB THRU NB RT SB LT SB THRU SB RT NC 86 (Martin Luther King, Jr. Boulevard)	E E C E F C C D B C D A	E E C E C D D B C C B	F E D F F D D E B F C B	71.7 64.9 22.3 70.4 80.1 30.5 23.2 40.8 15.7 27.5 37.8 5.4	78.5 55.7 33.3 77.1 76.7 25.8 38.5 40.2 15.9 33.6 25.7 10.7	107.6 56.9 38.4 92.2 106.1 54.3 44.5 65.1 17.6 90.5 33.6 12.9	
EB LT EB RT NB LT	F С В	D B A	F В В	68.4 17.7 14.0	32.4 11.4 9.7	87.5 12.1 10.2	

N/A => Not Applicable, i.e. movement is non-existent or overall intersection values are not reported for unsignalized intersections **BOLD/ITALICS** – Movement or overall intersection is over Town TIS Guidelines threshold capacity **BLUE** = New or Modified Movements Committed in No Build Scenario

Iv.) 2021 Build Scenario (Condition 3) Results

Table 10 presents results for 2021 Build-out+1 year estimated traffic conditions, including impacts of site-related traffic. In general, the addition of site-related traffic will marginally increase delays at existing intersections and is not expected to cause additional intersections or critical intersection stop-controlled movements to drop to deficient levels in the 2021 analysis year.

Table 10. Capacity Analysis Results for Study Area Intersections Condition 3 – 2021 Traffic With Site (Phase 1)

Intersections/Movements		LOS		Average Vehicular Delay (seconds/vehicle)			
intersections/movements	AM	Noon	PM	AM	Noon	РМ	
Estes Drive Extension and Seawell School Road	В	В	В	15.6	10.1	18.7	
SB LT SB RT EB LT EB THRU WB THRU WB RT	C C A B A	B C A A B	C D A A C A	25.1 26.6 9.7 12.2 19.5 3.8	19.5 20.4 4.5 5.4 13.0 3.2	32.3 40.1 9.4 6.5 24.3 3.1	
Estes Drive Extension and West Site Driveway / UNC Student RR Lot	N/A	N/A	N/A	N/A	N/A	N/A	
EB LT WB LT NB LT-THRU-RT SB LT SB THRU-RT	A B C E A	A A B C A	A A C E B	8.1 10.2 23.6 46.2 0.0	8.3 8.4 13.8 21.8 0.0	9.5 8.6 20.2 47.0 14.8	
Estes Drive Extension and East Site Driveway	N/A	N/A	N/A	N/A	N/A	N/A	
WB LT NB LT NB RT	B E C	A C B	A E B	10.9 43.3 17.1	8.6 22.7 12.0	8.9 39.9 14.9	
Estes Drive Extension and Airport Drive	N/A	N/A	N/A	N/A	N/A	N/A	
WB LT NB LT-RT	B E	A C	A F	10.6 42.6	8.5 20.2	9.1 134.3	
Estes Drive Extension / Estes Drive and NC 86 (Martin Luther King, Jr. Boulevard)	D	D	E	43.1	42.3	62.5	
EB LT EB THRU EB RT WB LT WB THRU WB THRU WB RT NB LT NB THRU NB THRU NB RT SB LT SB THRU SB RT NC 86 (Martin Luther King, Jr. Boulevard)	E E C E F C C D B C D A	E D C E C D D B D C B	F E D F F D D E B F C B	71.7 64.8 21.9 68.9 84.4 29.6 27.4 41.5 15.8 28.2 39.2 5.8	78.9 53.3 32.5 77.1 76.2 24.6 41.4 42.6 17.1 37.6 29.1 12.2	130.5 57.8 39.8 92.2 107.8 53.4 46.8 66.8 17.8 90.9 34.0 13.2	
and Airport Drive	N/A	N/A	N/A	N/A	N/A	N/A	
EB LT EB RT NB LT	F С В	E B A	F В В	81.9 17.9 14.8	37.6 11.8 10.0	106.1 12.9 10.5	

N/A => Not Applicable, i.e. movement is non-existent or overall intersection values are not reported for unsignalized intersections **BOLD/ITALICS** – Movement or overall intersection is over Town TIS Guidelines threshold capacity **BLUE** = New or Modified Movements Committed in Build Scenario

v.) 2021 Build + Mitigation Scenario (Condition 4) Results

Table 11 presents results for 2021 Build-out+1 year estimated traffic conditions, including impacts of site-related traffic and safety-related recommended mitigation improvements along the Estes Drive Extension. These improvements include the development of a three-lane undivided cross-section from the existing UNC RR Lot intersection to NC 86 (Martin Luther King, Jr Blvd), which would provide a continuous two-way left-turn lane at each existing or proposed intersection. In addition, an additional eastbound left-turn lane was tested at the NC 86 intersection with Estes Drive/Estes Drive Extension. The Town has committed to including this improvement in the Estes Drive pedestrian and bicycle improvements project.

Table 11. Capacity Analysis Results for Study Area Intersections Condition 4 – 2021 Traffic With Site & Mitigation

Intersections/Movements		LOS		Average Vehicular Delay (seconds/vehicle)			
	AM	Noon	PM	AM	Noon	PM	
Estes Drive Extension and West Site Driveway / UNC Student RR Lot	N/A	N/A	N/A	N/A	N/A	N/A	
EB LT WB LT NB LT-THRU-RT SB LT SB THRU-RT	A B C E A	A A B C A	A A C E B	8.1 10.2 23.6 45.7 0.0	8.3 8.4 13.8 21.7 0.0	9.5 8.6 20.1 46.5 14.8	
Estes Drive Extension and East Site Driveway	N/A	N/A	N/A	N/A	N/A	N/A	
WB LT NB LT NB RT	B C C	A C B	A C B	10.9 20.7 17.1	8.6 15.5 12.0	8.9 20.1 14.9	
Estes Drive Extension and Airport Drive	N/A	N/A	N/A	N/A	N/A	N/A	
WB LT NB LT-RT	B C	A C	A D	10.6 22.6	8.5 15.1	9.1 30.9	
Estes Drive Extension / Estes Drive and NC 86 (Martin Luther King, Jr. Boulevard)	D	D	D	40.1	39.7	54.0	
EB LT EB THRU EB RT WB LT WB THRU WB RT NB LT NB THRU NB RT SB LT SB THRU SB RT	E E C E E C C D B C D A	E E D E E C C C B C C B	F E D F F D D E B E C B	56.6 68.0 23.3 72.8 72.6 28.1 24.7 38.3 14.9 25.7 36.2 6.9	74.2 66.6 39.6 75.3 75.9 30.8 30.7 31.9 11.8 31.4 23.6 12.4	98.0 68.8 45.9 92.2 93.3 45.5 40.4 55.5 15.2 73.5 28.3 14.9	

N/A => Not Applicable, i.e. movement is non-existent or overall intersection values are not reported for unsignalized intersections **BLUE** = New or Modified Movements Analyzed in Mitigation Scenario

B. Access Analysis

Vehicular site access is to be accommodated at two proposed full movement access driveways connecting to Estes Drive Extension. The western site driveway is about 800 feet to the east of the Estes

Town of Chapel Hill: Traffic Impact Study

Town of Chapel Hill Municipal Services Campus - Proposed Institutional Development

Drive Extension signalized intersection with Seawell School Road. As conceptually shown in **Figure 2**, the driveways have single inbound lanes. The western driveway is assumed to have one outbound lane, with the eastern (main) driveway assumed to have two outbound lanes. The driveway connections to the Estes Drive Extension have throat lengths of approximately 150 feet (eastern) and 500 feet (western) prior to internal parking lot connections. Throat lengths are acceptable, based on 50 foot minimum throat length standards found on Page 69 of the 2017 *Town of Chapel Hill Public Works Design Manual*.

Driveway distances along Estes Drive Extension from the signalized intersection at Seawell School Road is approximately 800 feet as noted above, and is acceptable, based on recommendations of 100 foot minimum corner clearance as set forth in the 2003 *NCDOT Policy on Street and Driveway Access to North Carolina Highways* and the 100 foot minimum along collector streets specified in the Town Design Manual. The distance between the proposed driveway connections is approximately 600 feet and would also be acceptable, based on the recommended 50 foot spacing between driveways along collector roadways found in Table 3.2 – Street Standards in the Town Design Manual.

Access for pedestrians and bicycles is not adequate in the project study area. Sidewalk is present along the NC 86 corridor and along sections of Seawell School Road and Estes Drive to the east of NC 86. Crosswalk exists across the Estes Drive intersection with the NC 86 signalized intersection in only one quadrant. No specific bicycle amenities are present along the Estes Drive Extension, but bicycle "sharrow" lanes are present along NC 86 south of the Estes Drive Extension. With the completion of the pedestrian and bicycle projects along Estes Drive and the Estes Drive Extension, pedestrian and bicycle access to the site will improve significantly, as continuous facilities for both modes will be constructed along over two miles of the Estes Drive/Estes Drive Extension corridor.

C. Signal Warrant Analysis

Based on projected 2021 traffic volumes and proposed access plans, the unsignalized Site Driveway intersections with the Estes Drive Extension would not warrant the installation of a traffic signal, based on the methodology found in the 2009 Manual on Uniform Traffic Control Devices (MUTCD).


The stop-controlled approaches at the intersections of Estes Drive Extension and Airport Drive and NC 86 and Airport Drive are expected to operate at a LOS F in the 2021 analysis year with site traffic added. 2021 peak hour volumes and existing geometrics at these locations were analyzed for meeting the Peak Hour Warrant in the 2009 MUTCD and HCS Warrants software package. The results shown in *Appendix G* indicate that the Estes Drive and Airport Drive intersection would warrant the installation of a traffic signal, but the NC 86 and Airport Drive intersection would not, based on only the Peak Hour Warrant. Satisfaction of additional warrants would be needed to justify the implementation of a traffic signal at these locations.

D. Sight Distance Analysis

In general, sight distance issues entering/exiting the existing Town of Chapel Hill Municipal Services Campus driveways would be minimal, considering the fact that Estes Drive Extension has no horizontal curvature in the vicinity of this existing access location and vertical curvature at this location is minimal, giving entering and exiting traffic adequate sight distance in both directions.

E. Crash Analysis

Data from the NCDOT Traffic Safety Unit TEAAS crash software database was extracted for the five year period from 11/1/2012 to 10/31/2017 for the segment of the Estes Drive Extension from Seawell School Road to NC 86 (Martin Luther King, Jr. Boulevard). Raw crash data can be found in **Appendix H**.

Estes Drive Extension Corridor

There were 25 crashes reported along the Estes Drive Extension study area corridor between Seawell School Road and NC 86 over the five year period. In this 0.78 mile segment, crash types varied with no predominate crash type. Several left-turn, run-off road and rear end crash types were noted. Spatial distribution of crashes along the corridor from the segment strip map indicates that a considerable number of crashes (16) occurred in the vicinity of the NC 86 (Martin Luther King, Jr. Blvd) intersection. The remaining crashes were distributed near other intersections along the rest of the segment, with four crashes occurring in the vicinity of the Airport Drive intersection and three crashes near Seawell School Road. One fatality crash (motorcyclist) occurred at the intersection with Seawell School Road.

Table 12 presents a comparison between the Estes Drive Extension study area crash rates and the latest North Carolina statewide rates for the period 2013-2015 (compiled by NCDOT Traffic Safety Unit). Overall, the crash rates along Estes Drive Extension in the project study area are lower than statewide averages for similar facilities (two-lane undivided) in every reported category, except for fatal crashes.

Table 12. Study Area Crash Rate Comparison – Estes Drive Extension Corridor

	Crashes Per 100 Million Vehicle Miles					
Statistic	Estes Drive Extension	NC Statewide Average*				
	Seawell School Rd to NC 86 (MLK Jr. Blvd)	2-Lane Undivided				
Total Crash Rate	141.55	247.39				
Fatal Crash Rate	5.66	1.18				
Non-Fatal (Injury) Crash Rate	33.97	76.16				
Night Crash Rate	50.96	65.51				
Wet Crash Rate	45.30	46.04				

^{* -} Data for Urban Secondary Routes

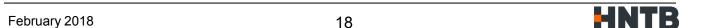
F. Other Transportation-Related Analyses

Other transportation-related analyses relevant to the 2001 Town of Chapel Hill Guidelines for the preparation of Traffic Impact Studies were completed as appropriate. The following topics listed in **Table 13** are germane to the scope of this study.

G. Special Analysis/Issues Related to Project

Based on discussions with Town of Chapel Hill staff, there are no special issues or analyses beyond the ones already discussed for this proposed site.

Table 13. Other Transportation-Related Analyses


Analysis	Comment
Turn Lane Storage Requirements	Storage bay lengths at study area intersections were analyzed using Synchro and HCS 95 th percentile (max) queue length estimates for the 2021 Build Scenario. At the intersection of Estes Drive/Estes Drive Extension and NC 86 (Martin Luther King, Jr. Blvd), projected 95 th percentile queue lengths may exceed future delineated storage bay lengths as the intersection is still near/at capacity even with the assumed committed improvements to auxiliary turn lanes. Dual eastbound left-turn lanes, which would require 300 feet of dual left-turn lane storage are recommended to serve this movement and provide some improved overall intersection capacity which would benefit other movements that are projected to exceed turn bay storage lengths.
Appropriateness of Acceleration/ Deceleration Lanes	The site concept plan shows no specifics related to acceleration/deceleration lanes. It is recommended that a westbound left-turn lane be constructed along Estes Drive Extension at the proposed site driveway to remove turning traffic movements from the westbound through traffic flow along Estes Drive Extension. Site traffic volumes heading eastbound to the site are expected to be low and would not require a right-turn deceleration lane. No other specific acceleration/deceleration lane issues were analyzed in the project study area.
Pedestrian and Bicycle Analysis	Existing pedestrian access and connectivity currently lacking along the Estes Drive Extension corridor adjacent to the site. With the completion of Town and NCDOT projects along Estes Drive and the Estes Drive Extension, the proposed site will have fully connected, safe and efficient pedestrian and bicycle access along those corridors. Signalized crosswalks and pedestrian signals are recommended for the NCDOT STIP project at the Seawell School Road/Estes Drive Extension intersection.
Public Transportation Analysis	Public transportation service to the study area, and to the proposed site is available, with bus stops and multiple local and regional bus routes along NC 86 in both directions and two local routes serving the Estes Drive Extension proximate to the site. It is recommended that a bus stop be constructed along the site frontage near the East Site Driveway.

IV. MITIGATION MEASURES / RECOMMENDATIONS

A. Planned Improvements

The Town of Chapel Hill in coordination with NCDOT has a pedestrian and bicycle improvement project for Estes Drive east of NC 86 (Martin Luther King, Jr. Blvd) that includes auxiliary lane improvements and pedestrian crosswalk/signal heads at the Estes Drive/NC 86 intersection. This project is expected to be complete by the 2021 site build-out+1 analysis year. As a result of the mitigation analysis for this traffic impact study, the Town is including the provision of an additional eastbound left-turn lane at the NC 86 and Estes Drive intersection into the design of the project. See **Figure 15** for details.

NCDOT also has a programmed pedestrian and bicycle facility enhancement project (STIP EB-5886) that will construct sidewalks, multi-use paths and bicycle lanes along the Estes Drive Extension facility between N. Greensboro Street in Carrboro to NC 86. This project is scheduled for construction in 2021 and it was also assumed to be complete by the 2021 analysis year in this study.

B. Background Committed Improvements

There are no specific geometric improvements to the study area roadway intersections related to background private development projects that are expected to be completed between 2017 and 2021. Several traffic impact studies for development projects in and near the study area recommended signal timing reoptimization for signalized intersections along the NC 86 (Martin Luther King, Jr. Blvd) corridor by their respective build-out years. It is assumed that signal timing reoptimization will occur for the NC 86 intersection with Estes Drive/Estes Drive Extension, due to the geometric and signal phasing upgrades expected to occur as part of the Estes Drive Pedestrian/Bicycle project.

As previously discussed, additional recommended improvements to transportation facilities in Town of Chapel Hill Municipal Services Campus project study area may occur as the Carolina North development progresses. However, any additional improvements due to Carolina North were considered post-2021 Phase 1 analysis year for the purposes of this study. The Carolina North traffic impact study will need to be revised and updated as definitive phased construction occurs during the course of the project.

C. Applicant Committed Improvements

Based on the preliminary site plans and supporting development information provided, there are no specific transportation-related improvements proposed external to the Town of Chapel Hill Municipal Services Campus site. The two proposed site driveways and initial laneage assumptions are schematically shown in **Figure 15**, based on the preliminary concept plans shown in **Figure 2**.

D. Necessary Improvements - Due to Site Impact

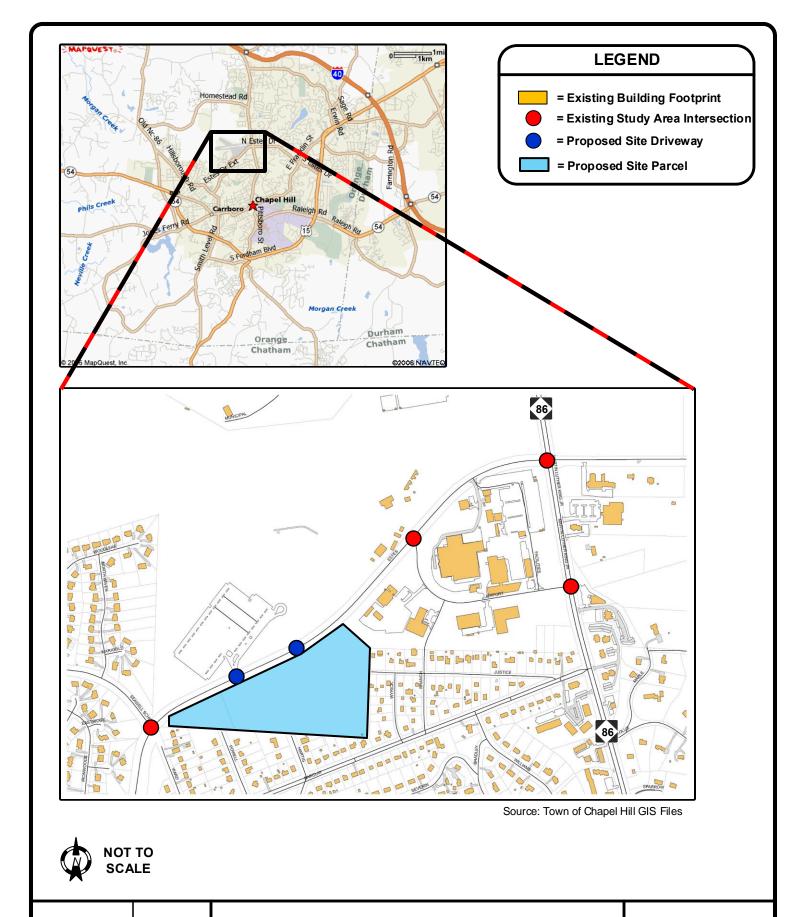
Based on traffic capacity analyses for the 2021 design year, and analyses of existing study area turning bay storage lengths and site access, the following improvements are recommended as being necessary for adequate transportation network operations due specifically to site transportation impact (see improvements in **Figure 16** highlighted in green).

- 1) Widen Estes Drive Extension along the length of site frontage to provide a consistent three-lane cross-section with exclusive westbound left-turns lane into the site at the two proposed site driveway intersections. This improvement improves operations for stop-controlled movements at both intersections and improves overall safety by removing the left-turn movements from the through traffic streams along the Estes Drive Extension.
- 2) Provide a bus stop and amenities for transit riders along the frontage of the proposed Municipal Services Campus.

E. Necessary Improvements – Regardless of Site Development

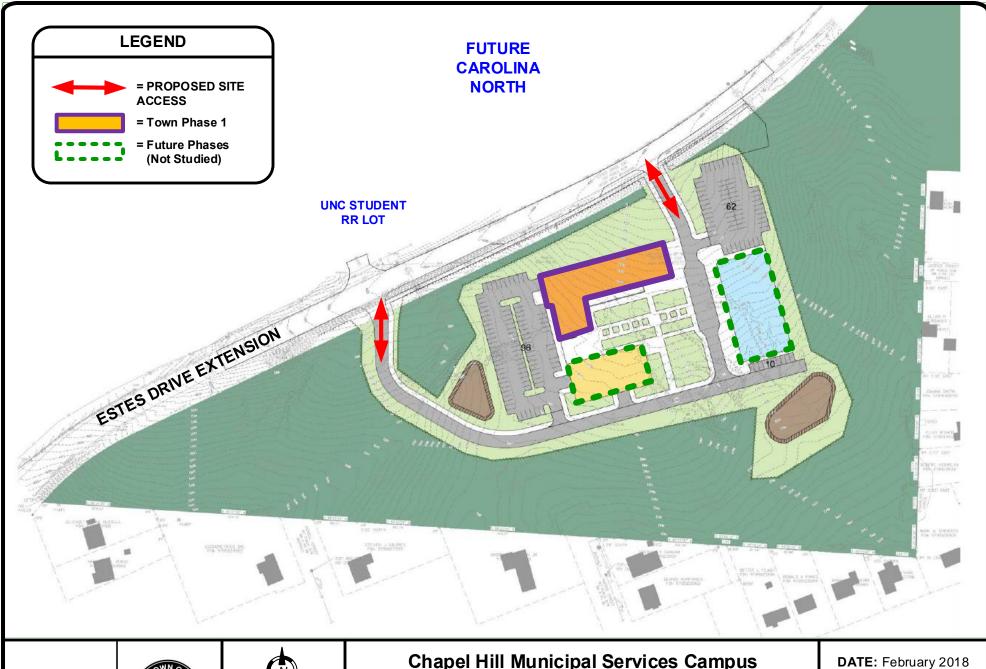
Based on traffic capacity analyses for the 2021 design year, and analyses of existing study area turning bay storage lengths and site access, the following improvements are recommended as being necessary for adequate transportation network operations due existing traffic congestion issues or issues arising from background traffic growth whether or not the Town Municipal Services Campus is constructed (see improvements in **Figure 16** highlighted in blue).

1) Widen Estes Drive Extension between the proposed site frontage and the NC 86 (Martin Luther King Jr. Blvd.) intersection to a consistent three-lane cross-section. This provides operational and safety improvements for the Airport Drive intersection with the Estes Drive Extension and should be considered in the design of the NCDOT pedestrian and bicycle improvement project along the Estes Drive Extension corridor.



Though the Estes Drive Extension intersection with Airport Drive meets MUTCD Peak Hour Signal Warrants, it is not recommended that a signal be installed at this location if the proposed recommendations to widen Estes Drive Extension to a three-lane cross-section are constructed. No additional improvements are recommended at the Airport Drive intersection with NC 86, though 2021 peak hour capacity analyses indicate a LOS F for stop-controlled left-turn movements for eastbound Airport Drive at this location. Provision of additional improvements at this intersection, along with signalizing the Airport Drive/Estes Drive Extension intersection may encourage additional cut-through traffic along the Airport Drive facility.

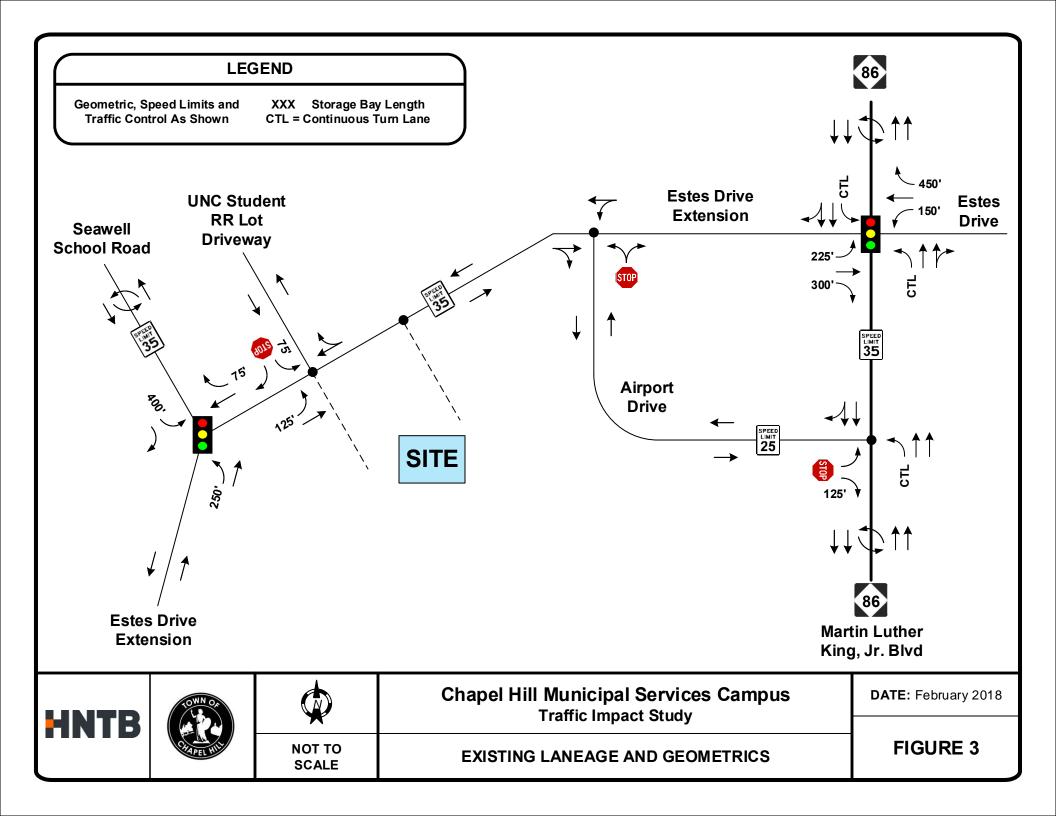
Appendix A – Figures

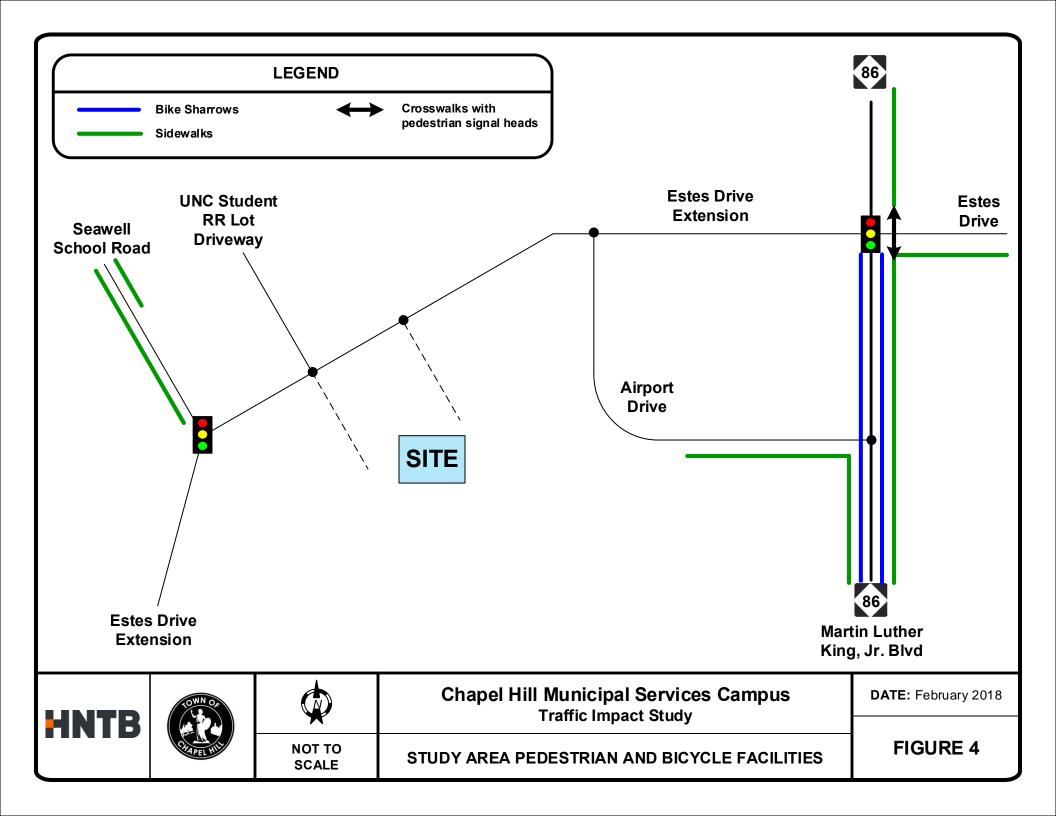


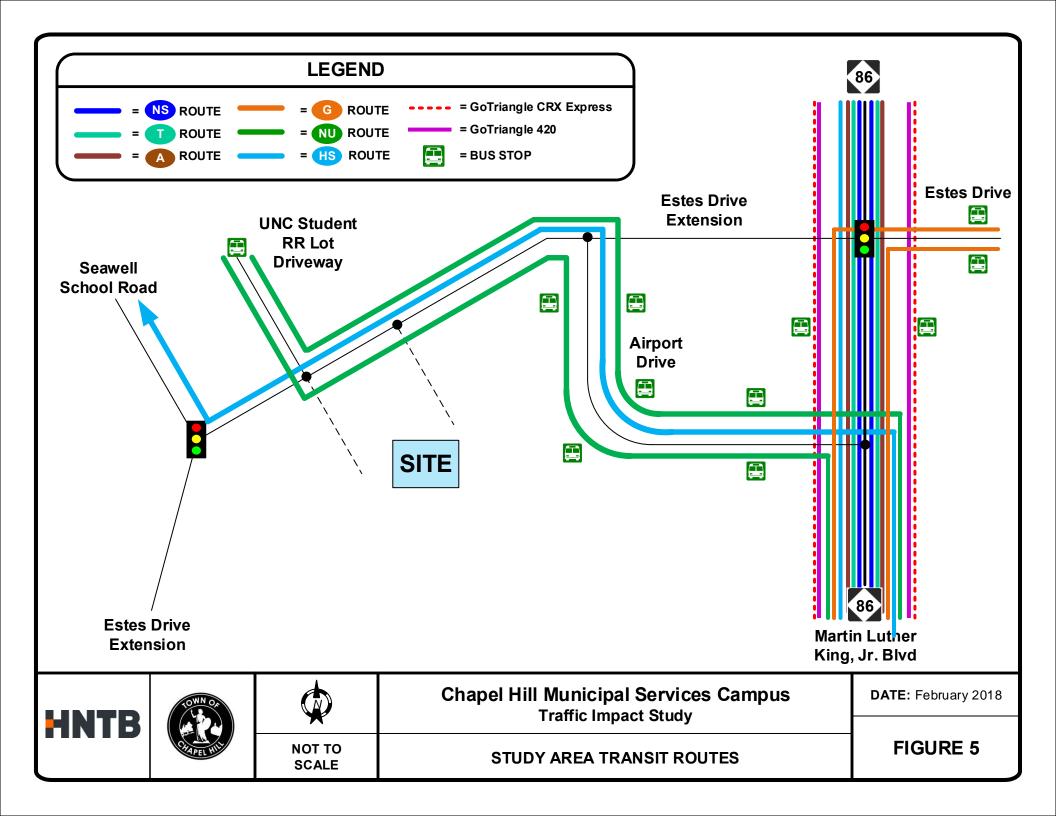
Chapel Hill Municipal Services Campus
Traffic Impact Study

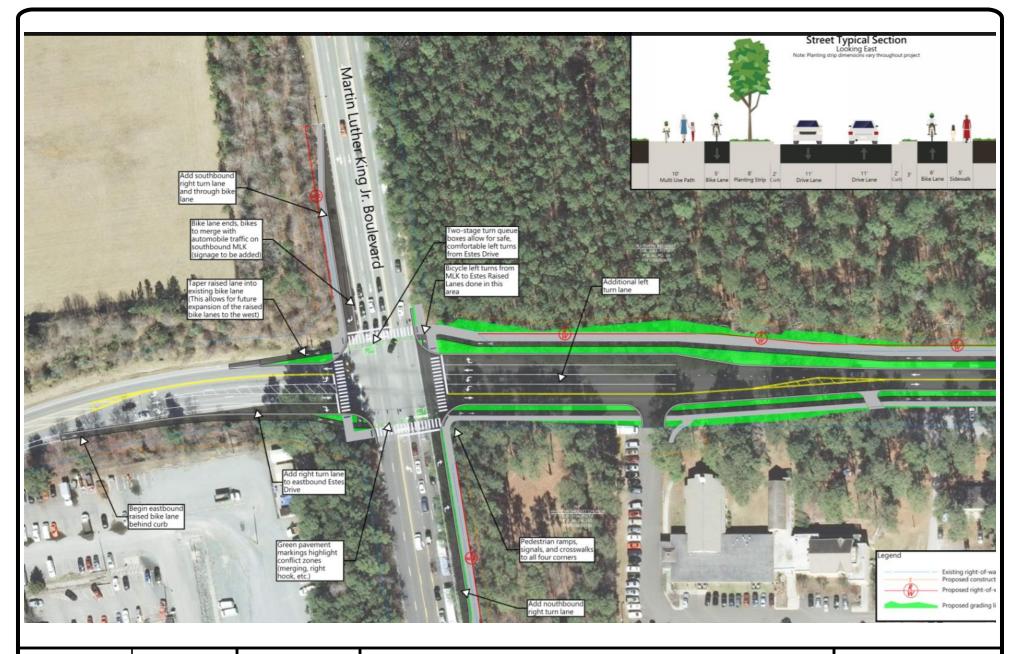
PROJECT STUDY AREA

DATE: February 2018

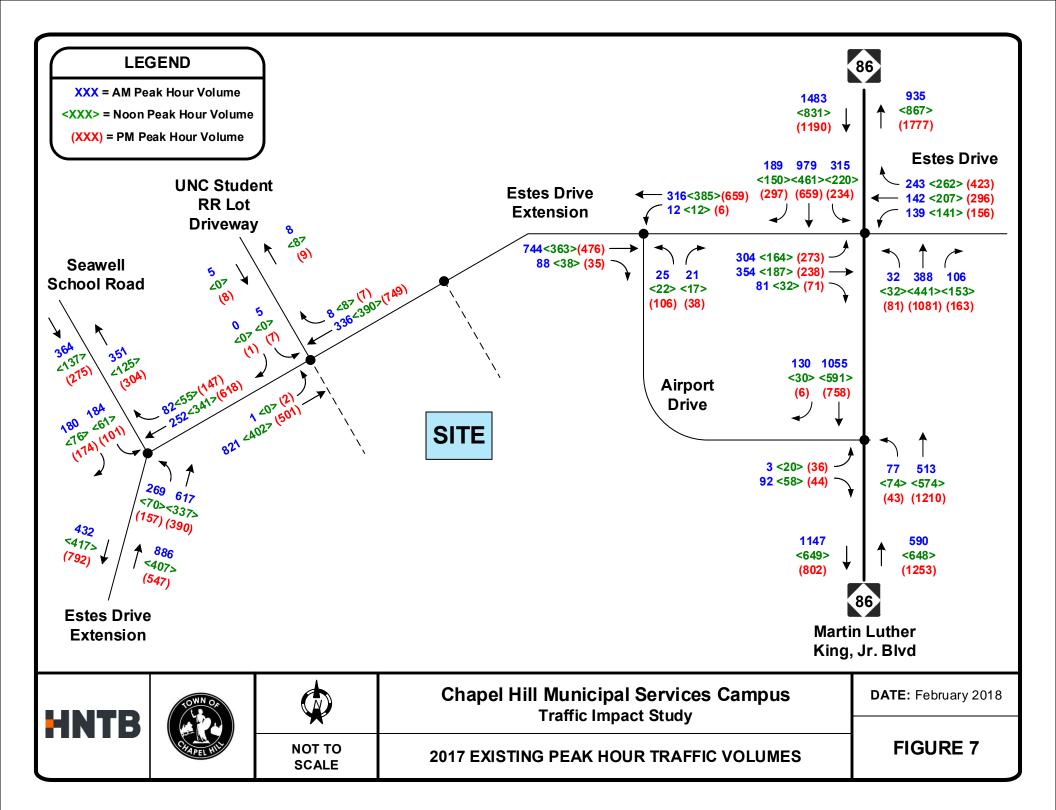


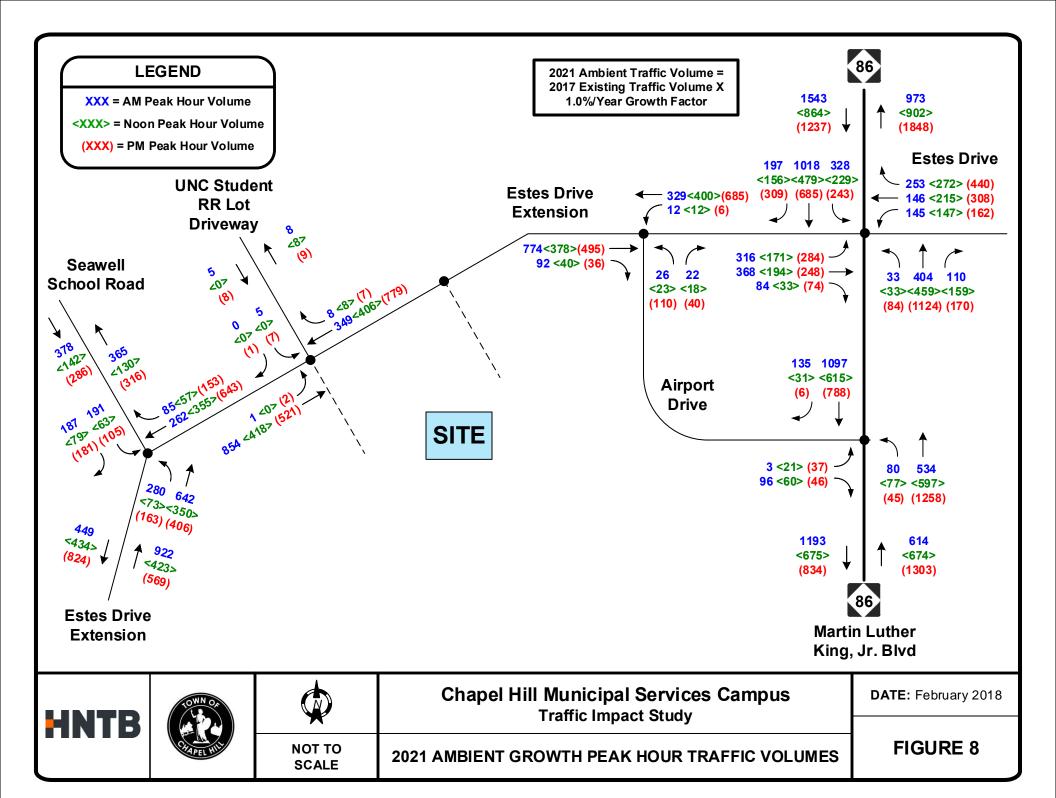

NOT TO

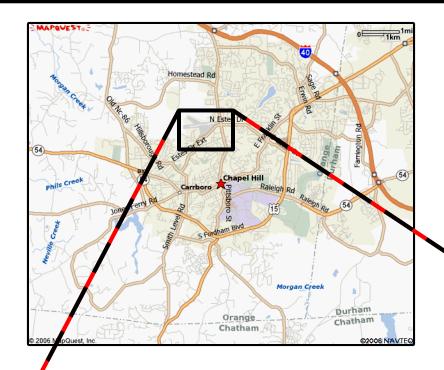

SCALE


Chapel Hill Municipal Services Campus Traffic Impact Study

PRELIMINARY SITE PLAN

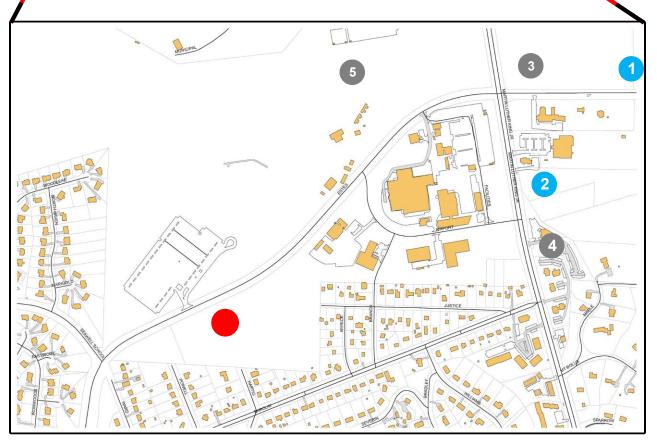





NOT TO SCALE Chapel Hill Municipal Services Campus
Traffic Impact Study

TOWN OF CHAPEL HILL – ESTES DRIVE IMPROVEMENTS SCHEMATIC DETAIL

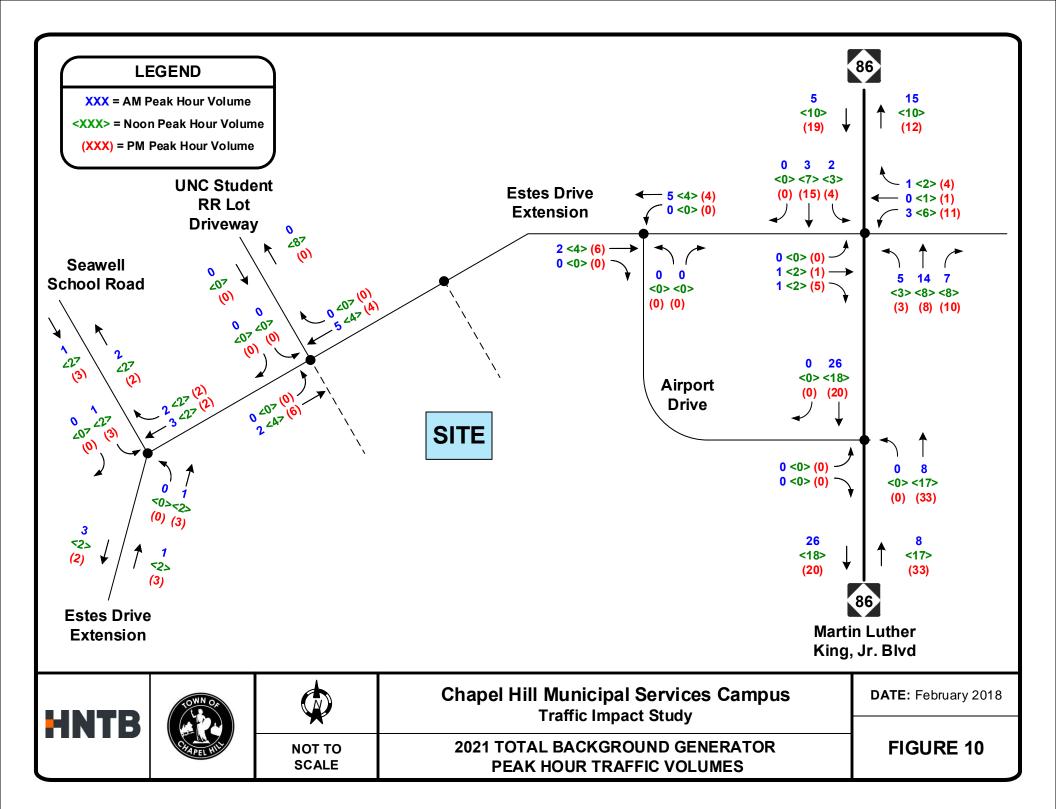
DATE: February 2018

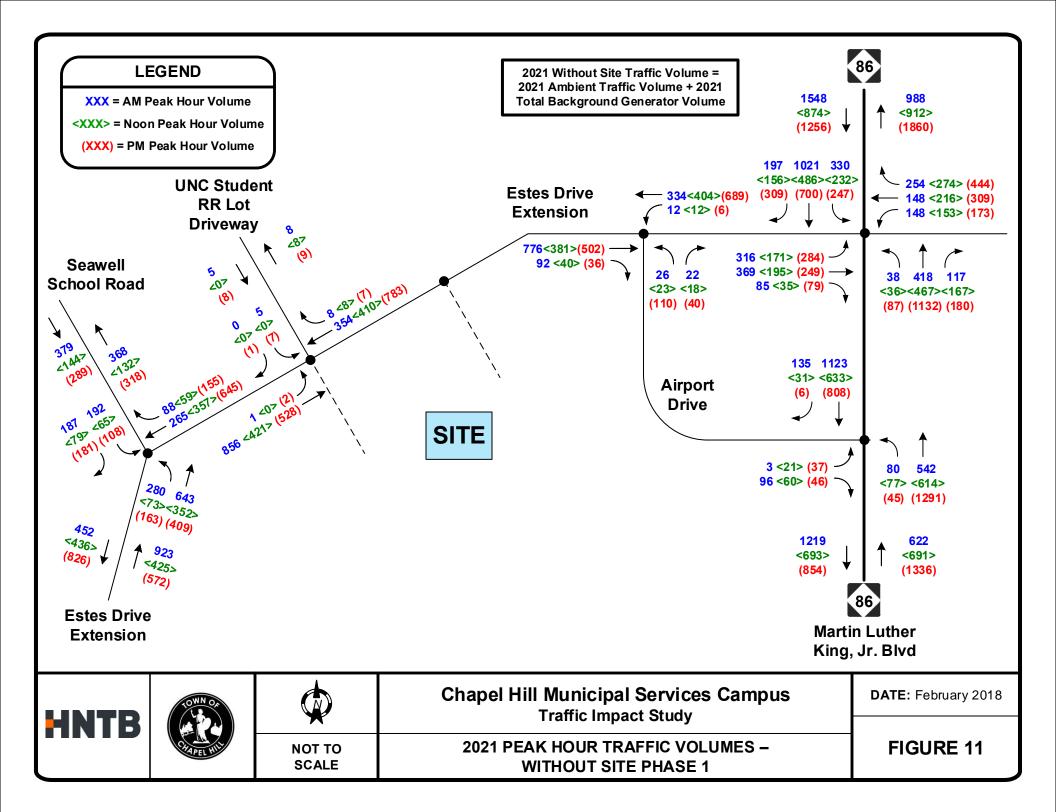


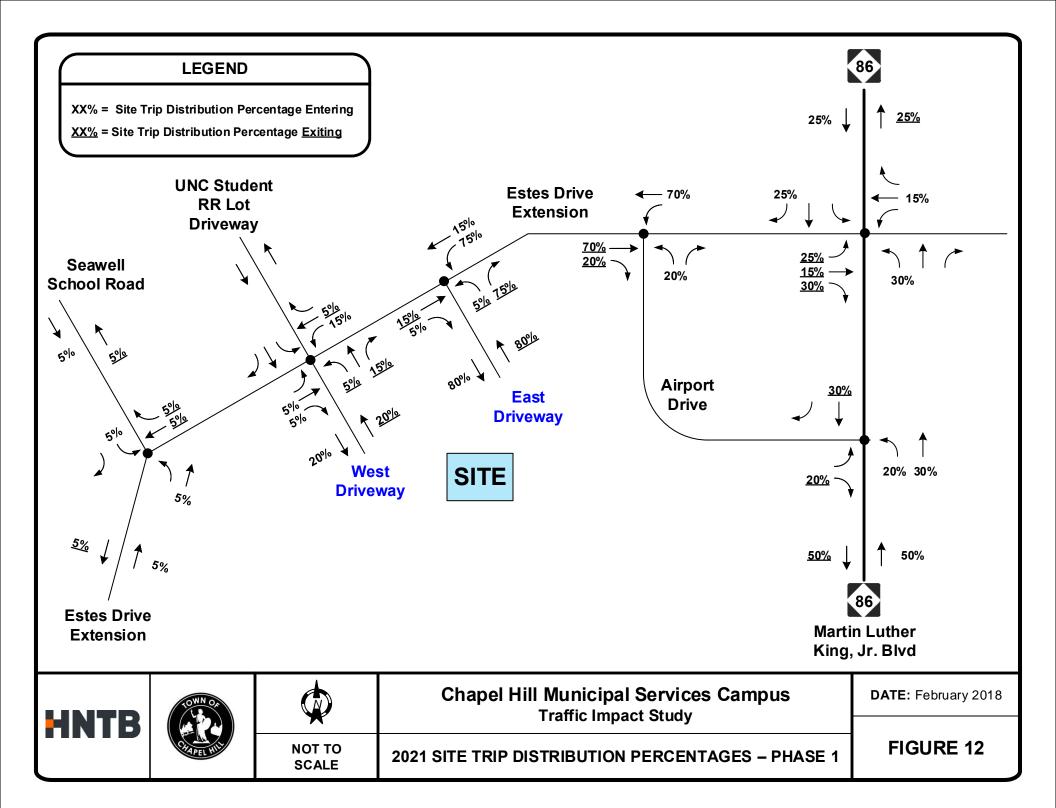
LEGEND

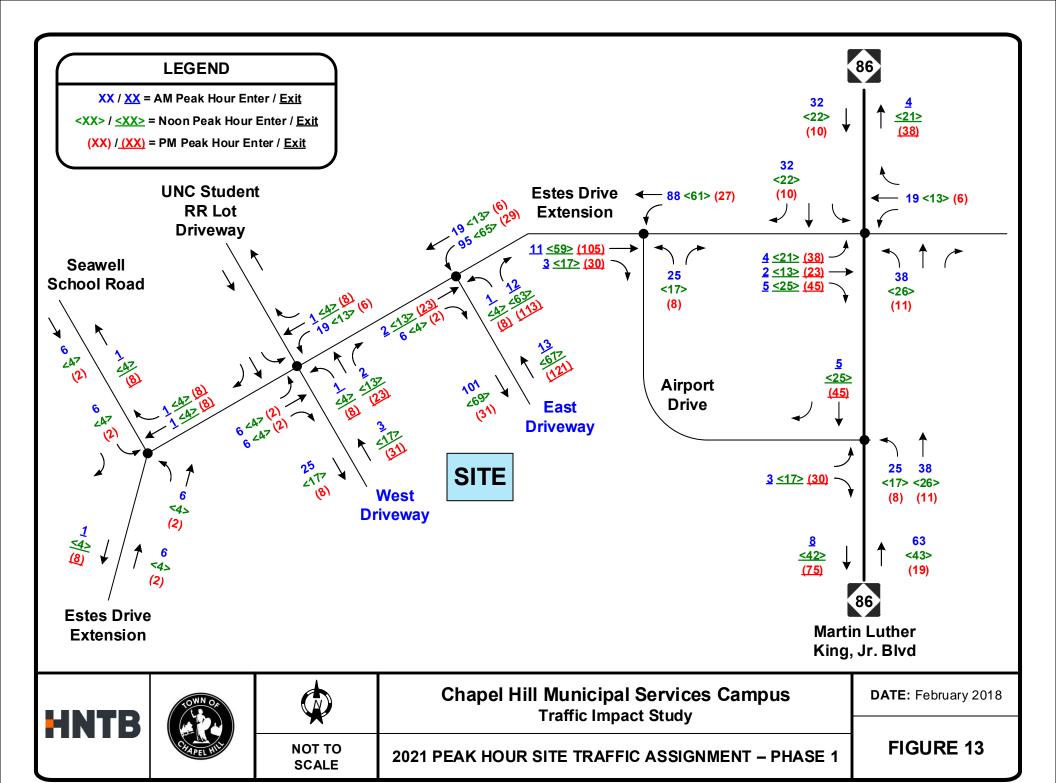
- Chapel Hill Retirement Residence
- 2 Sawmill Condominiums
- North Estes Mixed-Use Center
- Womens Health & Wellness Center
- 5 Carolina North
- Chapel Hill Municipal Services Campus Site
 - = Not Specifically Studied as Background Generator

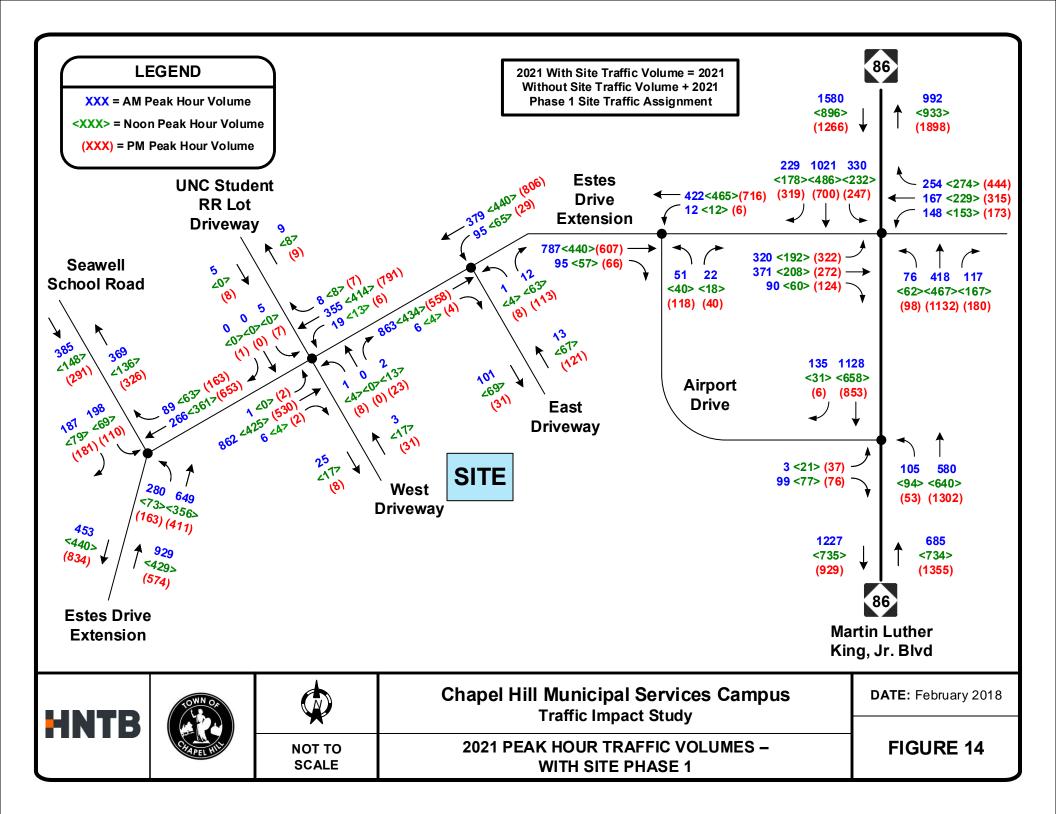
Source: Town of Chapel Hill GIS Files

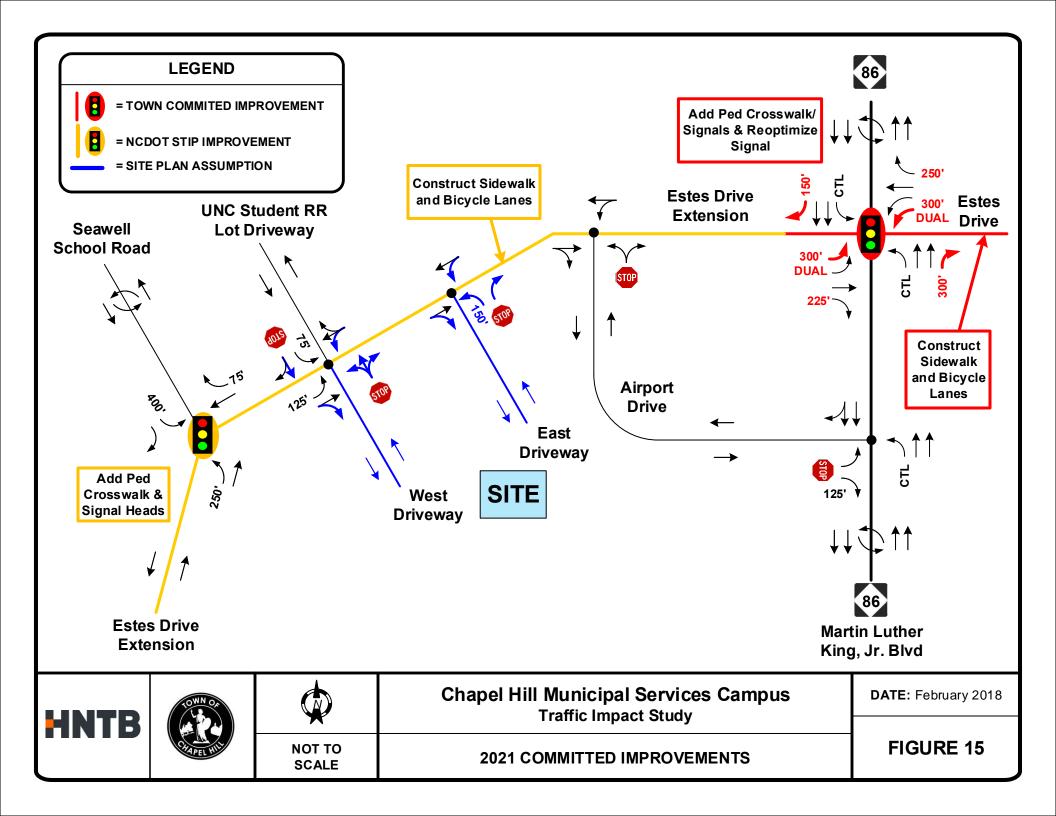


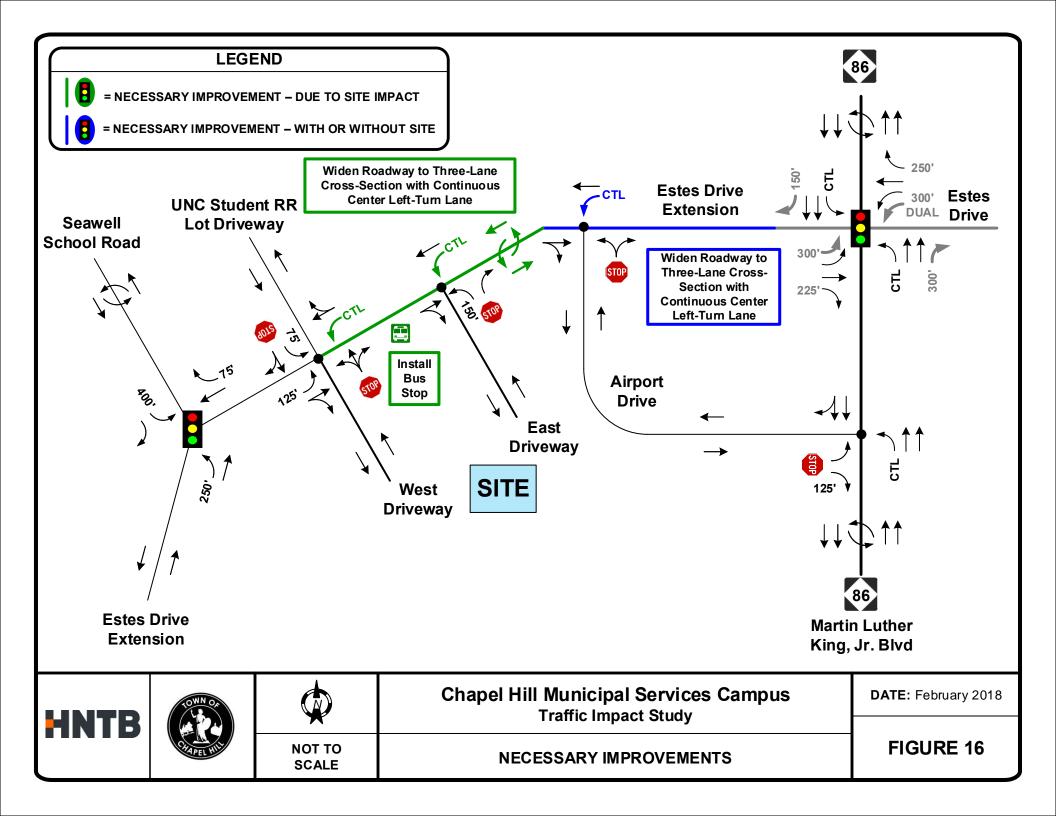


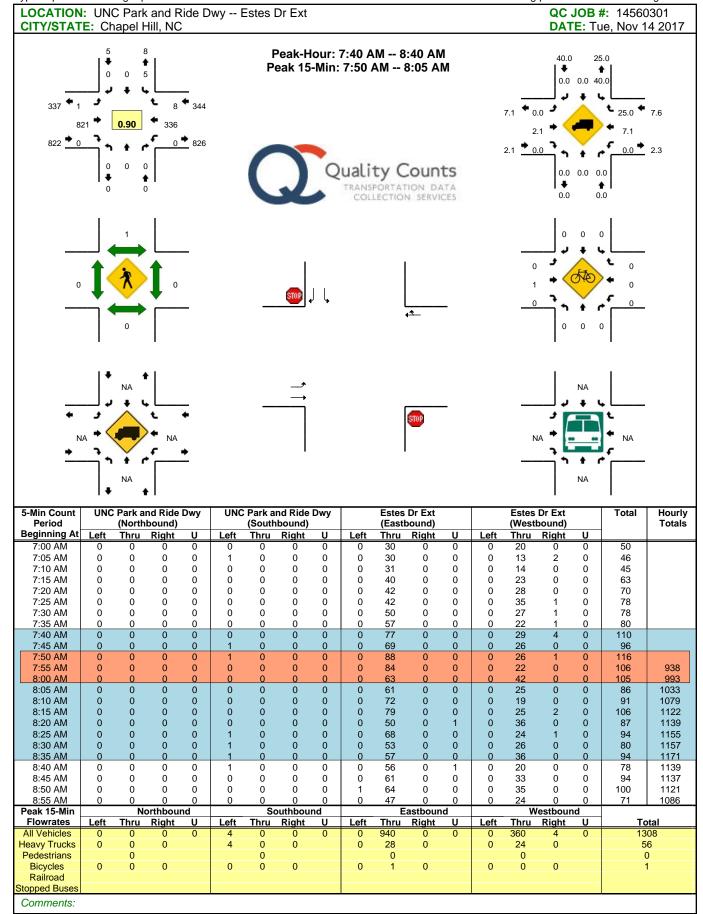

Chapel Hill Municipal Services Campus
Traffic Impact Study

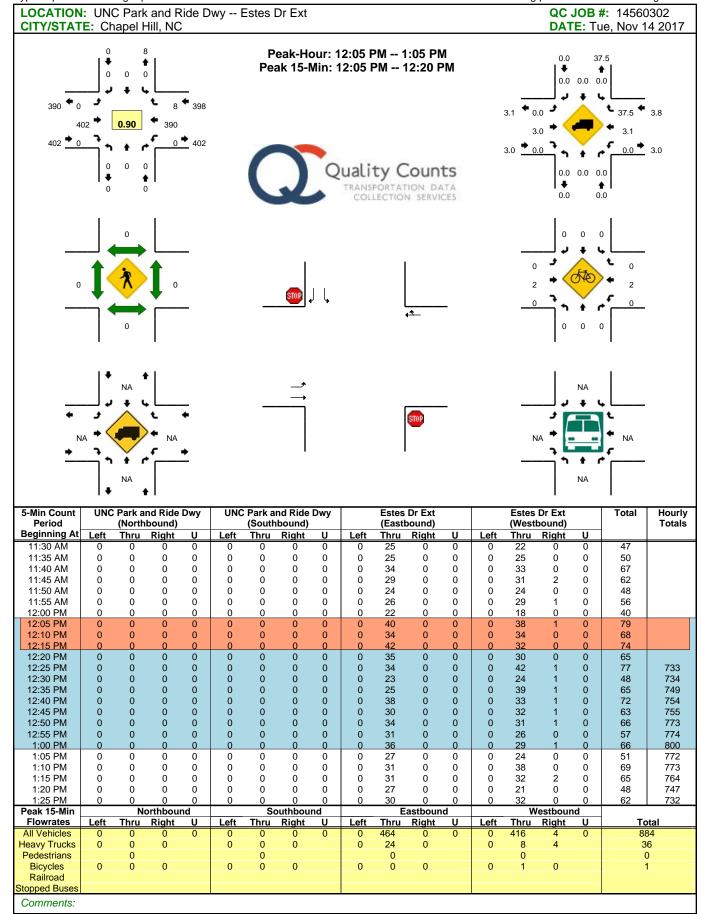

BACKGROUND DEVELOPMENT LOCATIONS

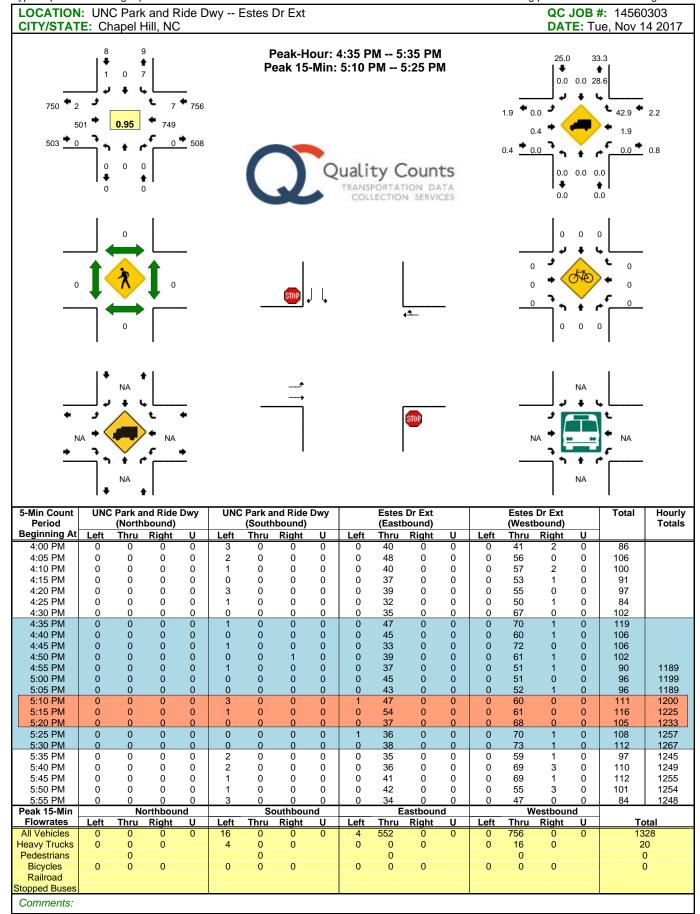

DATE: February 2018

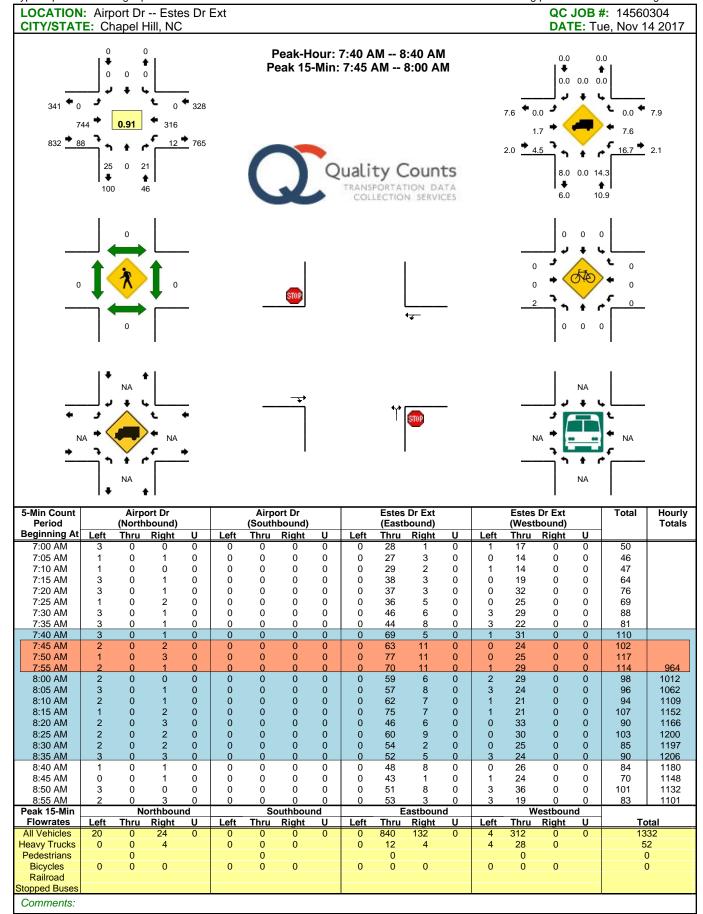


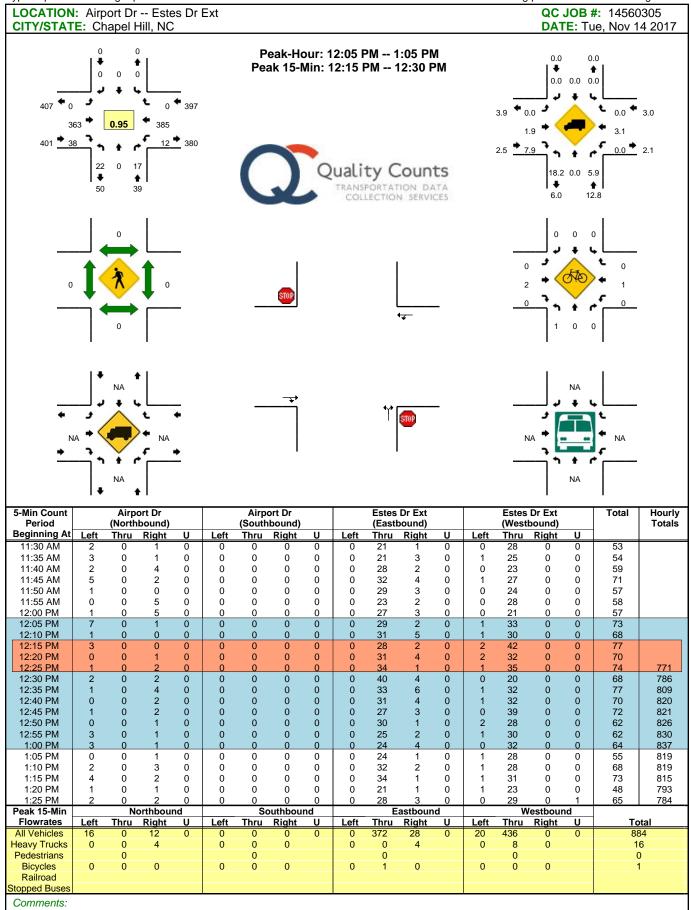


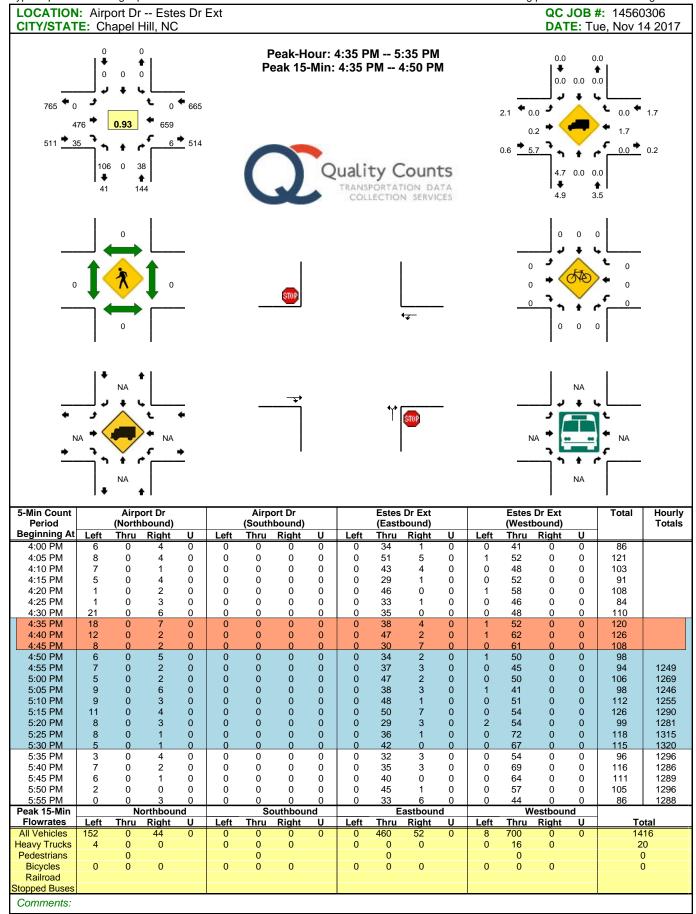


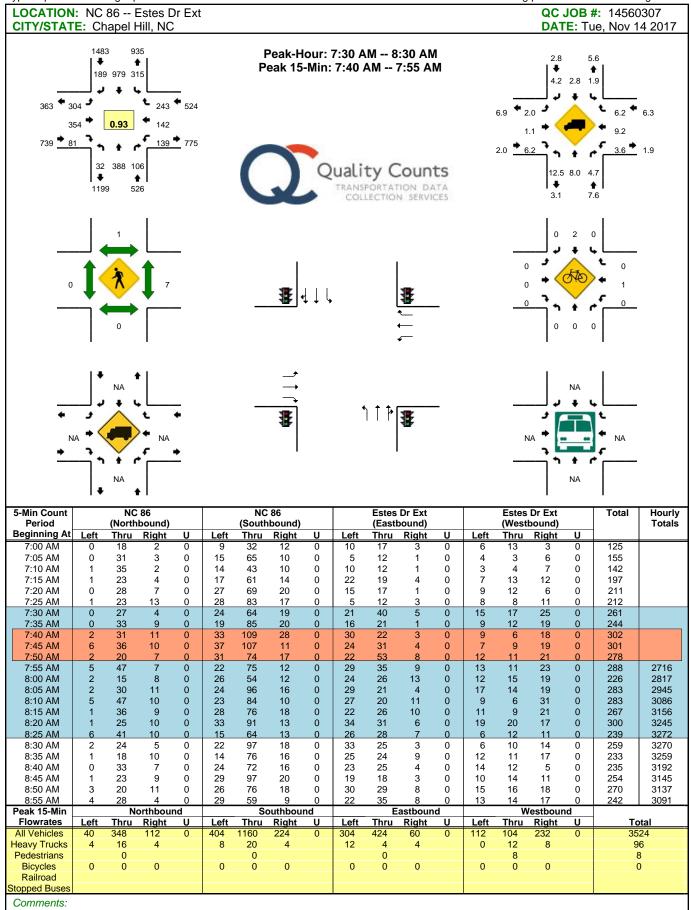


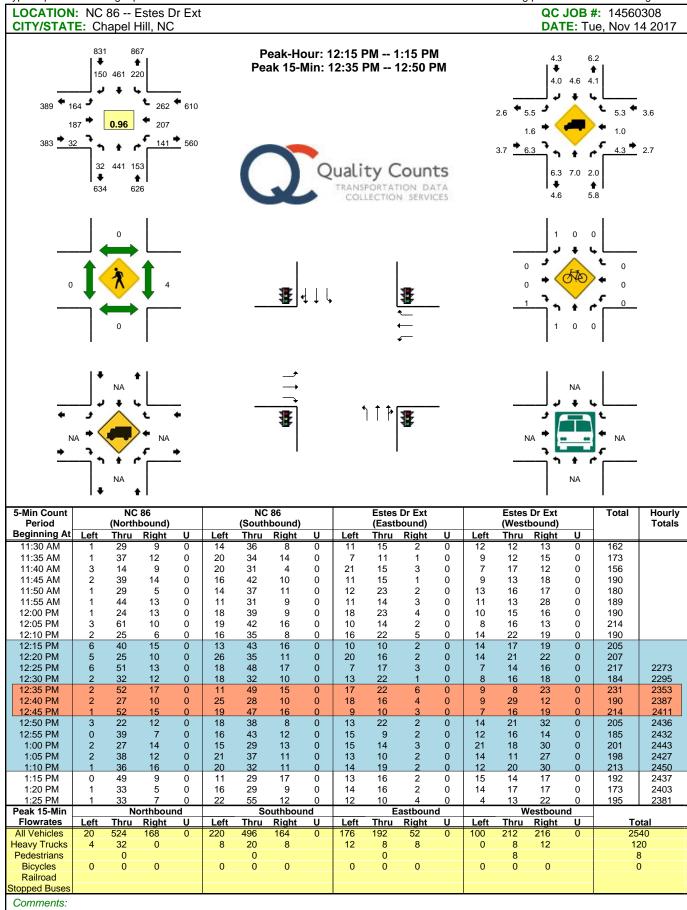


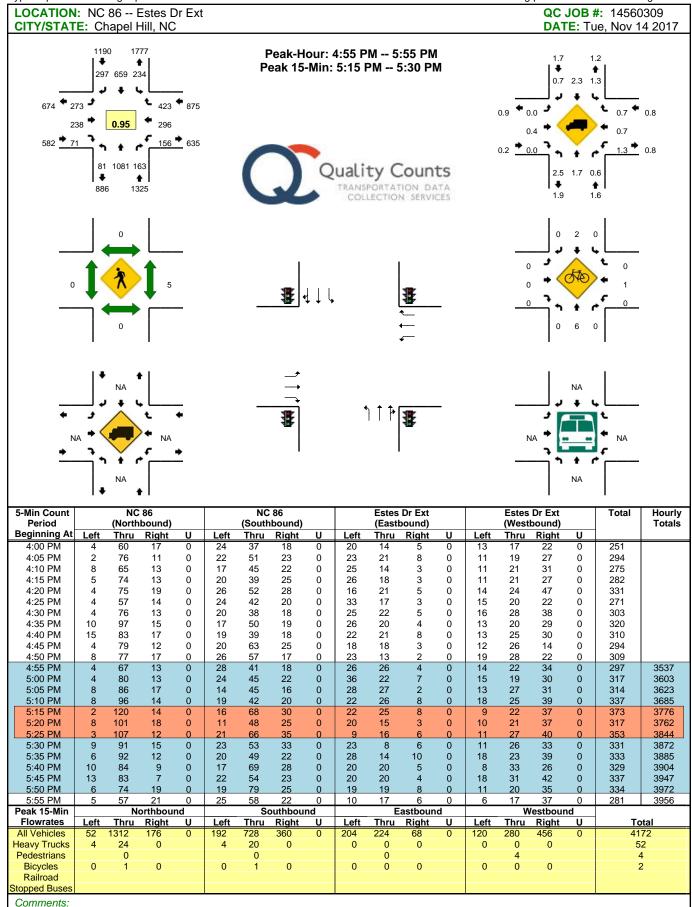


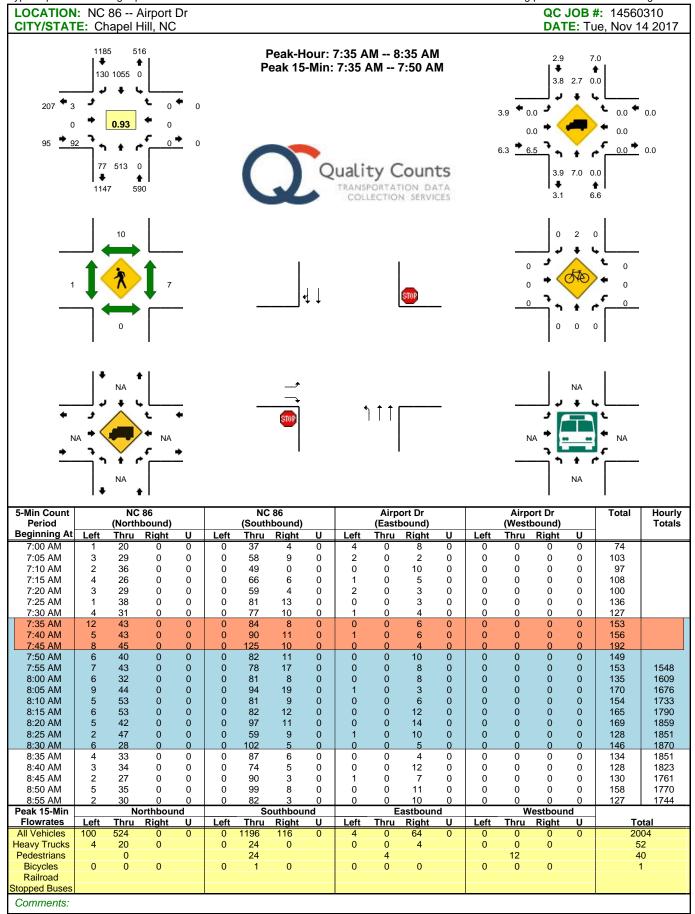

Appendix B – Traffic Count Data

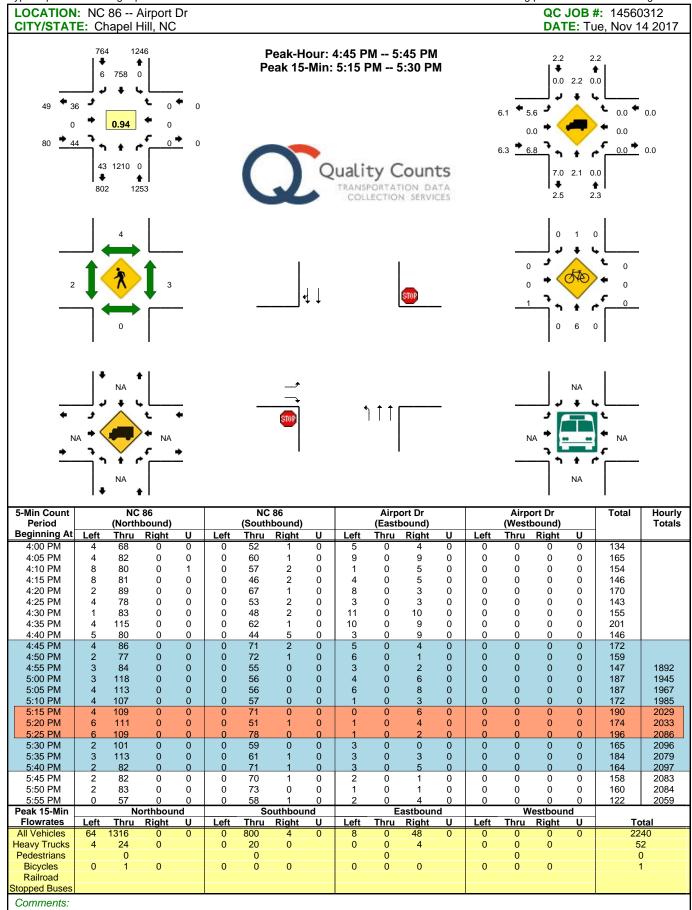


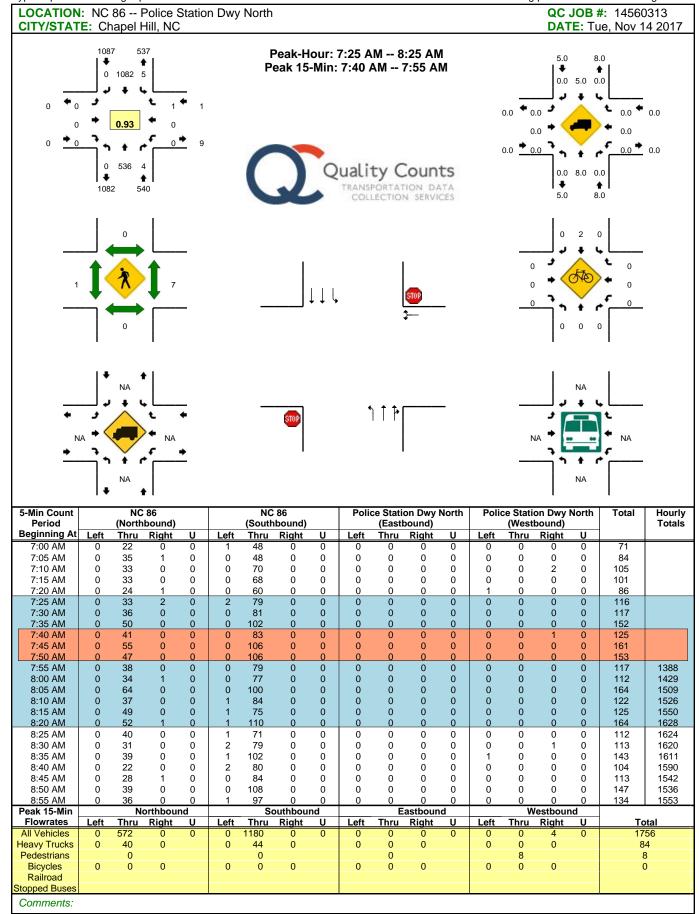


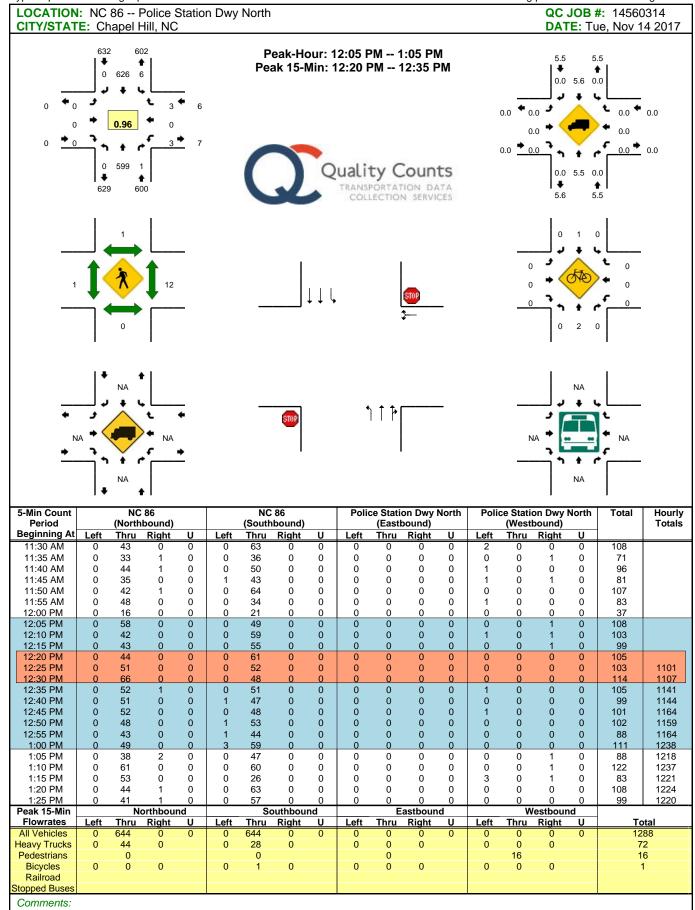


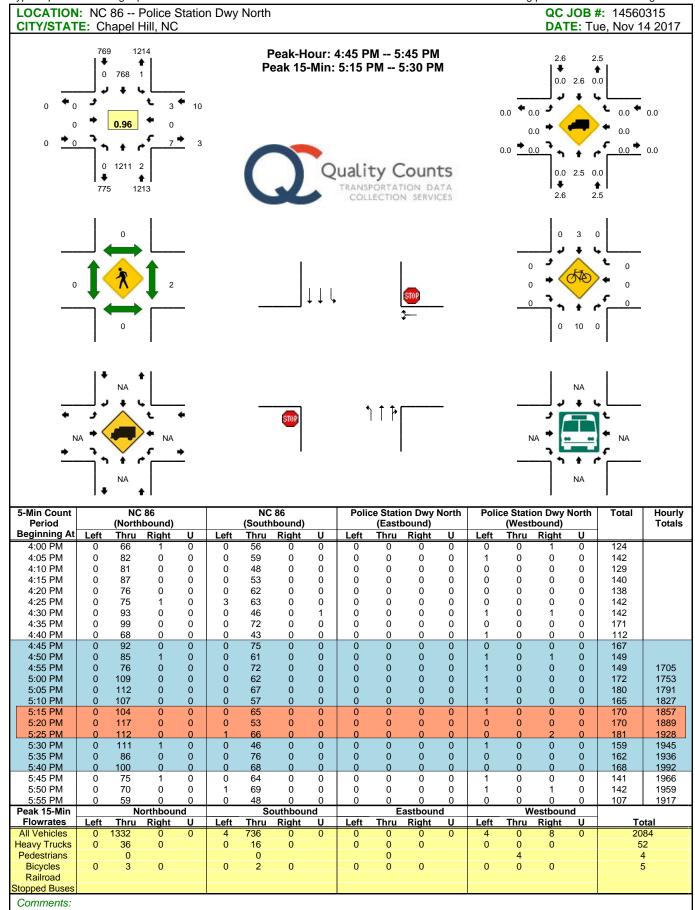


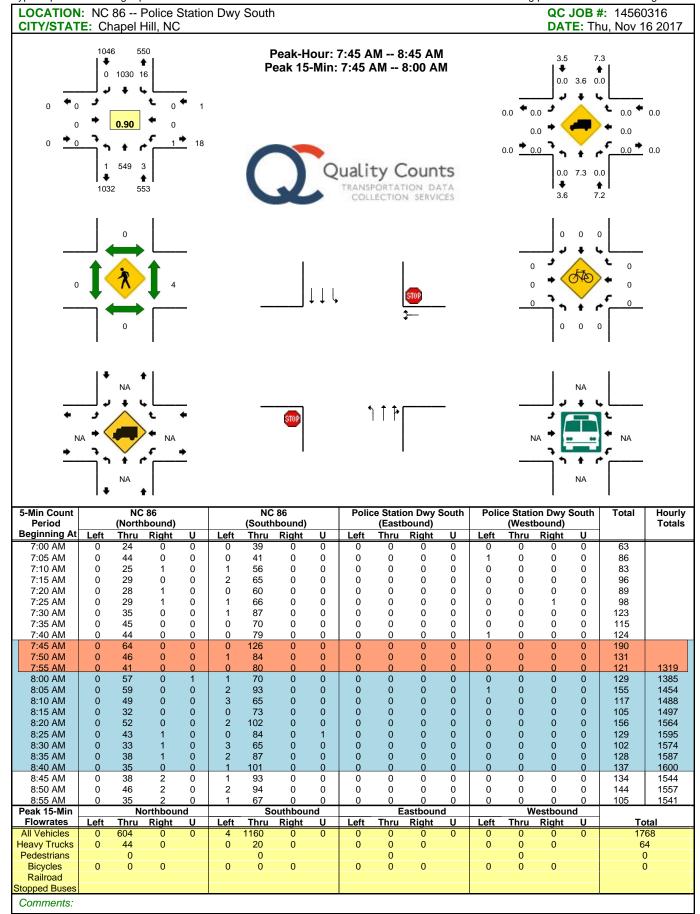


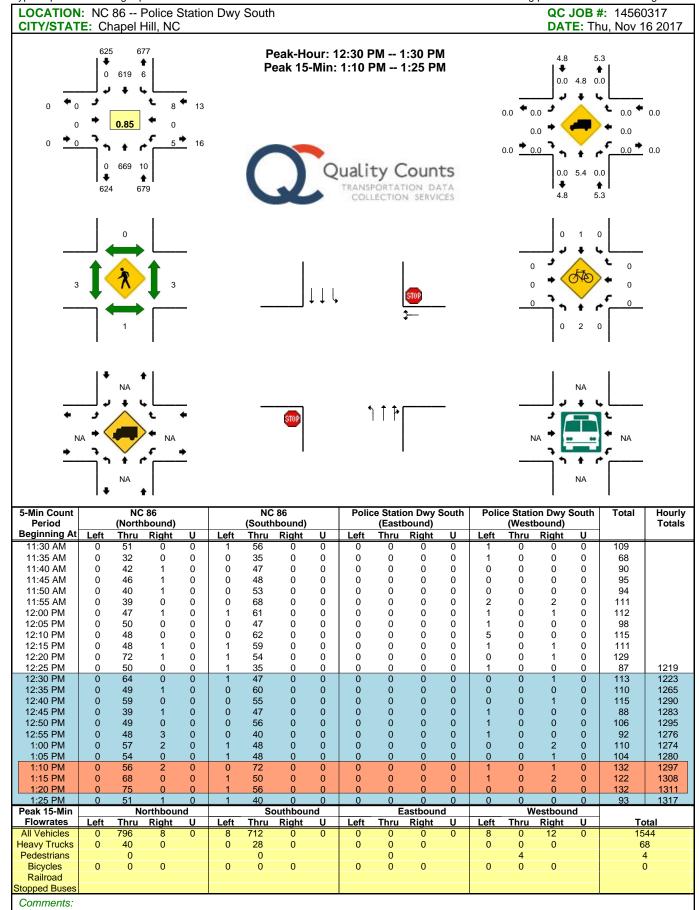


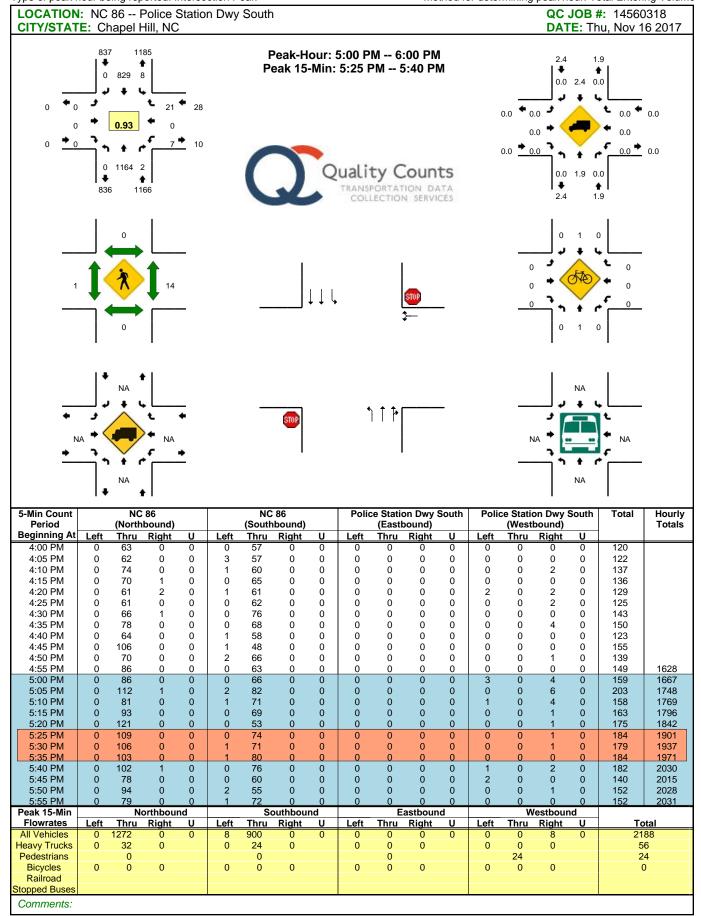


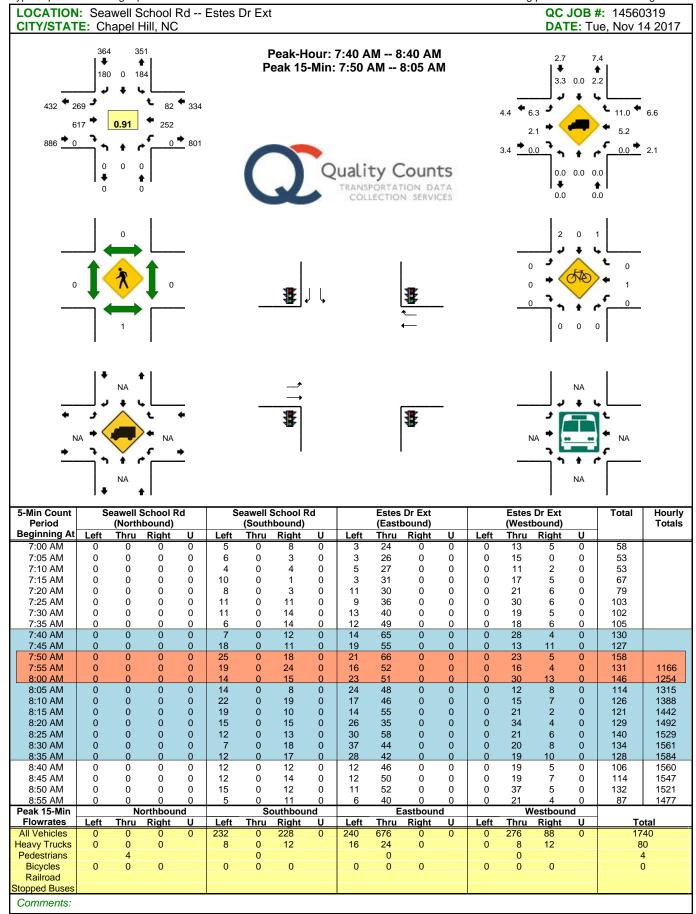


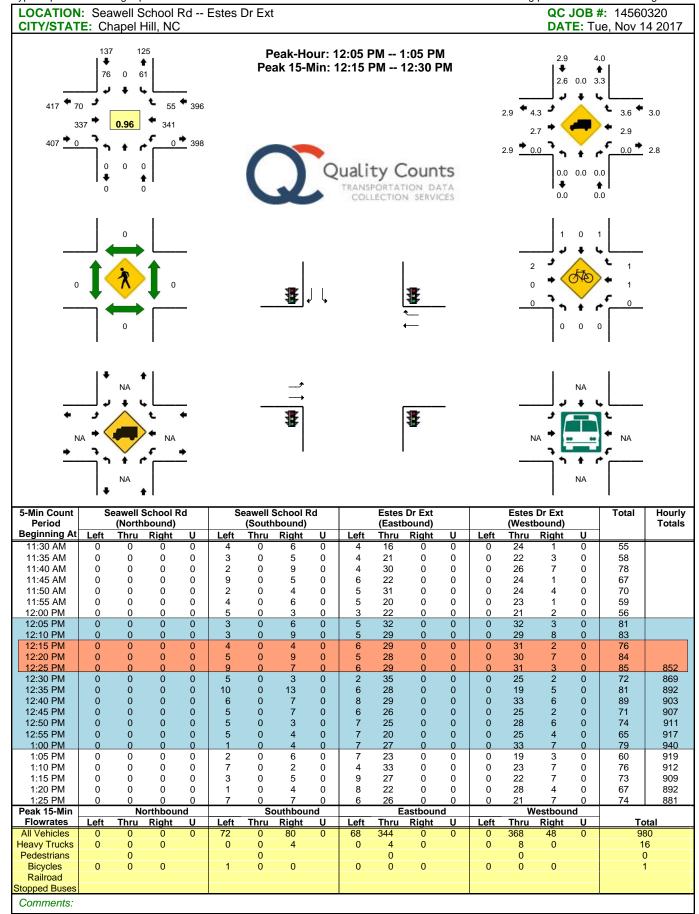


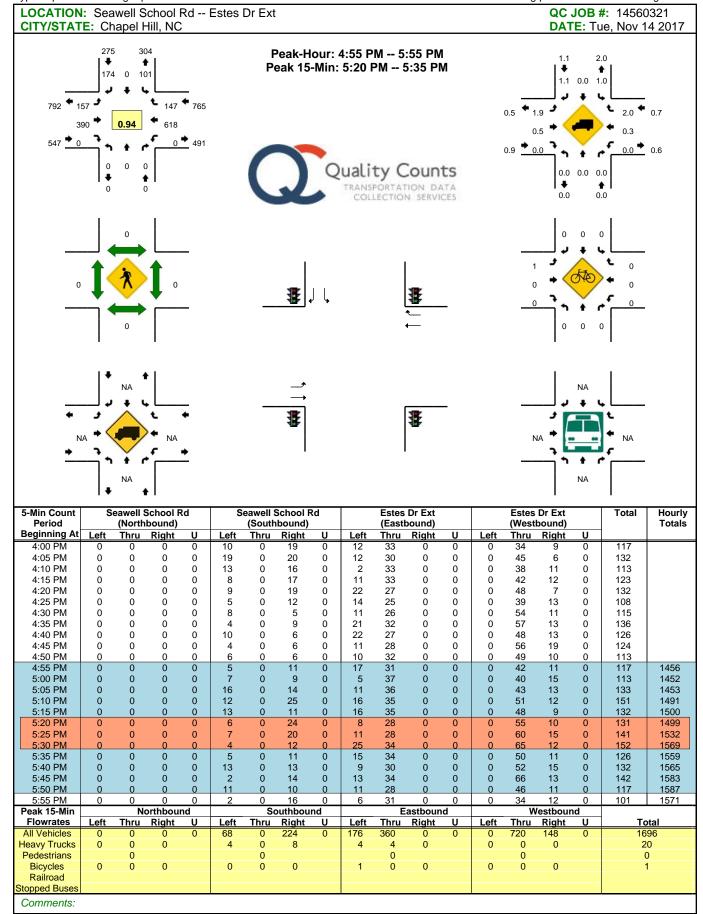




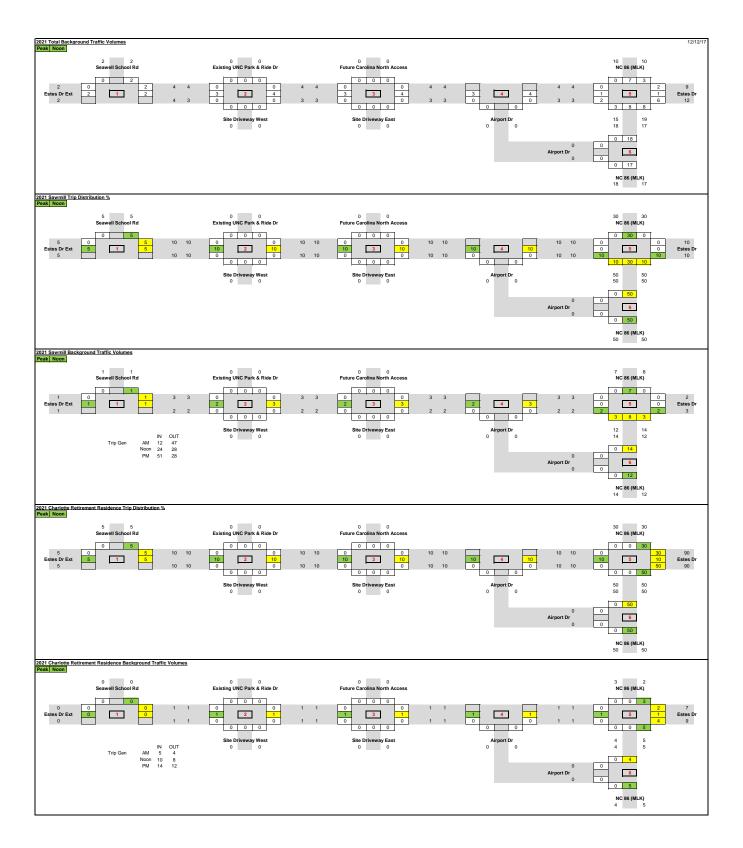


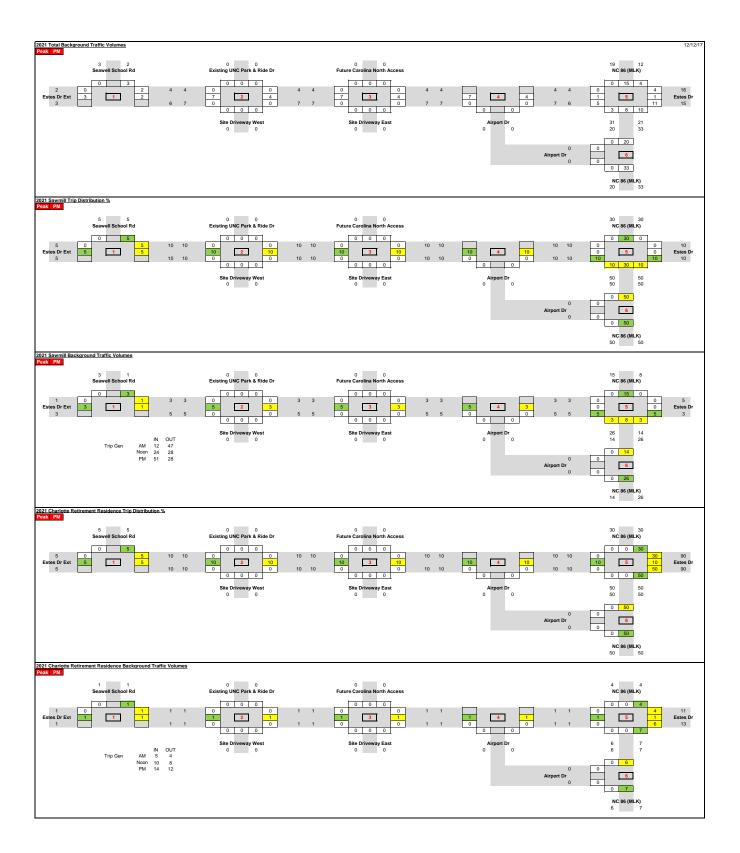




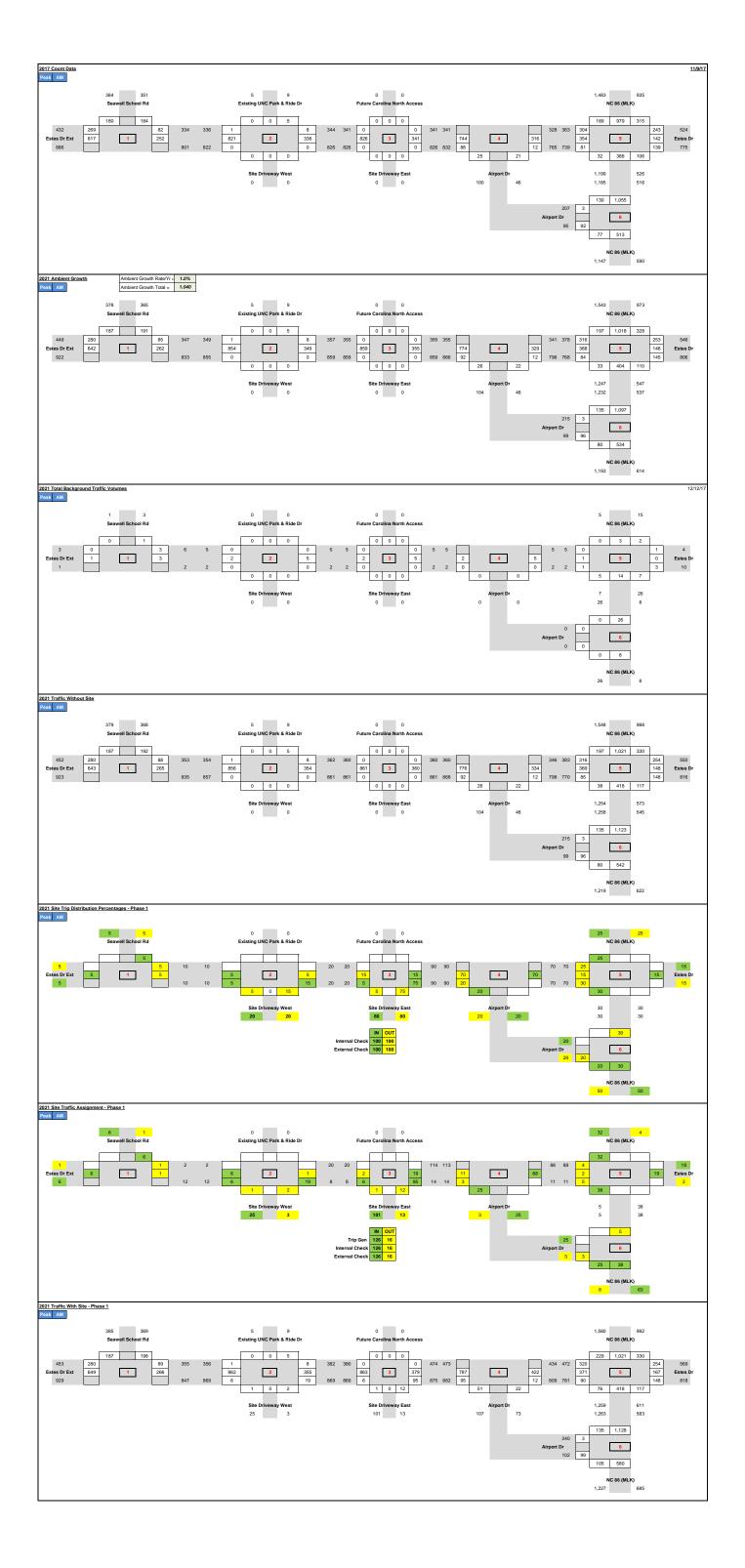


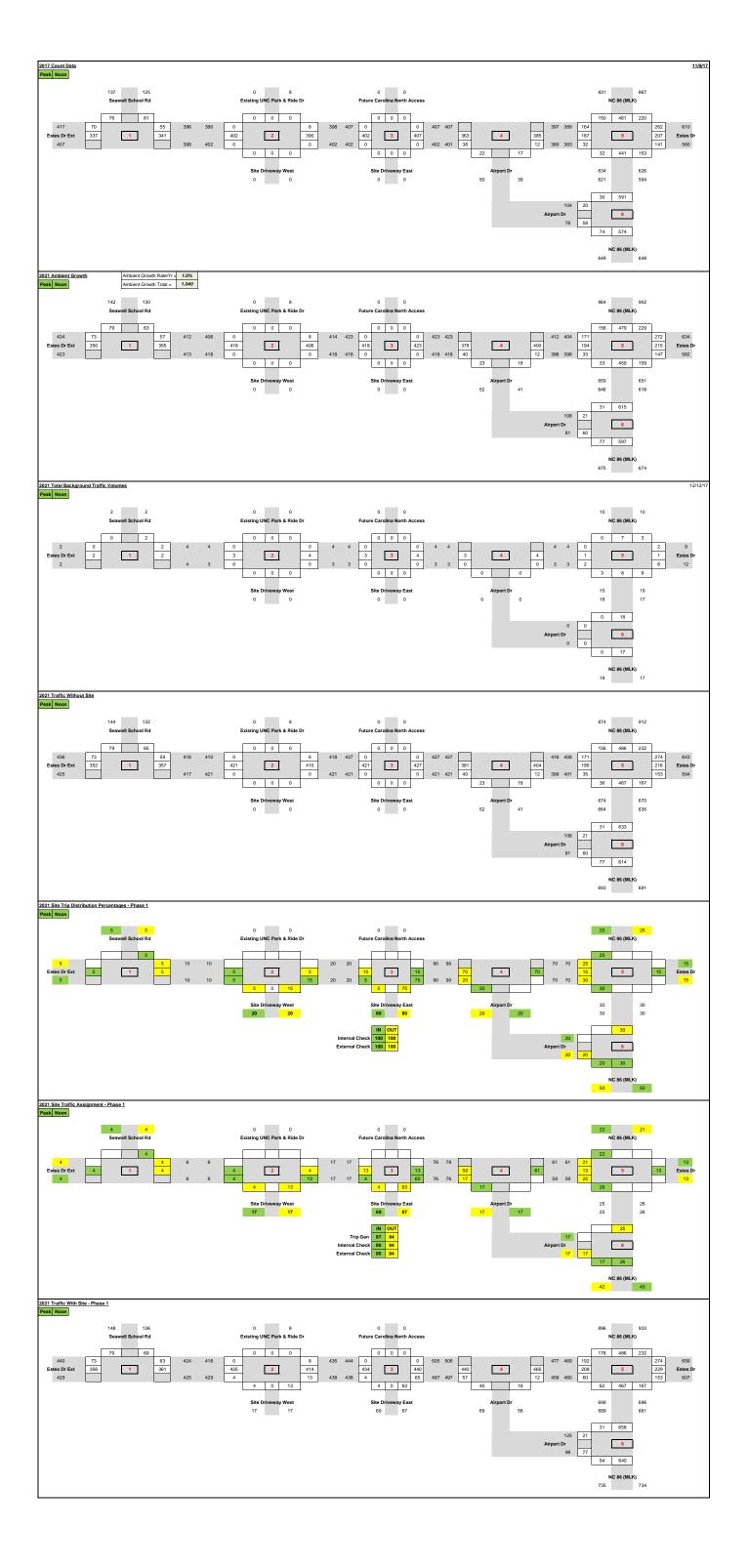


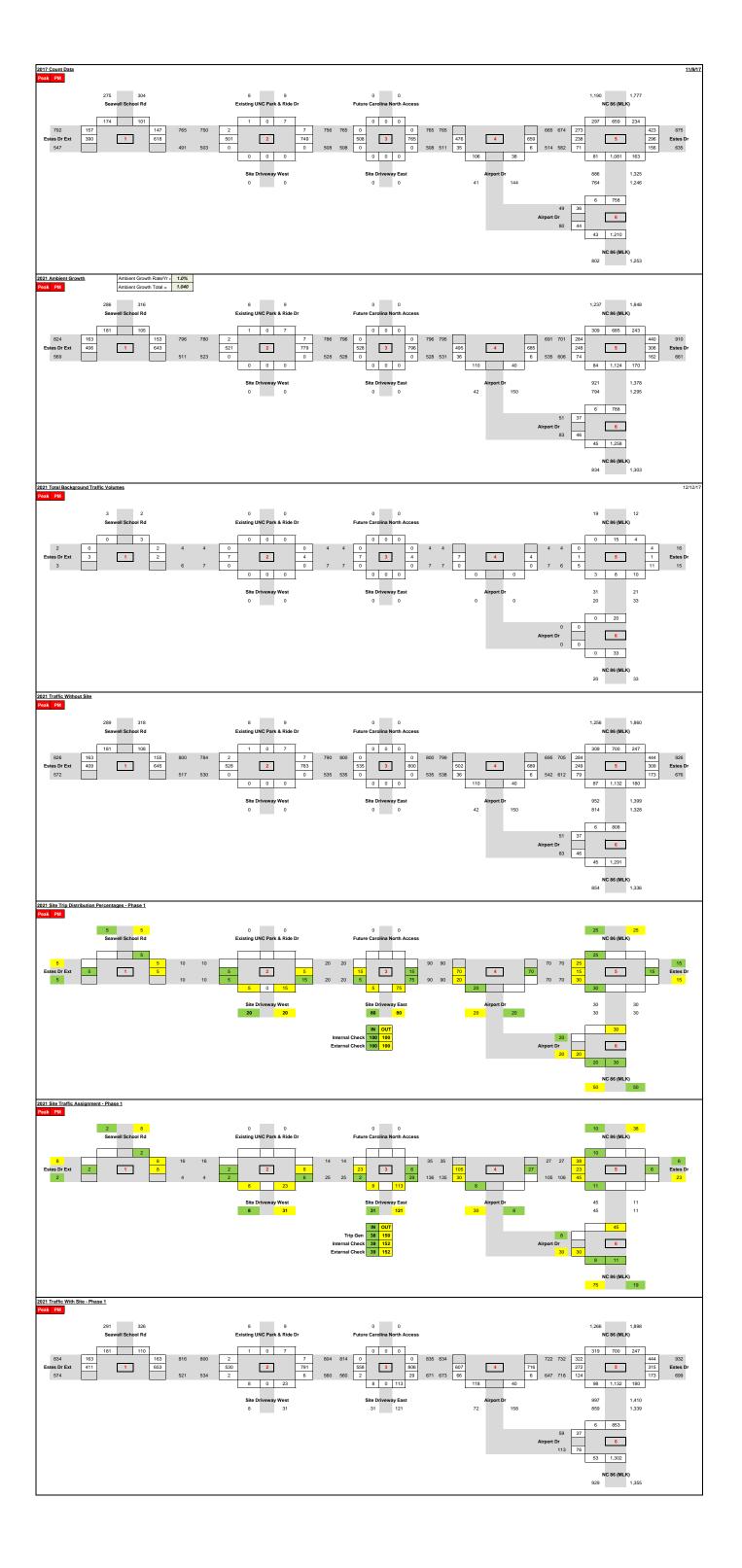




Appendix C – Background Generator Information


Appendix D - Traffic Volume Development Spreadsheets


Chapel Hill Municipal Campus Trip Generation Results


Phase 1				Daily			AM Peak			Noon Peak	(PM Peak	
ITE LUC	Description	Density	Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
710	General Office Building	48467 SF	379	379	758	94	13	107	59	62	121	23	110	133
•	Police Station - Field Data Adjusted	24346 SF	146	146	292	32	3	35	28	22	50	15	40	55
	Total Phase 1	72813 SF	525	525	1050	126	16	142	87	84	171	38	150	188

				Daily			AM Peak			Noon Peak			PM Peak	
Existing	Description	Density	Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
	Police Station - Field Data	24000 SF				30	3	33	27	21	48	14	38	52
		5% Inc				32	3	35	28	22	50	15	40	55

Daily Estimate for Police Station	AM Ratio	Noon Ratio	PM Ratio	Weighted
	0.33	0.41	0.41	0.38

Appendix E – Synchro Signalized Capacity Analysis Output

Lanes, Volumes, Timings 1: Estes Drive Extension & Seawell School Road

	₩.	Ì	7	*	×	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	ሻ	7	ሻ	↑	<u> </u>	7
Traffic Volume (vph)	184	180	269	617	252	82
Future Volume (vph)	184	180	269	617	252	82
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Grade (%)	-3%	1900	1300	2%	-3%	1300
` '	400	0	250	∠ /0	-5 /0	75
Storage Length (ft)						
Storage Lanes	1	1	1			1
Taper Length (ft)	25	4.00	25	4.00	4.00	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1779	1591	1735	1826	1819	1546
Flt Permitted	0.950		0.393			
Satd. Flow (perm)	1779	1591	718	1826	1819	1546
Right Turn on Red		No				No
Satd. Flow (RTOR)						
Link Speed (mph)	35			35	35	
Link Distance (ft)	862			645	825	
Travel Time (s)	16.8			12.6	16.1	
()		0.04	0.04			0.04
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles (%)	3%	3%	3%	3%	6%	6%
Adj. Flow (vph)	202	198	296	678	277	90
Shared Lane Traffic (%)	_		_			
Lane Group Flow (vph)	202	198	296	678	277	90
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	0.98	0.98	1.01	1.01	0.98	0.98
Turning Speed (mph)	15	9	1.01	1.01	0.30	9
• ,	Prot	Perm		NA	NA	
Turn Type		reiiii	pm+pt			pm+ov
Protected Phases	4		5	2	6	4
Permitted Phases		4	2			6
Detector Phase	4	4	5	2	6	4
Switch Phase						
Minimum Initial (s)	7.0	7.0	7.0	12.0	12.0	7.0
Minimum Split (s)	14.0	14.0	14.0	19.0	19.0	14.0
Total Split (s)	25.0	25.0	15.0	75.0	60.0	25.0
Total Split (%)	25.0%	25.0%	15.0%	75.0%	60.0%	25.0%
Yellow Time (s)	3.1	3.1	3.0	5.0	5.0	3.1
All-Red Time (s)	2.3	2.3	1.9	1.2	1.2	2.3
Lost Time Adjust (s)	-0.4	-0.4	0.1	-1.2	-1.2	-0.4
	5.0	5.0	5.0	5.0	5.0	5.0
Total Lost Time (s)	ა.0	5.0		5.0		5.0
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	N
Recall Mode	None	None	None	Min	Min	None
Act Effct Green (s)	12.6	12.6	31.8	31.8	16.7	34.4

1: Estes Drive Extension & Seawell School Road

	4	À	ን	×	×	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Actuated g/C Ratio	0.23	0.23	0.58	0.58	0.31	0.63
v/c Ratio	0.49	0.54	0.49	0.64	0.50	0.09
Control Delay	23.5	25.3	9.3	11.6	19.5	3.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	23.5	25.3	9.3	11.6	19.5	3.9
LOS	С	С	Α	В	В	Α
Approach Delay	24.4			10.9	15.7	
Approach LOS	С			В	В	
Queue Length 50th (ft)	54	53	40	120	70	9
Queue Length 95th (ft)	127	128	100	283	150	20
Internal Link Dist (ft)	782			565	745	
Turn Bay Length (ft)	400		250			75
Base Capacity (vph)	667	597	608	1823	1728	1199
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.30	0.33	0.49	0.37	0.16	0.08
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 54	4.6					
Natural Cycle: 50						
Control Type: Actuated-U	ncoordinated					
Maximum v/c Ratio: 0.64						
Intersection Signal Delay:					tersectior	
Intersection Capacity Utiliz	zation 51.0%			IC	U Level o	of Service
Analysis Period (min) 15						

Splits and Phases: 1: Estes Drive Extension & Seawell School Road

	۶	→	•	•	+	•	•	†	<i>></i>	/		-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኻ	1	7	ች	†	7	ሻ	↑ ⊅		ሻ	↑ ₽	
Traffic Volume (vph)	304	354	81	139	142	243	32	388	106	315	979	189
Future Volume (vph)	304	354	81	139	142	243	32	388	106	315	979	189
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)	1000	0%	1000	1000	1%	1000	1000	1%	1000	1000	-2%	1000
Storage Length (ft)	225	070	300	150	170	450	0	170	0	0	270	0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	0.99	1.00	0.99	0.00	0.99	0.50	0.50
Frt	1.00		0.850			0.850		0.968		0.55	0.976	
FIt Protected	0.950		0.000	0.950		0.000	0.950	0.500		0.950	0.570	
Satd. Flow (prot)	1770	1863	1583	1694	1783	1516	1678	3223	0	1770	3455	0
Flt Permitted	0.444	1003	1303	0.156	1703	1310	0.097	3223	U	0.455	3433	U
Satd. Flow (perm)	827	1863	1583	278	1783	1497	171	3223	0	840	3455	0
	021	1003	No	210	1703	No	171	3223	No	040	3433	No
Right Turn on Red			INO			INO			INO			INO
Satd. Flow (RTOR)		35			35			35			35	
Link Speed (mph)		1360			1121							
Link Distance (ft)								1058			1059	
Travel Time (s)		26.5			21.8	4		20.6	7	7	20.6	
Confl. Peds. (#/hr)	1	0.00	0.00	0.00	0.00	1	0.00	0.00	7	7	0.00	0.00
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	2%	2%	2%	6%	6%	6%	7%	7%	7%	3%	3%	3%
Adj. Flow (vph)	327	381	87	149	153	261	34	417	114	339	1053	203
Shared Lane Traffic (%)		201				221		-0.4			10-0	
Lane Group Flow (vph)	327	381	87	149	153	261	34	531	0	339	1256	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.01	0.99	0.99	0.99
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	pm+pt	NA		pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4	5	3	8	1	5	2		1	6	
Permitted Phases	4		4	8		8	2			6		
Detector Phase	7	4	5	3	8	1	5	2		1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	12.0		7.0	12.0	
Minimum Split (s)	12.0	13.0	13.0	13.0	13.0	13.0	13.0	34.0		13.0	18.0	
Total Split (s)	25.0	40.0	20.0	25.0	40.0	35.0	20.0	50.0		35.0	65.0	
Total Split (%)	16.7%	26.7%	13.3%	16.7%	26.7%	23.3%	13.3%	33.3%		23.3%	43.3%	
Yellow Time (s)	3.0	3.8	3.0	3.0	3.8	3.0	3.0	4.3		3.0	4.3	
All-Red Time (s)	1.9	1.7	2.8	2.4	1.7	2.8	2.8	1.7		2.8	1.7	
Lost Time Adjust (s)	0.1	-0.5	-0.8	-0.4	-0.5	-0.8	-0.8	-1.0		-0.8	-1.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lag	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	

	•	-	•	•	•	•	1	Ť		-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Recall Mode	None	C-Max		None	C-Max							
Act Effct Green (s)	53.4	34.6	48.5	44.7	29.7	59.7	50.3	50.3		71.5	71.5	
Actuated g/C Ratio	0.36	0.23	0.32	0.30	0.20	0.40	0.34	0.34		0.48	0.48	
v/c Ratio	0.78	0.89	0.17	0.67	0.43	0.44	0.23	0.49		0.58	0.76	
Control Delay	51.3	78.0	36.3	47.4	55.5	20.2	40.7	42.7		40.1	37.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	51.3	78.0	36.3	47.4	55.5	20.2	40.7	42.7		40.1	37.4	
LOS	D	Ε	D	D	Ε	С	D	D		D	D	
Approach Delay		62.5			37.0			42.6			38.0	
Approach LOS		Ε			D			D			D	
Queue Length 50th (ft)	242	354	60	98	130	113	23	223		218	538	
Queue Length 95th (ft)	327	#541	104	149	198	156	52	291		323	677	
Internal Link Dist (ft)		1280			1041			978			979	
Turn Bay Length (ft)	225		300	150		450						
Base Capacity (vph)	419	449	576	280	416	599	208	1080		586	1645	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.78	0.85	0.15	0.53	0.37	0.44	0.16	0.49		0.58	0.76	

Intersection Summary

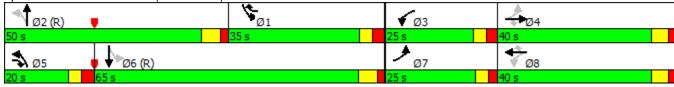
Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 91 (61%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 44.1 Intersection LOS: D
Intersection Capacity Utilization 83.8% ICU Level of Service E

Analysis Period (min) 15

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	₩	Ì	7	*	K	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	ሻ	o∟it	ሻ		<u> </u>	7
Traffic Volume (vph)	61	76	70	T 337	T 341	55
Future Volume (vph)	61	76	70	337	341	55
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
(,	-3%	1300	1900	2%	-3%	1300
Grade (%)		^	250	Z70	-3%	75
Storage Length (ft)	400	0				75
Storage Lanes	1	1	1			1
Taper Length (ft)	25	4.00	25	4.00	4.00	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850	0.0==			0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1779	1591	1735	1826	1872	1591
Flt Permitted	0.950		0.401			
Satd. Flow (perm)	1779	1591	732	1826	1872	1591
Right Turn on Red		No				No
Satd. Flow (RTOR)						
Link Speed (mph)	35			35	35	
Link Distance (ft)	862			645	825	
Travel Time (s)	16.8			12.6	16.1	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	3%	3%	3%	3%	3%	3%
Adj. Flow (vph)	64	79	73	351	355	57
Shared Lane Traffic (%)	04	13	13	JJ 1	333	31
	64	79	73	251	255	57
Lane Group Flow (vph)				351	355 No.	
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	0.98	0.98	1.01	1.01	0.98	0.98
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	Perm	pm+pt	NA	NA	pm+ov
Protected Phases	4		5	2	6	4
Permitted Phases	'	4	2			6
Detector Phase	4	4	5	2	6	4
Switch Phase	4	4	J		U	4
	7.0	7.0	7.0	12.0	12.0	7.0
Minimum Initial (s)						
Minimum Split (s)	14.0	14.0	14.0	19.0	19.0	14.0
Total Split (s)	25.0	25.0	15.0	75.0	60.0	25.0
Total Split (%)	25.0%	25.0%	15.0%	75.0%	60.0%	25.0%
Yellow Time (s)	3.1	3.1	3.0	5.0	5.0	3.1
All-Red Time (s)	2.3	2.3	1.9	1.2	1.2	2.3
Lost Time Adjust (s)	-0.4	-0.4	0.1	-1.2	-1.2	-0.4
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None	None	None	Min	Min	None
Act Effct Green (s)	8.8	8.8	26.9	28.1	21.5	33.7
Aut Elici Olegii (3)	0.0	0.0	20.5	20.1	۷۱.J	55.1

	-)	7	×	×	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Actuated g/C Ratio	0.20	0.20	0.63	0.65	0.50	0.78
v/c Ratio	0.18	0.24	0.11	0.29	0.38	0.05
Control Delay	18.7	19.6	4.5	5.4	12.9	3.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	18.7	19.6	4.5	5.4	12.9	3.3
LOS	В	В	Α	Α	В	Α
Approach Delay	19.2			5.2	11.6	
Approach LOS	В			Α	В	
Queue Length 50th (ft)	14	18	6	37	73	5
Queue Length 95th (ft)	46	55	19	79	155	14
Internal Link Dist (ft)	782			565	745	
Turn Bay Length (ft)	400		250			75
Base Capacity (vph)	874	781	703	1826	1860	1453
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.10	0.10	0.19	0.19	0.04
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 4	3					
Natural Cycle: 50						
Control Type: Actuated-U	Incoordinated					
Maximum v/c Ratio: 0.38						
Intersection Signal Delay	: 9.9			In	tersection	LOS: A
Intersection Capacity Util	ization 42.1%			IC	U Level o	of Service
Analysis Period (min) 15						

Splits and Phases: 1: Estes Drive Extension & Seawell School Road

	ၨ	-	•	•	←	•	4	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	ř	†	7	۲	∱ }		ň	↑ ↑	
Traffic Volume (vph)	164	187	32	141	207	262	32	441	153	220	461	150
Future Volume (vph)	164	187	32	141	207	262	32	441	153	220	461	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			1%			1%			-2%	
Storage Length (ft)	225		300	150		450	0		0	0		0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor								0.99		1.00		
Frt			0.850			0.850		0.961			0.963	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1736	1827	1553	1727	1818	1545	1694	3230	0	1753	3376	0
Flt Permitted	0.228			0.348			0.322			0.412		
Satd. Flow (perm)	417	1827	1553	633	1818	1545	574	3230	0	757	3376	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1360			1121			1058			1059	
Travel Time (s)		26.5			21.8			20.6			20.6	
Confl. Peds. (#/hr)									4	4		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	4%	4%	4%	4%	4%	4%	6%	6%	6%	4%	4%	4%
Adj. Flow (vph)	171	195	33	147	216	273	33	459	159	229	480	156
Shared Lane Traffic (%)												
Lane Group Flow (vph)	171	195	33	147	216	273	33	618	0	229	636	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.01	0.99	0.99	0.99
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4	5	3	8	1	5	2		1	6	
Permitted Phases	4		4	8		8	2			6		
Detector Phase	7	4	5	3	8	1	5	2		1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	12.0		7.0	12.0	
Minimum Split (s)	12.0	13.0	13.0	13.0	13.0	13.0	13.0	34.0		13.0	18.0	
Total Split (s)	25.0	30.0	25.0	25.0	30.0	25.0	25.0	80.0		25.0	80.0	
Total Split (%)	15.6%	18.8%	15.6%	15.6%	18.8%	15.6%	15.6%	50.0%		15.6%	50.0%	
Yellow Time (s)	3.0	3.8	3.0	3.0	3.8	3.0	3.0	4.3		3.0	4.3	
All-Red Time (s)	1.9	1.7	2.8	2.4	1.7	2.8	2.8	1.7		2.8	1.7	
Lost Time Adjust (s)	0.1	-0.5	-0.8	-0.4	-0.5	-0.8	-0.8	-1.0		-0.8	-1.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lag	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	

	•	-	•	•	•	•	1	†		-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Recall Mode	None	C-Max		None	C-Max							
Act Effct Green (s)	41.3	24.0	37.4	39.0	22.9	42.9	79.9	79.9		94.0	94.0	
Actuated g/C Ratio	0.26	0.15	0.23	0.24	0.14	0.27	0.50	0.50		0.59	0.59	
v/c Ratio	0.69	0.71	0.09	0.56	0.83	0.66	0.10	0.38		0.40	0.32	
Control Delay	59.3	79.4	47.3	52.5	91.9	43.1	23.2	26.5		25.2	18.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	59.3	79.4	47.3	52.5	91.9	43.1	23.2	26.5		25.2	18.7	
LOS	Е	Е	D	D	F	D	С	С		С	В	
Approach Delay		68.1			61.9			26.3			20.4	
Approach LOS		Ε			Ε			С			С	
Queue Length 50th (ft)	140	193	27	118	219	186	18	215		119	186	
Queue Length 95th (ft)	207	289	58	180	#338	260	40	273		181	242	
Internal Link Dist (ft)		1280			1041			978			979	
Turn Bay Length (ft)	225		300	150		450						
Base Capacity (vph)	277	293	475	304	284	414	426	1612		569	1983	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.62	0.67	0.07	0.48	0.76	0.66	0.08	0.38		0.40	0.32	

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 104 (65%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.83

Intersection Signal Delay: 39.7 Intersection LOS: D
Intersection Capacity Utilization 72.2% ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	₩	Ì	7	*	×	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	ሻ	7	ሻ	<u></u>	<u> </u>	7
Traffic Volume (vph)	101	174	157	390	618	147
Future Volume (vph)	101	174	157	390	618	147
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Grade (%)	-3%	1300	1900	2%	-3%	1900
. ,		^	250	Z70	-3%	75
Storage Length (ft)	400	0				75
Storage Lanes	1	1	1			1
Taper Length (ft)	25	4.00	25	4.00	4.00	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1796	1607	1752	1844	1891	1607
Flt Permitted	0.950		0.161			
Satd. Flow (perm)	1796	1607	297	1844	1891	1607
Right Turn on Red		No				No
Satd. Flow (RTOR)		110				110
Link Speed (mph)	35			35	35	
Link Distance (ft)	862			645	825	
()						
Travel Time (s)	16.8	0.04	0.04	12.6	16.1	0.04
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	107	185	167	415	657	156
Shared Lane Traffic (%)						
Lane Group Flow (vph)	107	185	167	415	657	156
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	0.98	0.98	1.01	1.01	0.98	0.98
Turning Speed (mph)	15	9	1.01	1.01	0.50	9
Turn Type	Prot	Perm		NA	NA	pm+ov
		Pellii	pm+pt			•
Protected Phases	4	4	5	2	6	4
Permitted Phases		4	2	_	_	6
Detector Phase	4	4	5	2	6	4
Switch Phase						
Minimum Initial (s)	7.0	7.0	7.0	12.0	12.0	7.0
Minimum Split (s)	14.0	14.0	14.0	19.0	19.0	14.0
Total Split (s)	25.0	25.0	15.0	75.0	60.0	25.0
Total Split (%)	25.0%	25.0%	15.0%	75.0%	60.0%	25.0%
Yellow Time (s)	3.1	3.1	3.0	5.0	5.0	3.1
All-Red Time (s)	2.3	2.3	1.9	1.2	1.2	2.3
Lost Time Adjust (s)	-0.4	-0.4	0.1	-1.2	-1.2	-0.4
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
. ,	5.0	5.0		5.0		5.0
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?	N.	N.	Yes		Yes	
Recall Mode	None	None	None	Min	Min	None
Act Effct Green (s)	13.8	13.8	46.7	46.7	31.9	50.9
Actuated g/C Ratio	0.19	0.19	0.66	0.66	0.45	0.72

	-	7	ን	×	×	*	
Lane Group	SEL	SER	NEL	NET	SWT	SWR	
v/c Ratio	0.31	0.59	0.43	0.34	0.77	0.14	
Control Delay	30.3	37.4	8.3	6.4	23.6	3.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	30.3	37.4	8.3	6.4	23.6	3.1	
LOS	С	D	Α	Α	С	Α	
Approach Delay	34.8			7.0	19.6		
Approach LOS	С			Α	В		
Queue Length 50th (ft)	40	73	23	66	229	17	
Queue Length 95th (ft)	102	170	53	134	397	30	
Internal Link Dist (ft)	782			565	745		
Turn Bay Length (ft)	400		250			75	
Base Capacity (vph)	533	477	411	1697	1494	1318	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.20	0.39	0.41	0.24	0.44	0.12	
Intersection Summary							
Area Type:	Other						
Cycle Length: 100							
Actuated Cycle Length: 71							
Natural Cycle: 60							
Control Type: Actuated-Ur	ncoordinated						
Maximum v/c Ratio: 0.77							
Intersection Signal Delay:	17.9			In	tersectior	LOS: B	

Splits and Phases: 1: Estes Drive Extension & Seawell School Road

Intersection Capacity Utilization 59.6%

Analysis Period (min) 15

ICU Level of Service B

	϶	→	•	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	*	7	ሻ	1	7	ሻ	↑ ↑		*	↑ ⊅	
Traffic Volume (vph)	273	238	71	156	296	423	81	1081	163	234	659	297
Future Volume (vph)	273	238	71	156	296	423	81	1081	163	234	659	297
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			1%			1%			-2%	
Storage Length (ft)	225		300	150		450	0		0	0		0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor								1.00				
Frt			0.850			0.850		0.980			0.953	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1761	1853	1575	1761	3435	0	1787	3407	0
Flt Permitted	0.116			0.371			0.146			0.102		
Satd. Flow (perm)	216	1863	1583	688	1853	1575	271	3435	0	192	3407	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1360			1121			1058			1059	
Travel Time (s)		26.5			21.8			20.6			20.6	
Confl. Peds. (#/hr)									5	5		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	287	251	75	164	312	445	85	1138	172	246	694	313
Shared Lane Traffic (%)			. •		V							0.0
Lane Group Flow (vph)	287	251	75	164	312	445	85	1310	0	246	1007	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								. •				
Headway Factor	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.01	0.99	0.99	0.99
Turning Speed (mph)	15		9	15		9	15		9	15	0.00	9
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4	5	3	8	1	5	2		1	6	
Permitted Phases	4	•	4	8		8	2	_		6		
Detector Phase	7	4	5	3	8	1	5	2		1	6	
Switch Phase	•	•				•		_		•		
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	12.0		7.0	12.0	
Minimum Split (s)	12.0	13.0	13.0	13.0	13.0	13.0	13.0	34.0		13.0	18.0	
Total Split (s)	30.0	35.0	25.0	30.0	35.0	25.0	25.0	90.0		25.0	90.0	
Total Split (%)	16.7%	19.4%	13.9%	16.7%	19.4%	13.9%	13.9%	50.0%		13.9%	50.0%	
Yellow Time (s)	3.0	3.8	3.0	3.0	3.8	3.0	3.0	4.3		3.0	4.3	
All-Red Time (s)	1.9	1.7	2.8	2.4	1.7	2.8	2.8	1.7		2.8	1.7	
Lost Time Adjust (s)	0.1	-0.5	-0.8	-0.4	-0.5	-0.8	-0.8	-1.0		-0.8	-1.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lag	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
NEGAII MIGUE	INOHE	INOHE	INOHE	INOHE	INOHE	INOHE	INOHE	O-IVIAX		INOTIE	O-IVIAX	

	•	→	•	•	•	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Act Effct Green (s)	59.0	36.7	52.8	48.3	30.0	50.0	85.0	85.0		93.9	93.9	
Actuated g/C Ratio	0.33	0.20	0.29	0.27	0.17	0.28	0.47	0.47		0.52	0.52	
v/c Ratio	1.00	0.66	0.16	0.56	1.01	1.02	0.39	0.81		0.89	0.57	
Control Delay	108.3	75.9	49.1	52.5	126.3	96.4	31.7	45.4		94.8	31.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	108.3	75.9	49.1	52.5	126.3	96.4	31.7	45.4		94.8	31.1	
LOS	F	Е	D	D	F	F	С	D		F	С	
Approach Delay		87.8			98.7			44.6			43.6	
Approach LOS		F			F			D			D	
Queue Length 50th (ft)	292	276	66	143	~380	~396	55	688		191	418	
Queue Length 95th (ft)	#519	#423	117	212	#596	#691	93	785		#367	505	
Internal Link Dist (ft)		1280			1041			978			979	
Turn Bay Length (ft)	225		300	150		450						
Base Capacity (vph)	286	379	542	359	308	437	293	1622		277	1776	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	1.00	0.66	0.14	0.46	1.01	1.02	0.29	0.81		0.89	0.57	

Intersection Summary

Area Type: Other

Cycle Length: 180

Actuated Cycle Length: 180

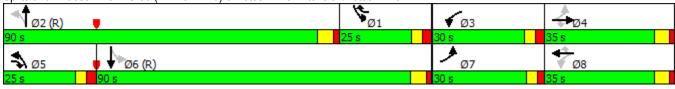
Offset: 88 (49%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.02 Intersection Signal Delay: 62.5 Intersection Capacity Utilization 95.5%

Intersection LOS: E
ICU Level of Service F


Analysis Period (min) 15

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	Ì	7	×	×	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	ኘ	7	ሻ	↑	<u> </u>	7
Traffic Volume (vph)	192	187	280	643	265	88
Future Volume (vph)	192	187	280	643	265	88
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Grade (%)	-3%	1300	1300	2%	-3%	1300
Storage Length (ft)	400	0	250	2 /0	-0 /0	75
Storage Lanes	400	1	250			13
Taper Length (ft)	25	ı	25			1
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	1.00	1.00	0.850
Fit Protected	0.050	0.000	0.950			0.000
	0.950	1501		1000	1010	1540
Satd. Flow (prot)	1779	1591	1735	1826	1819	1546
Flt Permitted	0.950	4501	0.383	4000	1010	1=10
Satd. Flow (perm)	1779	1591	699	1826	1819	1546
Right Turn on Red		No				No
Satd. Flow (RTOR)						
Link Speed (mph)	35			35	35	
Link Distance (ft)	862			645	825	
Travel Time (s)	16.8			12.6	16.1	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles (%)	3%	3%	3%	3%	6%	6%
Adj. Flow (vph)	211	205	308	707	291	97
Shared Lane Traffic (%)	£11	200	300	101	201	- 01
Lane Group Flow (vph)	211	205	308	707	291	97
Enter Blocked Intersection	No	No	No	No	No	No
			Left			
Lane Alignment	Left	Right	Leit	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	0.98	0.98	1.01	1.01	0.98	0.98
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	Perm	pm+pt	NA	NA	pm+ov
Protected Phases	4		5	2	6	4
Permitted Phases		4	2			6
Detector Phase	4	4	5	2	6	4
Switch Phase			0			7
Minimum Initial (s)	7.0	7.0	7.0	12.0	12.0	7.0
Minimum Split (s)	14.0	14.0	14.0	19.0	19.0	14.0
,						
Total Split (s)	25.0	25.0	15.0	75.0	60.0	25.0
Total Split (%)	25.0%	25.0%	15.0%	75.0%	60.0%	25.0%
Yellow Time (s)	3.1	3.1	3.0	5.0	5.0	3.1
All-Red Time (s)	2.3	2.3	1.9	1.2	1.2	2.3
Lost Time Adjust (s)	-0.4	-0.4	0.1	-1.2	-1.2	-0.4
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None	None	None	Min	Min	None
Act Effct Green (s)	12.9	12.9	32.7	32.7	17.6	35.6
ACI ETICI GIEGH (S)	12.9	12.9	JZ.I	JZ.1	17.0	JU.0

	₩.	À	ን	×	×	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Actuated g/C Ratio	0.23	0.23	0.58	0.58	0.31	0.64
v/c Ratio	0.51	0.56	0.52	0.66	0.51	0.10
Control Delay	24.6	26.4	9.8	12.1	19.6	3.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	24.6	26.4	9.8	12.1	19.6	3.8
LOS	С	С	Α	В	В	Α
Approach Delay	25.5			11.4	15.6	
Approach LOS	С			В	В	
Queue Length 50th (ft)	58	57	42	131	75	10
Queue Length 95th (ft)	138	138	104	305	157	21
Internal Link Dist (ft)	782			565	745	
Turn Bay Length (ft)	400		250			75
Base Capacity (vph)	654	585	599	1809	1703	1196
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.32	0.35	0.51	0.39	0.17	0.08
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 5	5.9					
Natural Cycle: 50						
Control Type: Actuated-U						
Maximum v/c Ratio: 0.66						
Intersection Signal Delay					tersection	
Intersection Capacity Util	ization 52.8%			IC	U Level o	of Service
Analysis Period (min) 15						

Splits and Phases: 1: Estes Drive Extension & Seawell School Road

	ၨ	-	•	•	←	•	4	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		7	1,1	1	7	ሻ	^	7	ሻ	^	7
Traffic Volume (vph)	316	369	85	148	148	254	38	418	117	330	1021	197
Future Volume (vph)	316	369	85	148	148	254	38	418	117	330	1021	197
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			1%			1%			-2%	
Storage Length (ft)	225		225	300		250	0		225	0		150
Storage Lanes	1		1	2		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor	1.00					0.99			0.96	0.99		
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	3287	1783	1516	1678	3357	1502	1770	3540	1584
Flt Permitted	0.950			0.950			0.162			0.365		
Satd. Flow (perm)	1768	1863	1583	3287	1783	1496	286	3357	1444	675	3540	1584
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1360			1121			1058			1059	
Travel Time (s)		26.5			21.8			20.6			20.6	
Confl. Peds. (#/hr)	1					1			7	7		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	2%	2%	2%	6%	6%	6%	7%	7%	7%	3%	3%	3%
Adj. Flow (vph)	340	397	91	159	159	273	41	449	126	355	1098	212
Shared Lane Traffic (%)												
Lane Group Flow (vph)	340	397	91	159	159	273	41	449	126	355	1098	212
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.01	0.99	0.99	0.99
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA	pm+ov	Prot	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov
Protected Phases	7	4	5	3	8	1	5	2	3	1	6	7
Permitted Phases			4			8	2		2	6		6
Detector Phase	7	4	5	3	8	1	5	2	3	1	6	7
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	12.0	7.0	7.0	12.0	7.0
Minimum Split (s)	14.0	14.0	15.0	15.0	14.0	15.0	15.0	35.0	15.0	15.0	19.0	14.0
Total Split (s)	45.0	54.0	15.0	17.0	26.0	34.0	15.0	45.0	17.0	34.0	64.0	45.0
Total Split (%)	30.0%	36.0%	10.0%	11.3%	17.3%	22.7%	10.0%	30.0%	11.3%	22.7%	42.7%	30.0%
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

	•	-	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Recall Mode	None	C-Max	None	None	C-Max	None						
Act Effct Green (s)	34.8	39.4	48.8	14.3	18.9	43.1	61.6	52.1	66.4	81.3	66.8	101.6
Actuated g/C Ratio	0.23	0.26	0.33	0.10	0.13	0.29	0.41	0.35	0.44	0.54	0.45	0.68
v/c Ratio	0.83	0.81	0.18	0.51	0.71	0.63	0.20	0.39	0.20	0.65	0.70	0.20
Control Delay	71.7	64.9	22.3	70.4	80.1	30.5	23.2	40.8	15.7	27.5	37.8	5.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	71.7	64.9	22.3	70.4	80.1	30.5	23.2	40.8	15.7	27.5	37.8	5.4
LOS	Е	Е	С	Е	F	С	С	D	В	С	D	Α
Approach Delay		63.0			54.6			34.5			31.5	
Approach LOS		Ε			D			С			С	
Queue Length 50th (ft)	316	366	46	75	150	121	19	181	42	202	463	42
Queue Length 95th (ft)	423	453	73	119	231	147	43	254	82	298	584	63
Internal Link Dist (ft)		1280			1041			978			979	
Turn Bay Length (ft)	225		225	300		250			225			150
Base Capacity (vph)	472	608	521	318	249	482	211	1166	647	577	1576	1128
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.72	0.65	0.17	0.50	0.64	0.57	0.19	0.39	0.19	0.62	0.70	0.19

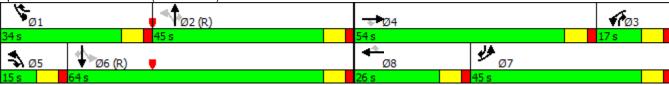
Intersection Summary

Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green


Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.83

Intersection Signal Delay: 42.7 Intersection LOS: D
Intersection Capacity Utilization 83.6% ICU Level of Service E

Analysis Period (min) 15

	₩	Ì	7	*	K	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	<u> </u>	7	ሻ	<u></u>	<u> </u>	7
Traffic Volume (vph)	65	79	73	352	357	59
Future Volume (vph)	65	79	73	352	357	59
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Grade (%)	-3%	1300	1300	2%	-3%	1300
Storage Length (ft)	400	0	250	2 /0	-5 /0	75
Storage Lanes	1 25	1	1 25			1
Taper Length (ft)		1.00		4.00	1.00	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.050	0.850	0.0=0			0.850
Flt Protected	0.950	4=0:	0.950			
Satd. Flow (prot)	1779	1591	1735	1826	1872	1591
FIt Permitted	0.950		0.390			
Satd. Flow (perm)	1779	1591	712	1826	1872	1591
Right Turn on Red		No				No
Satd. Flow (RTOR)						
Link Speed (mph)	35			35	35	
Link Distance (ft)	862			645	825	
Travel Time (s)	16.8			12.6	16.1	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	3%	3%	3%	3%	3%	3%
Adj. Flow (vph)	68	82	76	367	372	61
Shared Lane Traffic (%)	00	UZ	70	301	312	UI
Lane Group Flow (vph)	68	82	76	367	372	61
,						
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	0.98	0.98	1.01	1.01	0.98	0.98
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	Perm	pm+pt	NA	NA	pm+ov
Protected Phases	4	27	5	2	6	4
Permitted Phases	'	4	2	_		6
Detector Phase	4	4	5	2	6	4
Switch Phase	4	4	J		U	4
	7.0	7.0	7.0	10.0	10.0	7.0
Minimum Initial (s)	7.0	7.0	7.0	12.0	12.0	7.0
Minimum Split (s)	14.0	14.0	14.0	19.0	19.0	14.0
Total Split (s)	25.0	25.0	15.0	75.0	60.0	25.0
Total Split (%)	25.0%	25.0%	15.0%	75.0%	60.0%	25.0%
Yellow Time (s)	3.1	3.1	3.0	5.0	5.0	3.1
All-Red Time (s)	2.3	2.3	1.9	1.2	1.2	2.3
Lost Time Adjust (s)	-0.4	-0.4	0.1	-1.2	-1.2	-0.4
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None	None	None	Min	Min	None
Act Effct Green (s)	8.9	8.9	27.6	28.9	22.2	34.6
TOT FILE GLEGII (9)	0.3	0.9	21.0	۷٥.۶	22.2	J4.U

	₩.	À	ን	*	×	*	
Lane Group	SEL	SER	NEL	NET	SWT	SWR	
Actuated g/C Ratio	0.20	0.20	0.63	0.66	0.51	0.79	
v/c Ratio	0.19	0.25	0.12	0.31	0.39	0.05	
Control Delay	19.3	20.3	4.5	5.4	12.9	3.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	19.3	20.3	4.5	5.4	12.9	3.2	
LOS	В	С	Α	Α	В	Α	
Approach Delay	19.9			5.3	11.6		
Approach LOS	В			Α	В		
Queue Length 50th (ft)	16	19	7	39	78	5	
Queue Length 95th (ft)	50	58	20	85	164	15	
Internal Link Dist (ft)	782			565	745		
Turn Bay Length (ft)	400		250			75	
Base Capacity (vph)	861	770	695	1826	1845	1451	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.08	0.11	0.11	0.20	0.20	0.04	
Intersection Summary							
Area Type:	Other						
Cycle Length: 100							
Actuated Cycle Length: 4	3.9						
Natural Cycle: 50							
Control Type: Actuated-U	Incoordinated						
Maximum v/c Ratio: 0.39							
Intersection Signal Delay	: 10.1			In	tersection	LOS: B	
Intersection Capacity Util	ization 43.0%			IC	U Level c	of Service) A

Splits and Phases: 1: Estes Drive Extension & Seawell School Road

Analysis Period (min) 15

	۶	→	•	•	-	•	1	†	<i>></i>	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	767	^	7	ሻ	^	1	ች	^	7
Traffic Volume (vph)	171	195	35	153	216	274	36	467	167	232	486	156
Future Volume (vph)	171	195	35	153	216	274	36	467	167	232	486	156
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			1%			1%			-2%	
Storage Length (ft)	225		225	300		250	0		225	0		150
Storage Lanes	1		1	2		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor									0.97	0.99		
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1736	1827	1553	3350	1818	1545	1694	3389	1516	1753	3506	1568
Flt Permitted	0.950			0.950			0.335			0.475		
Satd. Flow (perm)	1736	1827	1553	3350	1818	1545	597	3389	1469	871	3506	1568
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1360			1121			1058			1059	
Travel Time (s)		26.5			21.8			20.6			20.6	
Confl. Peds. (#/hr)									4	4		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	4%	4%	4%	4%	4%	4%	6%	6%	6%	4%	4%	4%
Adj. Flow (vph)	178	203	36	159	225	285	38	486	174	242	506	163
Shared Lane Traffic (%)												
Lane Group Flow (vph)	178	203	36	159	225	285	38	486	174	242	506	163
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24	•		12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.01	0.99	0.99	0.99
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA	pm+ov	Prot	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov
Protected Phases	7	4	5	3	8	. 1	5	2	. 3	1	6	. 7
Permitted Phases			4			8	2		2	6		6
Detector Phase	7	4	5	3	8	1	5	2	3	1	6	7
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	12.0	7.0	7.0	12.0	7.0
Minimum Split (s)	14.0	14.0	15.0	15.0	14.0	15.0	15.0	35.0	15.0	15.0	19.0	14.0
Total Split (s)	37.0	59.0	17.0	20.0	42.0	35.0	17.0	46.0	20.0	35.0	64.0	37.0
Total Split (%)	23.1%	36.9%	10.6%	12.5%	26.3%	21.9%	10.6%	28.8%	12.5%	21.9%	40.0%	23.1%
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lag	Lead	Lead	Lead	Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

	•	-	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Recall Mode	None	C-Max	None	None	C-Max	None						
Act Effct Green (s)	23.6	36.7	52.0	13.9	27.0	57.0	59.3	59.3	73.3	81.8	81.8	110.5
Actuated g/C Ratio	0.15	0.23	0.32	0.09	0.17	0.36	0.37	0.37	0.46	0.51	0.51	0.69
v/c Ratio	0.70	0.48	0.07	0.55	0.73	0.52	0.13	0.39	0.26	0.40	0.28	0.15
Control Delay	78.5	55.7	33.3	77.1	76.7	25.8	38.5	40.2	15.9	33.6	25.7	10.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	78.5	55.7	33.3	77.1	76.7	25.8	38.5	40.2	15.9	33.6	25.7	10.7
LOS	Е	Е	С	Е	Е	С	D	D	В	С	С	В
Approach Delay		63.5			55.1			34.0			25.1	
Approach LOS		Ε			Ε			С			С	
Queue Length 50th (ft)	179	187	26	82	226	154	26	196	54	146	161	58
Queue Length 95th (ft)	254	240	47	123	307	166	61	287	113	258	251	110
Internal Link Dist (ft)		1280			1041			978			979	
Turn Bay Length (ft)	225		225	300		250			225			150
Base Capacity (vph)	347	616	522	314	420	550	304	1256	686	610	1792	1164
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.51	0.33	0.07	0.51	0.54	0.52	0.13	0.39	0.25	0.40	0.28	0.14

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 104 (65%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

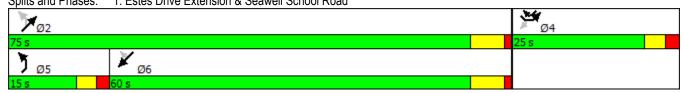
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.73

Intersection Signal Delay: 40.8 Intersection LOS: D
Intersection Capacity Utilization 73.7% ICU Level of Service D

Analysis Period (min) 15

	₩.	Ì	7	*	×	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	ኘ	7	ሻ	<u></u>	<u> </u>	7
Traffic Volume (vph)	108	181	163	409	645	155
Future Volume (vph)	108	181	163	409	645	155
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Grade (%)	-3%	1300	1300	2%	-3%	1300
` '	400	0	250	∠ /0	-5 /0	75
Storage Length (ft)						13
Storage Lanes	1	1	1			1
Taper Length (ft)	25	4.00	25	4.00	4.00	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.0-0	0.850	0.0-0			0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1796	1607	1752	1844	1891	1607
Flt Permitted	0.950		0.147			
Satd. Flow (perm)	1796	1607	271	1844	1891	1607
Right Turn on Red		No				No
Satd. Flow (RTOR)						
Link Speed (mph)	35			35	35	
Link Distance (ft)	862			645	825	
Travel Time (s)	16.8			12.6	16.1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	115	193	173	435	686	165
	110	133	1/3	433	000	100
Shared Lane Traffic (%)	115	102	170	125	606	165
Lane Group Flow (vph)	115	193	173	435	686 No.	165 No.
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	0.98	0.98	1.01	1.01	0.98	0.98
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	Perm	pm+pt	NA	NA	pm+ov
Protected Phases	4	. 51111	5	2	6	4
Permitted Phases	7	4	2		J	6
	4	4	5	2	6	4
Detector Phase	4	4	J	2	Ö	4
Switch Phase	7.0	7.0	7.0	40.0	40.0	7.0
Minimum Initial (s)	7.0	7.0	7.0	12.0	12.0	7.0
Minimum Split (s)	14.0	14.0	14.0	19.0	19.0	14.0
Total Split (s)	25.0	25.0	15.0	75.0	60.0	25.0
Total Split (%)	25.0%	25.0%	15.0%	75.0%	60.0%	25.0%
Yellow Time (s)	3.1	3.1	3.0	5.0	5.0	3.1
All-Red Time (s)	2.3	2.3	1.9	1.2	1.2	2.3
Lost Time Adjust (s)	-0.4	-0.4	0.1	-1.2	-1.2	-0.4
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag		- 0.0	Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None	None	None	Min	Min	None
Act Effct Green (s)	14.3	14.3	48.7	48.7	33.8	53.3
Actuated g/C Ratio	0.19	0.19	0.66	0.66	0.46	0.73


	-	À	ን	×	×	*	
Lane Group	SEL	SER	NEL	NET	SWT	SWR	
v/c Ratio	0.33	0.62	0.46	0.36	0.79	0.14	
Control Delay	31.7	39.5	9.2	6.5	24.3	3.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	31.7	39.5	9.2	6.5	24.3	3.0	
LOS	С	D	Α	Α	С	Α	
Approach Delay	36.6			7.3	20.2		
Approach LOS	D			Α	С		
Queue Length 50th (ft)	44	79	24	73	249	18	
Queue Length 95th (ft)	112	183	56	141	421	31	
Internal Link Dist (ft)	782			565	745		
Turn Bay Length (ft)	400		250			75	
Base Capacity (vph)	515	461	391	1664	1454	1314	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.22	0.42	0.44	0.26	0.47	0.13	
Intersection Summary							
Area Type:	Other						
Cycle Length: 100							
Actuated Cycle Length: 73	3.5						
Natural Cycle: 60							
Control Type: Actuated-U	ncoordinated						
Maximum v/c Ratio: 0.79							

Splits and Phases: 1: Estes Drive Extension & Seawell School Road

Intersection Signal Delay: 18.6

Analysis Period (min) 15

Intersection Capacity Utilization 61.5%

Intersection LOS: B

ICU Level of Service B

	۶	→	•	•	+	•	1	†	/	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	*	7	1/1	1	7	ሻ	^	7	ሻ	^	7
Traffic Volume (vph)	284	249	79	173	309	444	87	1132	180	247	700	309
Future Volume (vph)	284	249	79	173	309	444	87	1132	180	247	700	309
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			1%			1%			-2%	
Storage Length (ft)	225		225	300		250	0		225	0		150
Storage Lanes	1		1	2		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor									0.96			
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	3416	1853	1575	1761	3522	1575	1787	3575	1599
FIt Permitted	0.950			0.950			0.198			0.071		
Satd. Flow (perm)	1770	1863	1583	3416	1853	1575	367	3522	1519	134	3575	1599
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1360			1121			1058			1059	
Travel Time (s)		26.5			21.8			20.6			20.6	
Confl. Peds. (#/hr)									5	5		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	299	262	83	182	325	467	92	1192	189	260	737	325
Shared Lane Traffic (%)												
Lane Group Flow (vph)	299	262	83	182	325	467	92	1192	189	260	737	325
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.01	0.99	0.99	0.99
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA	pm+ov	Prot	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov
Protected Phases	7	4	5	3	8	1	5	2	3	1	6	7
Permitted Phases			4			8	2		2	6		6
Detector Phase	7	4	5	3	8	1	5	2	3	1	6	7
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	12.0	7.0	7.0	12.0	7.0
Minimum Split (s)	14.0	14.0	15.0	15.0	14.0	15.0	15.0	35.0	15.0	15.0	19.0	14.0
Total Split (s)	38.0	57.0	15.0	20.0	39.0	32.0	15.0	71.0	20.0	32.0	88.0	38.0
Total Split (%)	21.1%	31.7%	8.3%	11.1%	21.7%	17.8%	8.3%	39.4%	11.1%	17.8%	48.9%	21.1%
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lag	Lead	Lead	Lead	Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max	None	None	C-Max	None

	•	-	•	•	←	•	1	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Act Effct Green (s)	32.6	51.6	66.6	14.6	33.6	60.6	66.8	66.8	81.4	83.9	83.9	121.4
Actuated g/C Ratio	0.18	0.29	0.37	0.08	0.19	0.34	0.37	0.37	0.45	0.47	0.47	0.67
v/c Ratio	0.93	0.49	0.14	0.66	0.94	0.88	0.43	0.91	0.27	0.84	0.44	0.30
Control Delay	107.6	56.9	38.4	92.2	106.1	54.3	44.5	65.1	17.6	90.5	33.6	12.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	107.6	56.9	38.4	92.2	106.1	54.3	44.5	65.1	17.6	90.5	33.6	12.9
LOS	F	Е	D	F	F	D	D	Е	В	F	С	В
Approach Delay		78.1			78.7			57.7			39.7	
Approach LOS		Е			Е			Е			D	
Queue Length 50th (ft)	352	258	65	109	383	323	73	711	84	250	308	150
Queue Length 95th (ft)	#540	356	110	155	#580	#478	120	#824	122	#404	367	204
Internal Link Dist (ft)		1280			1041			978			979	
Turn Bay Length (ft)	225		225	300		250			225			150
Base Capacity (vph)	324	538	585	284	350	530	214	1307	695	310	1665	1082
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.92	0.49	0.14	0.64	0.93	0.88	0.43	0.91	0.27	0.84	0.44	0.30

Intersection Summary

Area Type: Other

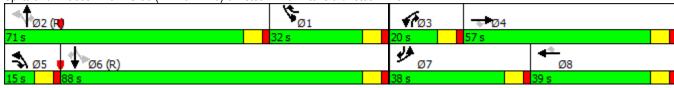
Cycle Length: 180

Actuated Cycle Length: 180

Offset: 88 (49%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.94 Intersection Signal Delay: 59.9

Intersection Capacity Utilization 93.6%

Intersection LOS: E
ICU Level of Service F

Analysis Period (min) 15

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	•	•	-	•	1	†	/	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ		7	1/1	1	7	ሻ	^	7	ሻ	^	7
Traffic Volume (vph)	320	371	90	148	167	254	76	418	117	330	1021	229
Future Volume (vph)	320	371	90	148	167	254	76	418	117	330	1021	229
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			1%			1%			-2%	
Storage Length (ft)	300		225	300		250	0		225	0		150
Storage Lanes	2		1	2		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.97	1.00	1.00	0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor	1.00					0.99			0.96	0.99		
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	3433	1863	1583	3287	1783	1516	1678	3357	1502	1770	3540	1584
FIt Permitted	0.950			0.950			0.164			0.374		
Satd. Flow (perm)	3425	1863	1583	3287	1783	1497	290	3357	1444	692	3540	1584
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1360			1121			1058			1059	
Travel Time (s)		26.5			21.8			20.6			20.6	
Confl. Peds. (#/hr)	1					1			7	7		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	2%	2%	2%	6%	6%	6%	7%	7%	7%	3%	3%	3%
Adj. Flow (vph)	344	399	97	159	180	273	82	449	126	355	1098	246
Shared Lane Traffic (%)												
Lane Group Flow (vph)	344	399	97	159	180	273	82	449	126	355	1098	246
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes										
Headway Factor	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.01	0.99	0.99	0.99
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA	pm+ov	Prot	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov
Protected Phases	7	4	5	3	8	1	5	2	3	1	6	7
Permitted Phases			4			8	2		2	6		6
Detector Phase	7	4	5	3	8	1	5	2	3	1	6	7
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	12.0	7.0	7.0	12.0	7.0
Minimum Split (s)	14.0	14.0	15.0	15.0	14.0	15.0	15.0	35.0	15.0	15.0	19.0	14.0
Total Split (s)	29.0	50.0	15.0	18.0	39.0	33.0	15.0	49.0	18.0	33.0	67.0	29.0
Total Split (%)	19.3%	33.3%	10.0%	12.0%	26.0%	22.0%	10.0%	32.7%	12.0%	22.0%	44.7%	19.3%
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

	•	-	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Recall Mode	None	C-Max	None	None	C-Max	None						
Act Effct Green (s)	29.4	38.5	48.5	13.3	22.4	45.9	64.6	54.6	67.9	83.2	68.2	97.6
Actuated g/C Ratio	0.20	0.26	0.32	0.09	0.15	0.31	0.43	0.36	0.45	0.55	0.45	0.65
v/c Ratio	0.51	0.83	0.19	0.55	0.68	0.59	0.38	0.37	0.19	0.64	0.68	0.24
Control Delay	56.6	68.0	23.3	72.8	72.6	28.1	24.7	38.3	14.9	25.7	36.2	6.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.6	68.0	23.3	72.8	72.6	28.1	24.7	38.3	14.9	25.7	36.2	6.9
LOS	Е	Е	С	Е	Е	С	С	D	В	С	D	Α
Approach Delay		58.2			52.8			32.1			29.8	
Approach LOS		Ε			D			С			С	
Queue Length 50th (ft)	153	369	50	77	169	128	38	175	42	194	459	53
Queue Length 95th (ft)	210	475	80	118	241	160	71	244	76	286	564	99
Internal Link Dist (ft)		1280			1041			978			979	
Turn Bay Length (ft)	300		225	300		250			225			150
Base Capacity (vph)	673	558	514	300	404	506	219	1222	663	584	1609	1031
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.51	0.72	0.19	0.53	0.45	0.54	0.37	0.37	0.19	0.61	0.68	0.24

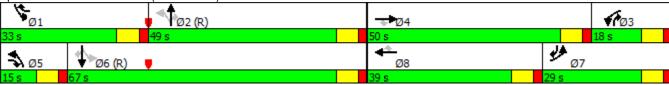
Intersection Summary

Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green


Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.83

Intersection Signal Delay: 40.1 Intersection LOS: D
Intersection Capacity Utilization 83.6% ICU Level of Service E

Analysis Period (min) 15

	۶	→	•	•	←	•	•	†	/	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ		7	ሻሻ	1	7	ሻ	^	7	ች	^	7
Traffic Volume (vph)	192	208	60	153	229	274	62	467	167	232	486	178
Future Volume (vph)	192	208	60	153	229	274	62	467	167	232	486	178
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0%			1%	,,,,,		1%	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-2%	
Storage Length (ft)	300		225	300		250	0		225	0		150
Storage Lanes	2		1	2		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.97	1.00	1.00	0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor									0.97	0.99		
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	3367	1827	1553	3350	1818	1545	1694	3389	1516	1753	3506	1568
Flt Permitted	0.950			0.950			0.360			0.475		
Satd. Flow (perm)	3367	1827	1553	3350	1818	1545	642	3389	1469	871	3506	1568
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1360			1121			1058			1059	
Travel Time (s)		26.5			21.8			20.6			20.6	
Confl. Peds. (#/hr)									4	4		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	4%	4%	4%	4%	4%	4%	6%	6%	6%	4%	4%	4%
Adj. Flow (vph)	200	217	63	159	239	285	65	486	174	242	506	185
Shared Lane Traffic (%)												
Lane Group Flow (vph)	200	217	63	159	239	285	65	486	174	242	506	185
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes										
Headway Factor	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.01	0.99	0.99	0.99
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA	pm+ov	Prot	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov
Protected Phases	7	4	5	3	8	1	5	2	3	1	6	7
Permitted Phases			4			8	2		2	6		6
Detector Phase	7	4	5	3	8	1	5	2	3	1	6	7
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	12.0	7.0	7.0	12.0	7.0
Minimum Split (s)	14.0	14.0	15.0	15.0	14.0	15.0	15.0	35.0	15.0	15.0	19.0	14.0
Total Split (s)	26.0	51.0	20.0	22.0	47.0	30.0	20.0	57.0	22.0	30.0	67.0	26.0
Total Split (%)	16.3%	31.9%	12.5%	13.8%	29.4%	18.8%	12.5%	35.6%	13.8%	18.8%	41.9%	16.3%
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lag	Lead	Lead	Lead	Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

	•	-	•	•	•	•	1	†		-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Recall Mode	None	C-Max	None	None	C-Max	None						
Act Effct Green (s)	16.8	30.5	47.0	14.6	28.4	53.4	69.8	69.8	84.5	83.4	83.4	105.2
Actuated g/C Ratio	0.10	0.19	0.29	0.09	0.18	0.33	0.44	0.44	0.53	0.52	0.52	0.66
v/c Ratio	0.57	0.62	0.14	0.52	0.74	0.55	0.18	0.33	0.22	0.41	0.28	0.18
Control Delay	74.2	66.6	39.6	75.3	75.9	30.8	30.7	31.9	11.8	31.4	23.6	12.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	74.2	66.6	39.6	75.3	75.9	30.8	30.7	31.9	11.8	31.4	23.6	12.4
LOS	Е	Ε	D	Е	Ε	С	С	С	В	С	С	В
Approach Delay		66.2			57.0			27.0			23.4	
Approach LOS		Ε			Ε			С			С	
Queue Length 50th (ft)	104	212	49	82	240	179	40	174	47	137	151	71
Queue Length 95th (ft)	144	282	80	121	322	212	83	252	92	240	234	132
Internal Link Dist (ft)		1280			1041			978			979	
Turn Bay Length (ft)	300		225	300		250			225			150
Base Capacity (vph)	441	525	490	355	477	515	379	1479	801	591	1827	1072
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.45	0.41	0.13	0.45	0.50	0.55	0.17	0.33	0.22	0.41	0.28	0.17

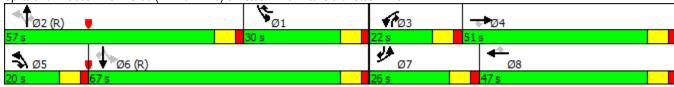
Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 104 (65%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green


Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.74

Intersection Signal Delay: 39.7 Intersection LOS: D
Intersection Capacity Utilization 70.7% ICU Level of Service C

Analysis Period (min) 15

T T T T T	
Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT	SBR
Lane Configurations ነሻ ተ ሾ ነሻ ተ ሾ ነሻ ተተ	7
Traffic Volume (vph) 322 272 124 173 315 444 98 1132 180 247 700	319
Future Volume (vph) 322 272 124 173 315 444 98 1132 180 247 700	319
	1900
Grade (%) 0% 1% 1% -2%	
Storage Length (ft) 225 225 300 250 0 225 0	150
Storage Lanes 2 1 2 1 1 1 1	1
Taper Length (ft) 25 25 25	
Lane Util. Factor 0.97 1.00 1.00 0.97 1.00 1.00 0.95 1.00 1.00 0.95	1.00
Ped Bike Factor 0.96	
Frt 0.850 0.850 0.850 0	0.850
Flt Protected 0.950 0.950 0.950 0.950	
Satd. Flow (prot) 3433 1863 1583 3416 1853 1575 1761 3522 1575 1787 3575	1599
Flt Permitted 0.950 0.950 0.227 0.095	
Satd. Flow (perm) 3433 1863 1583 3416 1853 1575 421 3522 1519 179 3575	1599
Right Turn on Red No No No	No
Satd. Flow (RTOR)	
Link Speed (mph) 35 35 35	
Link Distance (ft) 1360 1121 1058 1059	
Travel Time (s) 26.5 21.8 20.6 20.6	
Confl. Peds. (#/hr) 5 5	
Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.95
Adj. Flow (vph) 339 286 131 182 332 467 103 1192 189 260 737	336
Shared Lane Traffic (%)	
Lane Group Flow (vph) 339 286 131 182 332 467 103 1192 189 260 737	336
Enter Blocked Intersection No No No No No No No No No	No
Lane Alignment Left Left Right Left Right Left Left Right Left Left	Right
Median Width(ft) 24 24 12 12	
Link Offset(ft) 0 0 0	
Crosswalk Width(ft) 16 16 16	
Two way Left Turn Lane Yes	
Headway Factor 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.0	0.99
Turning Speed (mph) 15 9 15 9 15	9
Turn Type Prot NA pm+ov Prot NA pm+ov pm+pt NA pm+ov pm+pt NA pr	m+ov
Protected Phases 7 4 5 3 8 1 5 2 3 1 6	7
Permitted Phases 4 8 2 2 6	6
Detector Phase 7 4 5 3 8 1 5 2 3 1 6	7
Switch Phase	
Minimum Initial (s) 7.0 7.0 7.0 7.0 7.0 7.0 12.0 7.0 12.0	7.0
Minimum Split (s) 14.0 14.0 15.0 15.0 15.0 15.0 35.0 15.0 15.0 19.0	14.0
Total Split (s) 26.0 50.0 15.0 20.0 44.0 35.0 15.0 75.0 20.0 35.0 95.0	26.0
	14.4%
Yellow Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.0
Lost Time Adjust (s) -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0	-2.0
Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0
	Lead
Lead-Lag Optimize? Yes	Yes
• •	None

	•	-	•	•	←	•	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Act Effct Green (s)	20.8	42.9	58.4	14.6	36.7	66.7	72.5	72.5	87.1	92.0	92.0	117.8
Actuated g/C Ratio	0.12	0.24	0.32	0.08	0.20	0.37	0.40	0.40	0.48	0.51	0.51	0.65
v/c Ratio	0.85	0.65	0.26	0.66	0.88	0.80	0.42	0.84	0.26	0.72	0.40	0.32
Control Delay	98.0	68.8	45.9	92.2	93.3	45.5	40.4	55.5	15.2	73.5	28.3	14.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	98.0	68.8	45.9	92.2	93.3	45.5	40.4	55.5	15.2	73.5	28.3	14.9
LOS	F	Е	D	F	F	D	D	Е	В	Е	С	В
Approach Delay		77.9			70.3			49.4			33.7	
Approach LOS		Е			Е			D			С	
Queue Length 50th (ft)	206	303	113	109	379	341	79	685	73	217	285	171
Queue Length 95th (ft)	#285	412	175	155	#534	451	127	784	107	329	338	232
Internal Link Dist (ft)		1280			1041			978			979	
Turn Bay Length (ft)	225		225	300		250			225			150
Base Capacity (vph)	400	465	513	284	401	583	248	1418	742	359	1827	1048
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.85	0.62	0.26	0.64	0.83	0.80	0.42	0.84	0.25	0.72	0.40	0.32

Intersection Summary

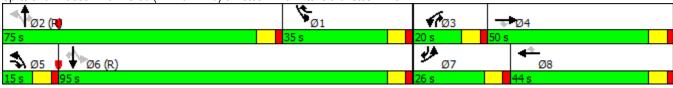
Area Type: Other

Cycle Length: 180

Actuated Cycle Length: 180

Offset: 88 (49%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.88 Intersection Signal Delay: 54.0

Intersection LOS: D
ICU Level of Service E

Intersection Capacity Utilization 87.4% Analysis Period (min) 15

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	₩	Ì	ን	*	×	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	<u> </u>	7	ኝ	<u></u>	<u> </u>	7
Traffic Volume (vph)	198	187	280	649	266	89
Future Volume (vph)	198	187	280	649	266	89
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Grade (%)	-3%	1300	1300	2%	-3%	1300
Storage Length (ft)	400	0	250	Z /0	-5 /0	75
			200			
Storage Lanes	1 25	1	25			1
Taper Length (ft)		1.00		1.00	1.00	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.050	0.850	0.050			0.850
Flt Protected	0.950	4=0.1	0.950	4000	1010	4=40
Satd. Flow (prot)	1779	1591	1735	1826	1819	1546
FIt Permitted	0.950		0.383			
Satd. Flow (perm)	1779	1591	699	1826	1819	1546
Right Turn on Red		No				No
Satd. Flow (RTOR)						
Link Speed (mph)	35			35	35	
Link Distance (ft)	862			645	825	
Travel Time (s)	16.8			12.6	16.1	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles (%)	3%	3%	3%	3%	6%	6%
Adj. Flow (vph)	218	205	308	713	292	98
	210	203	300	113	292	90
Shared Lane Traffic (%)	040	205	200	710	202	00
Lane Group Flow (vph)	218	205	308	713	292	98
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	0.98	0.98	1.01	1.01	0.98	0.98
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	Perm	pm+pt	NA	NA	pm+ov
Protected Phases	4	. 5	5	2	6	4
Permitted Phases		4	2		3	6
Detector Phase	4	4	5	2	6	4
Switch Phase	4	4	- 0		U	4
	7.0	7.0	7.0	10.0	10.0	7.0
Minimum Initial (s)	7.0	7.0	7.0	12.0	12.0	7.0
Minimum Split (s)	14.0	14.0	14.0	19.0	19.0	14.0
Total Split (s)	25.0	25.0	15.0	75.0	60.0	25.0
Total Split (%)	25.0%	25.0%	15.0%	75.0%	60.0%	25.0%
Yellow Time (s)	3.1	3.1	3.0	5.0	5.0	3.1
All-Red Time (s)	2.3	2.3	1.9	1.2	1.2	2.3
Lost Time Adjust (s)	-0.4	-0.4	0.1	-1.2	-1.2	-0.4
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None	None	None	Min	Min	None
Act Effct Green (s)	12.9	12.9	32.8	32.8	17.7	35.7
ACI EIICI GIEUII (S)	12.9	12.9	32.0	32.0	17.7	JJ.1

	₩.	À	ን	×	×	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Actuated g/C Ratio	0.23	0.23	0.59	0.59	0.32	0.64
v/c Ratio	0.53	0.56	0.52	0.67	0.51	0.10
Control Delay	25.1	26.6	9.7	12.2	19.5	3.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	25.1	26.6	9.7	12.2	19.5	3.8
LOS	С	С	Α	В	В	Α
Approach Delay	25.8			11.4	15.5	
Approach LOS	С			В	В	
Queue Length 50th (ft)	60	57	42	132	76	10
Queue Length 95th (ft)	144	140	104	308	157	21
Internal Link Dist (ft)	782			565	745	
Turn Bay Length (ft)	400		250			75
Base Capacity (vph)	653	584	599	1808	1699	1198
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.33	0.35	0.51	0.39	0.17	0.08
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 56	5					
Natural Cycle: 50						
Control Type: Actuated-Ur	ncoordinated					
Maximum v/c Ratio: 0.67						
Intersection Signal Delay:					tersection	
Intersection Capacity Utiliz	zation 53.5%			IC	U Level o	of Service
Analysis Period (min) 15						

Splits and Phases: 1: Estes Drive Extension & Seawell School Road

	ၨ	-	•	•	←	•	4	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1	7	1,1	1	7	ሻ	^	7	ሻ	^	7
Traffic Volume (vph)	320	371	90	148	167	254	76	418	117	330	1021	229
Future Volume (vph)	320	371	90	148	167	254	76	418	117	330	1021	229
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			1%			1%			-2%	
Storage Length (ft)	225		225	300		250	0		225	0		150
Storage Lanes	1		1	2		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor	1.00					0.99			0.96	0.99		
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	3287	1783	1516	1678	3357	1502	1770	3540	1584
FIt Permitted	0.950			0.950			0.154			0.361		
Satd. Flow (perm)	1768	1863	1583	3287	1783	1496	272	3357	1444	668	3540	1584
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1360			1121			1058			1059	
Travel Time (s)		26.5			21.8			20.6			20.6	
Confl. Peds. (#/hr)	1					1			7	7		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	2%	2%	2%	6%	6%	6%	7%	7%	7%	3%	3%	3%
Adj. Flow (vph)	344	399	97	159	180	273	82	449	126	355	1098	246
Shared Lane Traffic (%)												
Lane Group Flow (vph)	344	399	97	159	180	273	82	449	126	355	1098	246
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24	•		24			12	•		12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.01	0.99	0.99	0.99
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA	pm+ov	Prot	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov
Protected Phases	7	4	5	3	8	1	5	2	3	1	6	7
Permitted Phases			4			8	2		2	6		6
Detector Phase	7	4	5	3	8	1	5	2	3	1	6	7
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	12.0	7.0	7.0	12.0	7.0
Minimum Split (s)	14.0	14.0	15.0	15.0	14.0	15.0	15.0	35.0	15.0	15.0	19.0	14.0
Total Split (s)	45.0	54.0	15.0	17.0	26.0	34.0	15.0	45.0	17.0	34.0	64.0	45.0
Total Split (%)	30.0%	36.0%	10.0%	11.3%	17.3%	22.7%	10.0%	30.0%	11.3%	22.7%	42.7%	30.0%
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

	•	-	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Recall Mode	None	C-Max	None	None	C-Max	None						
Act Effct Green (s)	35.1	39.5	49.6	15.2	19.7	44.0	61.0	51.0	66.2	80.2	65.2	100.3
Actuated g/C Ratio	0.23	0.26	0.33	0.10	0.13	0.29	0.41	0.34	0.44	0.53	0.43	0.67
v/c Ratio	0.83	0.81	0.19	0.48	0.77	0.62	0.40	0.39	0.20	0.66	0.71	0.23
Control Delay	71.7	64.8	21.9	68.9	84.4	29.6	27.4	41.5	15.8	28.2	39.2	5.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	71.7	64.8	21.9	68.9	84.4	29.6	27.4	41.5	15.8	28.2	39.2	5.8
LOS	Е	Ε	С	Е	F	С	С	D	В	С	D	Α
Approach Delay		62.7			55.9			34.8			32.1	
Approach LOS		Ε			Е			С			С	
Queue Length 50th (ft)	320	368	47	75	171	118	40	183	42	205	480	51
Queue Length 95th (ft)	428	456	77	119	#272	147	74	254	82	298	584	74
Internal Link Dist (ft)		1280			1041			978			979	
Turn Bay Length (ft)	225		225	300		250			225			150
Base Capacity (vph)	472	608	525	333	249	489	207	1140	643	570	1539	1111
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.73	0.66	0.18	0.48	0.72	0.56	0.40	0.39	0.20	0.62	0.71	0.22

Intersection Summary

Area Type: Other

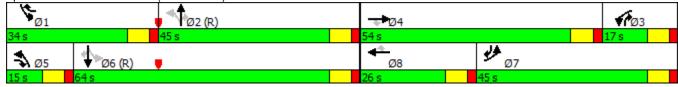
Cycle Length: 150

Actuated Cycle Length: 150

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.83

Intersection Signal Delay: 43.1 Intersection LOS: D
Intersection Capacity Utilization 84.8% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	₩.	Ì	7	*	×	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations) T	7	ሻ	<u></u>	<u> </u>	7
Traffic Volume (vph)	69	79	73	356	361	63
Future Volume (vph)	69	79	73	356	361	63
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Grade (%)	-3%	1900	1300	2%	-3%	1300
. ,	400	0	250	∠ /0	-5 /0	75
Storage Length (ft)						
Storage Lanes	1	1	1			1
Taper Length (ft)	25	4.00	25	4.00	4.00	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1779	1591	1735	1826	1872	1591
Flt Permitted	0.950		0.387			
Satd. Flow (perm)	1779	1591	707	1826	1872	1591
Right Turn on Red		No				No
Satd. Flow (RTOR)						
Link Speed (mph)	35			35	35	
Link Distance (ft)	862			645	825	
Travel Time (s)	16.8			12.6	16.1	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	3%	3%	3%	3%	3%	3%
Adj. Flow (vph)	72	82	76	371	376	66
Shared Lane Traffic (%)						
Lane Group Flow (vph)	72	82	76	371	376	66
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	0.98	0.98	1.01	1.01	0.98	0.98
Turning Speed (mph)	15	9	15		3.00	9
Turn Type	Prot	Perm	pm+pt	NA	NA	pm+ov
Protected Phases	4	i Giiii	рит - рс	2	6	
	4	1	2	2	U	4
Permitted Phases	4	4		0	0	6
Detector Phase	4	4	5	2	6	4
Switch Phase						
Minimum Initial (s)	7.0	7.0	7.0	12.0	12.0	7.0
Minimum Split (s)	14.0	14.0	14.0	19.0	19.0	14.0
Total Split (s)	25.0	25.0	15.0	75.0	60.0	25.0
Total Split (%)	25.0%	25.0%	15.0%	75.0%	60.0%	25.0%
Yellow Time (s)	3.1	3.1	3.0	5.0	5.0	3.1
All-Red Time (s)	2.3	2.3	1.9	1.2	1.2	2.3
Lost Time Adjust (s)	-0.4	-0.4	0.1	-1.2	-1.2	-0.4
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	5.0	5.0	Lead	5.0	Lag	5.0
Lead-Lag Optimize?			Yes		Yes	
	Mana	Ness		N Alian		Mana
Recall Mode	None	None	None	Min	Min	None
Act Effct Green (s)	8.9	8.9	27.7	29.1	22.3	34.7

	₩.	1	ን	×	×	*	
Lane Group	SEL	SER	NEL	NET	SWT	SWR	
Actuated g/C Ratio	0.20	0.20	0.63	0.66	0.51	0.79	
v/c Ratio	0.20	0.25	0.12	0.31	0.40	0.05	
Control Delay	19.5	20.4	4.5	5.4	13.0	3.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	19.5	20.4	4.5	5.4	13.0	3.2	
LOS	В	С	Α	Α	В	Α	
Approach Delay	20.0			5.3	11.5		
Approach LOS	В			Α	В		
Queue Length 50th (ft)	17	19	7	40	80	5	
Queue Length 95th (ft)	53	59	20	85	166	16	
Internal Link Dist (ft)	782			565	745		
Turn Bay Length (ft)	400		250			75	
Base Capacity (vph)	858	768	693	1826	1844	1450	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.08	0.11	0.11	0.20	0.20	0.05	
Intersection Summary							
Area Type:	Other						
Cycle Length: 100							
Actuated Cycle Length: 44							
Natural Cycle: 50							
Control Type: Actuated-Un	coordinated						
Maximum v/c Ratio: 0.40							
Intersection Signal Delay:	10.1			In	tersection	LOS: B	
Intersection Capacity Utiliz	ation 43.2%			IC	U Level o	of Service	; A
Analysis Period (min) 15							

Splits and Phases: 1: Estes Drive Extension & Seawell School Road

	۶	→	•	•	←	•	4	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኻ	†	7	ሻሻ	†	7	ሻ	^	#	ች	^	7
Traffic Volume (vph)	192	208	60	153	229	274	62	467	167	232	486	178
Future Volume (vph)	192	208	60	153	229	274	62	467	167	232	486	178
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			1%			1%			-2%	
Storage Length (ft)	225		225	300		250	0		225	0		150
Storage Lanes	1		1	2		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor									0.97	0.99		
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1736	1827	1553	3350	1818	1545	1694	3389	1516	1753	3506	1568
Flt Permitted	0.950			0.950			0.313			0.475		
Satd. Flow (perm)	1736	1827	1553	3350	1818	1545	558	3389	1469	871	3506	1568
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1360			1121			1058			1059	
Travel Time (s)		26.5			21.8			20.6			20.6	
Confl. Peds. (#/hr)									4	4		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	4%	4%	4%	4%	4%	4%	6%	6%	6%	4%	4%	4%
Adj. Flow (vph)	200	217	63	159	239	285	65	486	174	242	506	185
Shared Lane Traffic (%)												
Lane Group Flow (vph)	200	217	63	159	239	285	65	486	174	242	506	185
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.01	0.99	0.99	0.99
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA	pm+ov	Prot	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov
Protected Phases	7	4	5	3	8	1	5	2	3	1	6	7
Permitted Phases			4			8	2		2	6		6
Detector Phase	7	4	5	3	8	1	5	2	3	1	6	7
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	12.0	7.0	7.0	12.0	7.0
Minimum Split (s)	14.0	14.0	15.0	15.0	14.0	15.0	15.0	35.0	15.0	15.0	19.0	14.0
Total Split (s)	37.0	59.0	17.0	20.0	42.0	35.0	17.0	46.0	20.0	35.0	64.0	37.0
Total Split (%)	23.1%	36.9%	10.6%	12.5%	26.3%	21.9%	10.6%	28.8%	12.5%	21.9%	40.0%	23.1%
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lag	Lead	Lead	Lead	Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

	۶	-	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Recall Mode	None	C-Max	None	None	C-Max	None						
Act Effct Green (s)	25.4	39.7	56.0	13.9	28.3	58.3	56.4	56.4	70.3	75.0	75.0	105.4
Actuated g/C Ratio	0.16	0.25	0.35	0.09	0.18	0.36	0.35	0.35	0.44	0.47	0.47	0.66
v/c Ratio	0.73	0.48	0.12	0.55	0.74	0.51	0.23	0.41	0.27	0.42	0.31	0.18
Control Delay	78.9	53.3	32.5	77.1	76.2	24.6	41.4	42.6	17.1	37.6	29.1	12.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	78.9	53.3	32.5	77.1	76.2	24.6	41.4	42.6	17.1	37.6	29.1	12.2
LOS	Ε	D	С	Ε	Ε	С	D	D	В	D	С	В
Approach Delay		61.2			54.9			36.4			28.0	
Approach LOS		Ε			D			D			С	
Queue Length 50th (ft)	201	196	45	82	240	146	46	203	59	155	172	71
Queue Length 95th (ft)	282	250	70	123	322	157	96	294	119	265	258	127
Internal Link Dist (ft)		1280			1041			978			979	
Turn Bay Length (ft)	225		225	300		250			225			150
Base Capacity (vph)	347	616	554	314	420	562	284	1194	659	573	1644	1097
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.58	0.35	0.11	0.51	0.57	0.51	0.23	0.41	0.26	0.42	0.31	0.17

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 104 (65%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

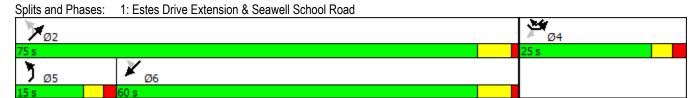
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.74

Intersection Signal Delay: 42.3 Intersection LOS: D
Intersection Capacity Utilization 75.5% ICU Level of Service D

Analysis Period (min) 15

Lanes, Volumes, Timings 1: Estes Drive Extension & Seawell School Road


	₩	Ì	7	*	K	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	ሻ	7	ኝ	1	<u> </u>	7
Traffic Volume (vph)	110	181	163	411	653	163
Future Volume (vph)	110	181	163	411	653	163
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Grade (%)	-3%	1300	1300	2%	-3%	1300
Storage Length (ft)	400	0	250	Z /0	-5 /0	75
Storage Lanes	1 25	1	1 25			1
Taper Length (ft)		4.00		4.00	4.00	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.050	0.850	0.0=0			0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1796	1607	1752	1844	1891	1607
FIt Permitted	0.950		0.145			
Satd. Flow (perm)	1796	1607	267	1844	1891	1607
Right Turn on Red		No				No
Satd. Flow (RTOR)						
Link Speed (mph)	35			35	35	
Link Distance (ft)	862			645	825	
Travel Time (s)	16.8			12.6	16.1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	117	193	173	437	695	173
Shared Lane Traffic (%)	117	190	113	701	030	113
Lane Group Flow (vph)	117	193	173	437	695	173
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	0.98	0.98	1.01	1.01	0.98	0.98
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	Perm	pm+pt	NA	NA	pm+ov
Protected Phases	4		5	2	6	4
Permitted Phases		4	2	_		6
Detector Phase	4	4	5	2	6	4
Switch Phase	7	7	3		J	7
Minimum Initial (s)	7.0	7.0	7.0	12.0	12.0	7.0
` ,	7.0	7.0	7.0	12.0	12.0	
Minimum Split (s)	14.0	14.0	14.0	19.0	19.0	14.0
Total Split (s)	25.0	25.0	15.0	75.0	60.0	25.0
Total Split (%)	25.0%	25.0%	15.0%	75.0%	60.0%	25.0%
Yellow Time (s)	3.1	3.1	3.0	5.0	5.0	3.1
All-Red Time (s)	2.3	2.3	1.9	1.2	1.2	2.3
Lost Time Adjust (s)	-0.4	-0.4	0.1	-1.2	-1.2	-0.4
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None	None	None	Min	Min	None
Act Effct Green (s)	14.3	14.3	49.4	49.4	34.5	54.1
Actuated g/C Ratio	0.19	0.19	0.66	0.66	0.46	0.73
Actuated 9/0 Natio	0.19	0.13	0.00	0.00	0.40	0.73

1: Estes Drive Extension & Seawell School Road

	4	À	ን	×	×	*	
Lane Group	SEL	SER	NEL	NET	SWT	SWR	
v/c Ratio	0.34	0.62	0.47	0.36	0.79	0.15	
Control Delay	32.3	40.1	9.4	6.5	24.3	3.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	32.3	40.1	9.4	6.5	24.3	3.1	
LOS	С	D	Α	Α	С	Α	
Approach Delay	37.2			7.3	20.1		
Approach LOS	D			Α	С		
Queue Length 50th (ft)	47	82	25	74	256	19	
Queue Length 95th (ft)	115	185	58	142	428	32	
Internal Link Dist (ft)	782			565	745		
Turn Bay Length (ft)	400		250			75	
Base Capacity (vph)	510	456	388	1650	1441	1316	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.23	0.42	0.45	0.26	0.48	0.13	
Intersection Summary							
Area Type:	Other						
Cycle Length: 100							
Actuated Cycle Length: 74	4.3						
Natural Cycle: 60							
Control Type: Actuated-U	ncoordinated						
Maximum v/c Ratio: 0.79							
Intersection Signal Delay:	40.7			1.	tersection	100 0	

Analysis Period (min) 15

Intersection Capacity Utilization 62.0%

ICU Level of Service B

	۶	-	•	•	—	•	4	†	~	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1	7	44	†	7	ሻ	^	7	ሻ	^	7
Traffic Volume (vph)	322	272	124	173	315	444	98	1132	180	247	700	319
Future Volume (vph)	322	272	124	173	315	444	98	1132	180	247	700	319
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			1%			1%			-2%	
Storage Length (ft)	225		225	300		250	0		225	0		150
Storage Lanes	1		1	2		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor									0.96			
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	3416	1853	1575	1761	3522	1575	1787	3575	1599
Flt Permitted	0.950			0.950			0.195			0.071		
Satd. Flow (perm)	1770	1863	1583	3416	1853	1575	361	3522	1519	134	3575	1599
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1360			1121			1058			1059	
Travel Time (s)		26.5			21.8			20.6			20.6	
Confl. Peds. (#/hr)								_0.0	5	5		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	339	286	131	182	332	467	103	1192	189	260	737	336
Shared Lane Traffic (%)												
Lane Group Flow (vph)	339	286	131	182	332	467	103	1192	189	260	737	336
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								. •				
Headway Factor	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.01	0.99	0.99	0.99
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA	pm+ov	Prot	NA	pm+ov	pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	7	4	5	3	8	1	5	2	3	1	6	7
Permitted Phases		-	4			8	2		2	6	-	6
Detector Phase	7	4	5	3	8	1	5	2	3	1	6	7
Switch Phase		•				•		_				·
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	12.0	7.0	7.0	12.0	7.0
Minimum Split (s)	14.0	14.0	15.0	15.0	14.0	15.0	15.0	35.0	15.0	15.0	19.0	14.0
Total Split (s)	38.0	57.0	15.0	20.0	39.0	32.0	15.0	71.0	20.0	32.0	88.0	38.0
Total Split (%)	21.1%	31.7%	8.3%	11.1%	21.7%	17.8%	8.3%	39.4%	11.1%	17.8%	48.9%	21.1%
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lag	Lead	Lead	Lead	Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max	None	None	C-Max	None
- Coall Mode	INOHE	INOITE	INOTIE	INOHE	INOHE	INOTIE	INOHE	O-IVIAX	INOHE	INOITE	O-IVIAX	INOTIE

5: NC 86 (MLK Jr. Blvd) & Estes Drive Extension/Estes Drive

	•	-	\rightarrow	•	•	•	1	†		-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Act Effct Green (s)	33.0	52.4	67.4	14.6	34.0	61.0	66.0	66.0	80.6	83.0	83.0	121.0
Actuated g/C Ratio	0.18	0.29	0.37	0.08	0.19	0.34	0.37	0.37	0.45	0.46	0.46	0.67
v/c Ratio	1.05	0.53	0.22	0.66	0.95	0.88	0.49	0.92	0.28	0.84	0.45	0.31
Control Delay	130.5	57.8	39.8	92.2	107.8	53.4	46.8	66.8	17.8	90.9	34.0	13.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	130.5	57.8	39.8	92.2	107.8	53.4	46.8	66.8	17.8	90.9	34.0	13.2
LOS	F	Е	D	F	F	D	D	Е	В	F	С	В
Approach Delay		87.3			79.0			59.2			39.9	
Approach LOS		F			Е			Е			D	
Queue Length 50th (ft)	~432	286	106	109	393	323	82	711	84	250	308	156
Queue Length 95th (ft)	#647	390	164	155	#597	#478	132	#824	122	#404	367	212
Internal Link Dist (ft)		1280			1041			978			979	
Turn Bay Length (ft)	225		225	300		250			225			150
Base Capacity (vph)	324	542	593	284	350	533	210	1292	688	309	1648	1074
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.05	0.53	0.22	0.64	0.95	0.88	0.49	0.92	0.27	0.84	0.45	0.31

Intersection Summary

Area Type: Other

Cycle Length: 180

Actuated Cycle Length: 180

Offset: 88 (49%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

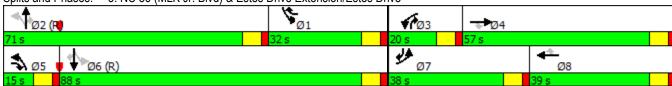
Natural Cycle: 110

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.05 Intersection Signal Delay: 62.5 Intersection Capacity Utilization 96.1%

Intersection LOS: E
ICU Level of Service F

Analysis Period (min) 15


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 5: NC 86 (MLK Jr. Blvd) & Estes Drive Extension/Estes Drive

Appendix F – Synchro Unsignalized HCM Analysis Output

Intersection							
Int Delay, s/veh	0.1						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	CDL Š	<u></u>	VVD1	אטוי	SDL 1	JDK 7	
Traffic Vol, veh/h	1	621	336	8	5	0	
Future Vol, veh/h	1	621	336	8	5	0	
Conflicting Peds, #/hr	0	021	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	125	-	_	-	75	0	
Veh in Median Storag		0	0	-	0	-	
Grade, %	c, # -	0	0	-	0	_	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	7	7	40	2	
Mymt Flow	1	690	373	9	6	0	
IVIVIIIL I IUW		030	313	3	U	U	
Major/Minor	Major1	N	Major2	<u> </u>	Minor2		
Conflicting Flow All	382	0	_	0	1070	378	
Stage 1	-	-	-	-	378	-	
Stage 2	-	-	-	-	692	-	
Critical Hdwy	4.12	-	-	-	6.8	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.8	-	
Critical Hdwy Stg 2	-	-	-	-	5.8	-	
Follow-up Hdwy	2.218	-	-	-		3.318	
Pot Cap-1 Maneuver	1176	-	-	-	208	669	
Stage 1	-	-	-	-	617	-	
Stage 2	-	-	-	-	433	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1176	-	-	-	208	669	
Mov Cap-2 Maneuver		-	-	-	208	-	
Stage 1	-	-	-	-	617	-	
Stage 2	-	-	-	-	433	-	
y -							
			14.5		0.5		
Approach	EB		WB		SB		
HCM Control Delay, s	0		0		22.8		
HCM LOS					С		
Minor Lane/Major Mvi	nt	EBL	EBT	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)		1176				208	-
HCM Lane V/C Ratio		0.001	_	_	_	0.027	_
HCM Control Delay (s	:)	8.1	_	_	_	000	0
HCM Lane LOS	')	Α	_	_	_	ZZ.0	A
HCM 95th %tile Q(vel	1)	0			_	0.1	-
110W 33W1 /6WE Q(VE	1)	U	-	_	_	0.1	_

Intersection						
Int Delay, s/veh	1.1					
IIII Delay, Sivell						
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	- W		₽			सी
Traffic Vol, veh/h	25	21	744	88	12	316
Future Vol, veh/h	25	21	744	88	12	316
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	0	_	_	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	91	91	91	91	91	91
	8	14	2	2	17	7
Heavy Vehicles, %	27	23		97	13	
Mvmt Flow	21	23	818	97	13	347
Major/Minor	Minor1	N	//ajor1		Major2	
Conflicting Flow All	1240	866	0	0	914	0
Stage 1	866	- 000	-		314	-
Stage 2	374	-	_		_	_
	6.48	6.34		-	4.27	
Critical Hdwy			-	-		-
Critical Hdwy Stg 1	5.48	-	-	-	-	-
Critical Hdwy Stg 2	5.48	-	-	-	-	-
Follow-up Hdwy	3.572		-	-	2.353	-
Pot Cap-1 Maneuver	188	336	-	-	687	-
Stage 1	402	-	-	-	-	-
Stage 2	683	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	184	336	-	-	687	-
Mov Cap-2 Maneuver	184	-	-	-	-	-
Stage 1	402	_	_	_	-	_
Stage 2	667	_	_	_	_	_
Olago Z	001					
Approach	NW		NE		SW	
HCM Control Delay, s	24.8		0		0.4	
HCM LOS	С					
			NED		0)14	014/7
Minor Lane/Major Mvn	nt	NET	NERN	WLn1	SWL	SWT
Capacity (veh/h)		-	-	232	687	-
HCM Lane V/C Ratio		-	-	0.218		-
HCM Control Delay (s))	-	-	24.8	10.3	0
HCM Lane LOS		-	-	С	В	Α
HCM 95th %tile Q(veh)	-	-	0.8	0.1	-
	,			0.0	J	

Intersection Int Delay, s/veh						
-	1.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	T T	ZDK.	NDL	<u>↑</u>	↑ ↑	אומט
Traffic Vol, veh/h	3	92	7 7	TT 513	T → 1055	130
Future Vol, veh/h	3	92	77	513	1055	130
Conflicting Peds, #/hr		O Ctop	1	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	405	None	-	None	-	None
Storage Length	125	0	0	-	-	-
Veh in Median Storag		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	6	6	6	6	3	3
Mvmt Flow	3	99	83	552	1134	140
Major/Minor	Minor2	N	Major1		Major2	
						^
Conflicting Flow All	1656	638	1275	0	-	0
Stage 1	1205	-	-	-	-	-
Stage 2	451		-	-	-	-
Critical Hdwy	6.92	7.02	4.22	-	-	-
Critical Hdwy Stg 1	5.92	-	-	-	-	-
Critical Hdwy Stg 2	5.92	-	-	-	-	-
Follow-up Hdwy	3.56	3.36	2.26	-	-	-
Pot Cap-1 Maneuver	85	410	519	-	-	-
Stage 1	239	-	-	-	-	-
Stage 2	597	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	71	410	519	-	_	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	239	-	_	-	_	-
Stage 2	501	-	_	-	_	-
						
					0.5	
Approach	EB		NB		SB	
HCM Control Delay, s			1.7		0	
HCM LOS	С					
	1	NBL	NRT	EBLn1 I	FRI n2	SBT
Minor Lane/Major My	nt		IUDI		LULIIZ	וטט
Minor Lane/Major Mvi	mt			71	110	
Capacity (veh/h)	mt	519	-	71	410	-
Capacity (veh/h) HCM Lane V/C Ratio		519 0.16	- -	0.045	0.241	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s		519 0.16 13.2	- - -	0.045 58.1	0.241 16.6	-
Capacity (veh/h) HCM Lane V/C Ratio	3)	519 0.16	- -	0.045	0.241	-

Intersection							
Int Delay, s/veh	0.1						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	<u></u>	1>	WDIX	ሻ	7	
Traffic Vol, veh/h	4	402	390	8	4	0	
Future Vol, veh/h	4	402	390	8	4	0	
Conflicting Peds, #/hr		0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	125	-	_	-	75	0	
Veh in Median Storag		0	0	-	0	-	
Grade, %	-	0	0	_	0	_	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	3	3	4	4	2	2	
Mvmt Flow	4	447	433	9	4	0	
N.A /N.A	NA -1 - 4		4.1.0		4' 0		
Major/Minor	Major1		Major2		Minor2	100	
Conflicting Flow All	442	0	-	0	894	438	
Stage 1	-	-	-	-	438	-	
Stage 2	-	-	-	-	456	-	
Critical Hdwy	4.13	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.227	-	-	-	3.518		
Pot Cap-1 Maneuver	1113	-	-	-	312	619	
Stage 1	-	-	-	-	651	-	
Stage 2	-	-	-	-	638	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver		-	-	-	311	619	
Mov Cap-2 Maneuver		-	-	-	311	-	
Stage 1	-	-	-	-	651	-	
Stage 2	-	-	-	-	636	-	
Approach	EB		WB		SB		
HCM Control Delay, s			0		16.7		
HCM LOS	0.1		- 0		C		
					J		
Minor Lane/Major Mvi	mt	EBL	EBT	WBT	WBR :	SBLn1 S	BLn2
Capacity (veh/h)		1113	-	-	-	311	-
HCM Lane V/C Ratio		0.004	-	-	-	0.014	-
HCM Control Delay (s	s)	8.2	-	-	-	16.7	0
HCM Lane LOS		Α	-	-	-	С	Α
HCM 95th %tile Q(vel	h)	0	-	-	-	0	-

Intersection						
Int Delay, s/veh	0.8					
		NIME	NICT	NED	0\4/	OVA/T
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	¥		f)		4.0	र्स
Traffic Vol, veh/h	22	17	363	38	12	385
Future Vol, veh/h	22	17	363	38	12	385
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	18	6	2	8	2	3
Mvmt Flow	23	18	382	40	13	405
NA ' (NA'	N 4:					
	Minor1		//ajor1		Major2	
Conflicting Flow All	833	402	0	0	422	0
Stage 1	402	-	-	-	-	-
Stage 2	431	-	-	-	-	-
Critical Hdwy	6.58	6.26	-	-	4.12	-
Critical Hdwy Stg 1	5.58	-	-	-	-	-
Critical Hdwy Stg 2	5.58	-	-	-	-	-
Follow-up Hdwy	3.662	3.354	-	-	2.218	-
Pot Cap-1 Maneuver	318	640	-	-	1137	_
Stage 1	642	-	-	-	-	-
Stage 2	623	-	_	_	-	_
Platoon blocked, %			_	_		-
Mov Cap-1 Maneuver	313	640	_	_	1137	_
Mov Cap-1 Maneuver	313	-	_	_	- 101	_
Stage 1	642					
Stage 2	614	_		_	_	<u>-</u>
Slaye Z	014	-	_	<u>-</u>	_	<u>-</u>
Approach	NW		NE		SW	
HCM Control Delay, s	14.9		0		0.2	
HCM LOS	В					
NA: 1 (NA: NA		NET	NEDA	11 A // A	0) 4 //	OME
Minor Lane/Major Mvn	nt	NET	NERN	IWLn1	SWL	SWT
Capacity (veh/h)		-	-		1137	-
HCM Lane V/C Ratio		-	-	0.102		-
HCM Control Delay (s)	-	-		8.2	0
HCM Lane LOS		-	-	В	Α	Α
HCM 95th %tile Q(veh	1)	-	-	0.3	0	-

Intersection						
Int Delay, s/veh	1.4					
	EBL	EBR	NBL	NBT	SBT	SBR
Movement						SBK
Lane Configurations	70	7	<u>ሻ</u>	^	↑ }	20
Traffic Vol, veh/h	20	58	74	574	591	30
Future Vol, veh/h	20	58	74	574	591	30
Conflicting Peds, #/hr	1	0	1	0	0	_ 1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-		-	None
Storage Length	125	0	0	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	5	5	6	6	3	3
Mvmt Flow	22	63	80	624	642	33
Major/Minor M	linor2	N	Major1		Major2	
•	1134	339	676	0	-	0
Stage 1	660	-	-	-	-	-
Stage 2	474	-	-	-	-	-
Critical Hdwy	6.9	7	4.22	-	-	-
Critical Hdwy Stg 1	5.9	-	-	-	-	-
Critical Hdwy Stg 2	5.9	-	-	-	-	-
Follow-up Hdwy	3.55	3.35	2.26	-	-	-
Pot Cap-1 Maneuver	192	648	885	-	-	-
Stage 1	468	-	-	-	-	-
Stage 2	584	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	174	647	885	-	-	-
Mov Cap-2 Maneuver	174	-	-	-	-	-
Stage 1	468	-	_	-	-	-
Stage 2	531	_	_	_	_	_
5 t. gt =						
Approach	EB		NB		SB	
HCM Control Delay, s	15.7		1.1		0	
HCM LOS	С					
Minor Lane/Major Mvmt		NBL	NRT	EBLn1 I	FRI n2	SBT
		885			647	
Capacity (veh/h) HCM Lane V/C Ratio			-			-
		0.091	-	0.125		-
HCM Control Delay (s)		9.5	-	28.6	11.2	-
HCM Lane LOS		A	-	D	В	-
HCM 95th %tile Q(veh)		0.3	-	0.4	0.3	-

Intersection							
Int Delay, s/veh	0.2						
		ERT	MPT	WEE	ODI	ODB	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	<u>ነ</u>		\$			7	
Traffic Vol, veh/h	2	501	749	7	7	1	
Future Vol, veh/h	2	501	749	7	7	1	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	125	-	-	-	75	0	
Veh in Median Storage	е,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	
Heavy Vehicles, %	2	2	2	2	28	2	
Mvmt Flow	2	527	788	7	7	1	
	Major1		Major2		Minor2		
Conflicting Flow All	796	0	-	0	1324	792	
Stage 1	-	-	-	-	792	-	
Stage 2	-	-	-	-	532	-	
Critical Hdwy	4.12	-	-	-	6.68	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.68	-	
Critical Hdwy Stg 2	-	-	-	-	5.68	-	
Follow-up Hdwy	2.218	-	-	-	3.752	3.318	
Pot Cap-1 Maneuver	826	-	-	-	152	389	
Stage 1	-	_	_	-	404	-	
Stage 2	_	_	_	-	540	-	
Platoon blocked, %		_	_	_	0.0		
Mov Cap-1 Maneuver	826	_	_	_	152	389	
Mov Cap-1 Maneuver	-		_	_	152	-	
Stage 1		_	_	_	404	_	
•	-	-	-	_	539		
Stage 2	-	-	-	-	539	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0		0		28		
HCM LOS	- 0		J		D		
TIOWI LOO					U		
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)		826	-	_	-	152	389
HCM Lane V/C Ratio		0.003	_	-	_	0.048	
HCM Control Delay (s)	9.4	-	-	-	29.9	14.3
HCM Lane LOS		Α	_	_	_	D	В
HCM 95th %tile Q(veh)	0		_	-	0.2	0
TOW JOHN JOHN W(VEI)	1)	U	-	_	-	U.Z	U

Intersection						
Int Delay, s/veh	5.6					
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	¥		- î∍			4
Traffic Vol, veh/h	106	38	476	35	6	659
Future Vol, veh/h	106	38	476	35	6	659
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	5	4	2	6	2	2
Mymt Flow	114	41	512	38	6	709
IVIVIII(I IOW	117	71	012	00	U	100
Major/Minor	Minor1	<u> </u>	Major1	ا	Major2	
Conflicting Flow All	1253	531	0	0	549	0
Stage 1	531	-	-	-	-	-
Stage 2	722	-	-	_	_	-
Critical Hdwy	6.45	6.24	_	_	4.12	_
Critical Hdwy Stg 1	5.45	-	_	_		_
Critical Hdwy Stg 2	5.45	_	_	_	_	_
Follow-up Hdwy	3.545	3 336	_	_	2.218	_
Pot Cap-1 Maneuver	187	544	-	_	1021	
	584		-	-	1021	-
Stage 1		-	-	-	-	-
Stage 2	476	-	-	-	-	-
Platoon blocked, %	40-		-	-	1001	-
Mov Cap-1 Maneuver	185	544	-	-	1021	-
Mov Cap-2 Maneuver	185	-	-	-	-	-
Stage 1	584	-	-	-	-	-
Stage 2	471	-	-	-	-	-
Approach	NW		NE		SW	
HCM Control Delay, s	50.7		0		0.1	
HCM LOS	F					
Minor Lane/Major Mvr	nt	NET	NERN	IWLn1	SWL	SWT
Capacity (veh/h)	•		-	201	1021	-
HCM Lane V/C Ratio		_		0.691	0.006	_
HCM Control Delay (s	١	-	_		8.5	0
HCM Lane LOS		-	-	50.7 F	6.5 A	
	.\	-	-	4.4	0 0	Α
HCM 95th %tile Q(veh)	-	-	4.4	U	-

Intersection							
Int Delay, s/veh	1.6						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	T T	T T	NDL	↑ ↑	↑ ↑	אומט	
Traffic Vol, veh/h	36	44	43	TT 1210	T № 758	6	
Future Vol, veh/h	36	44	43	1210	758	6	
Conflicting Peds, #/hr	4	0	2	0	0	2	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	olop -		-	None	-	None	
Storage Length	125	0	0	-	_	-	
Veh in Median Storage		-	-	0	0	_	
Grade, %	, # 0	_	_	0	0	_	
Peak Hour Factor	94	94	94	94	94	94	
Heavy Vehicles, %	6	6	7	2	2	2	
Mymt Flow	38	47	46	1287	806	6	
WWITCHOW	00	71	70	1201	000	-	
	/linor2		Major1		Major2		
Conflicting Flow All	1551	408	815	0	-	0	
Stage 1	812	-	-	-	-	-	
Stage 2	739	-	-	-	-	-	
Critical Hdwy	6.92	7.02	4.24	-	-	-	
Critical Hdwy Stg 1	5.92	-	-	-	-	-	
Critical Hdwy Stg 2	5.92	-	-	-	-	-	
Follow-up Hdwy	3.56	3.36	2.27	-	-	-	
Pot Cap-1 Maneuver	100	581	777	-	-	-	
Stage 1	387	-	-	-	-	-	
Stage 2	423	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	94	580	777	-	-	-	
Mov Cap-2 Maneuver	94	-	-	-	-	-	
Stage 1	386	-	-	-	-	-	
Stage 2	397	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	36.8		0.3		0		
HCM LOS	30.0 E		0.5		U		
TIOIVI LOG	Ľ						
Minor Lane/Major Mvm	l	NBL	NBT	EBLn1 I		SBT	SBR
Capacity (veh/h)		777	-	94	580	-	-
HCM Lane V/C Ratio		0.059	-	0.407		-	-
HCM Control Delay (s)		9.9	-	67.4	11.8	-	-
HCM Lane LOS		Α	-	F	В	-	-
HCM 95th %tile Q(veh)		0.2	-	1.7	0.3	-	-
,							

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	CDL			אטוי		JDK 7
Traffic Vol, veh/h	<u>ղ</u>	↑ 856	Љ 354	8	ኝ 5	r
Future Vol, veh/h	1	856	354	8	5	0
Conflicting Peds, #/hr	0	000	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	- Stop	None
Storage Length	125	-	_	-	75	0
Veh in Median Storage		0	0	_	0	-
Grade, %	σ, π - -	0	0	_	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	7	7	40	2
Mymt Flow	1	951	393	9	6	0
IVIVIIIL I IOW		JJ 1	000	9	U	J
	Major1		Major2		Minor2	
Conflicting Flow All	402	0	-	0	1351	398
Stage 1	-	-	-	-	398	-
Stage 2	-	-	-	-	953	-
Critical Hdwy	4.12	-	-	-	6.8	6.22
Critical Hdwy Stg 1	-	-	-	-	5.8	-
Critical Hdwy Stg 2	-	-	-	-	5.8	-
Follow-up Hdwy	2.218	-	-	-		3.318
Pot Cap-1 Maneuver	1157	-	-	-	138	652
Stage 1		-	-	-	603	-
Stage 2	-	-	-	-	321	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1157	-	-	-	138	652
Mov Cap-2 Maneuver	-	-	-	-	138	-
Stage 1	-	-	-	-	603	-
Stage 2	-	-	-	-	321	-
Annroach	EB		WB		SB	
Approach						
HCM Control Delay, s	0		0		32.2	
HCM LOS					D	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1 SBL
Capacity (veh/h)		1157	_	-	-	138
HCM Lane V/C Ratio		0.001	-	_	_	0.04
HCM Control Delay (s))	8.1	-	-	-	32.2
HCM Lane LOS		A	-	_	-	D
HCM 95th %tile Q(veh)	0	-	-	-	0.1
	,	J				0.1

Intersection						
Int Delay, s/veh	1.1					
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	¥		₽			र्स
Traffic Vol, veh/h	26	22	776	92	12	334
Future Vol, veh/h	26	22	776	92	12	334
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	8	14	2	2	17	7
Mvmt Flow	29	24	853	101	13	367
		_				
	Minor1		/lajor1		Major2	
Conflicting Flow All	1296	903	0	0	954	0
Stage 1	903	-	-	-	-	-
Stage 2	393	-	-	-	-	-
Critical Hdwy	6.48	6.34	-	-	4.27	_
Critical Hdwy Stg 1	5.48	-	-	-	-	-
Critical Hdwy Stg 2	5.48	-	_	-	-	_
Follow-up Hdwy	3.572	3.426	_	_	2.353	-
Pot Cap-1 Maneuver	174	319	_	-	663	_
Stage 1	386	-	_	_	-	_
Stage 2	669	_	_	_	_	_
Platoon blocked, %	000		_	_		_
Mov Cap-1 Maneuver	170	319	_	_	663	_
Mov Cap-1 Maneuver	170	319		-	003	-
•			-	-	-	-
Stage 1	386	-	-	-	-	-
Stage 2	652	-	-	-	-	-
Approach	NW		NE		SW	
HCM Control Delay, s	27		0		0.4	
HCM LOS	D				• • • • • • • • • • • • • • • • • • • •	
110111 200						
Minor Lane/Major Mvn	nt	NET	NERN	WLn1	SWL	SWT
Capacity (veh/h)		-	-	216	663	-
HCM Lane V/C Ratio		-	-	0.244	0.02	-
HCM Control Delay (s)	-	-	27	10.5	0
HCM Lane LOS		-	-	D	В	Α
HCM 95th %tile Q(veh	1)	-	-	0.9	0.1	-
	,			0.0		

Intersection Int Delay, s/veh
Movement EBL EBR NBL NBT SBT SBR Lane Configurations ↑
Traffic Vol, veh/h 3 96 80 542 1123 135
Traffic Vol, veh/h 3 96 80 542 1123 135 Future Vol, veh/h 3 96 80 542 1123 135 Conflicting Peds, #/hr 10 0 1 0 0 1 Sign Control Stop Stop Free Anone
Future Vol, veh/h 3 96 80 542 1123 135 Conflicting Peds, #/hr 10 0 1 0 0 1 Sign Control Stop Stop Free 6 6 6 6
Conflicting Peds, #/hr 10 0 1 0 0 1 Sign Control Stop Stop Free 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sign Control Stop Stop Free Round Vomage Length 125 0 0 - - 0 0 - - - 0 0 - - - 0 0 - - - 0 0 - <t< td=""></t<>
RT Channelized - None - None - None Storage Length 125 0 0
Storage Length 125 0 0 - 0 0 - - - - 0 0 - - - 0 0 - - - - 0 0 - - - - - 2 - 145 -
Veh in Median Storage, # 0
Grade, % 0 - - 0 0 - Peak Hour Factor 93 98 485
Peak Hour Factor 93
Heavy Vehicles, % 6 6 6 6 6 3 3 Mvmt Flow 3 103 86 583 1208 145 Major/Minor Minor2 Major1 Major2 Conflicting Flow All 1754 677 1354 0 - 0 Stage 1 1281 -
Mvmt Flow 3 103 86 583 1208 145 Major/Minor Minor2 Major1 Major2 Conflicting Flow All 1754 677 1354 0 - 0 Stage 1 1281 - - - - - - Stage 2 473 - - - - - - Critical Hdwy 6.92 7.02 4.22 - - - - Critical Hdwy Stg 1 5.92 - - - - - - Critical Hdwy Stg 2 5.92 - - - - - - Follow-up Hdwy 3.56 3.36 2.26 - - - - Pot Cap-1 Maneuver 73 386 484 - - - - Stage 2 582 - - - - - - Platoon blocked, % - <td< td=""></td<>
Major/Minor Minor2 Major1 Major2 Conflicting Flow All 1754 677 1354 0 - 0 Stage 1 1281 -
Conflicting Flow All 1754 677 1354 0 - 0 Stage 1 1281 -
Conflicting Flow All 1754 677 1354 0 - 0 Stage 1 1281 -
Conflicting Flow All 1754 677 1354 0 - 0 Stage 1 1281 -
Stage 1 1281 - - - - Stage 2 473 - - - - Critical Hdwy 6.92 7.02 4.22 - - - Critical Hdwy Stg 1 5.92 - - - - - Critical Hdwy Stg 2 5.92 - - - - - Follow-up Hdwy 3.56 3.36 2.26 - - - Pot Cap-1 Maneuver 73 386 484 - - - Stage 1 217 - - - - - Stage 2 582 - - - - - Platoon blocked, % - - - - - - Mov Cap-1 Maneuver 60 386 484 - - - Mov Cap-2 Maneuver 60 - - - - -
Stage 2 473 - - - - Critical Hdwy 6.92 7.02 4.22 - - - Critical Hdwy Stg 1 5.92 - - - - - Critical Hdwy Stg 2 5.92 - - - - - Follow-up Hdwy 3.56 3.36 2.26 - - - Pot Cap-1 Maneuver 73 386 484 - - - Stage 1 217 - - - - - Stage 2 582 - - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver 60 386 484 - - Mov Cap-2 Maneuver 60 - - - -
Critical Hdwy 6.92 7.02 4.22 - - - Critical Hdwy Stg 1 5.92 - - - - - Critical Hdwy Stg 2 5.92 - - - - - Follow-up Hdwy 3.56 3.36 2.26 - - - Pot Cap-1 Maneuver 73 386 484 - - - Stage 1 217 - - - - - Stage 2 582 - - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 60 386 484 - - - Mov Cap-2 Maneuver 60 - - - - -
Critical Hdwy Stg 1 5.92 - - - - Critical Hdwy Stg 2 5.92 - - - - Follow-up Hdwy 3.56 3.36 2.26 - - - Pot Cap-1 Maneuver 73 386 484 - - - Stage 1 217 - - - - - Stage 2 582 - - - - - Platoon blocked, % - - - - - - Mov Cap-1 Maneuver 60 386 484 - - - Mov Cap-2 Maneuver 60 - - - - -
Critical Hdwy Stg 2 5.92 - - - - Follow-up Hdwy 3.56 3.36 2.26 - - - Pot Cap-1 Maneuver 73 386 484 - - - Stage 1 217 - - - - - Stage 2 582 - - - - - Platoon blocked, % - - - - - - Mov Cap-1 Maneuver 60 386 484 - - - Mov Cap-2 Maneuver 60 - - - - -
Follow-up Hdwy 3.56 3.36 2.26
Pot Cap-1 Maneuver 73 386 484 - - - Stage 1 217 - - - - Stage 2 582 - - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver 60 386 484 - - Mov Cap-2 Maneuver 60 - - - -
Stage 1 217 -
Stage 1 217 -
Stage 2 582 - - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver 60 386 484 - - Mov Cap-2 Maneuver 60 - - - -
Platoon blocked, % - - - - Mov Cap-1 Maneuver 60 386 484 - - - Mov Cap-2 Maneuver 60 - - - - -
Mov Cap-1 Maneuver 60 386 484 - - - Mov Cap-2 Maneuver 60 - - - - -
Mov Cap-2 Maneuver 60
<u> </u>
5 kg 5 1 2 17
Stage 2 478
Olage 2 470
Approach EB NB SB
HCM Control Delay, s 19.2 1.8 0
HCM LOS C
Minor Lang/Major Mymt NDL NDT EDL 51 EDL 52 CDT
Minor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT
Capacity (veh/h) 484 - 60 386 -
HCM Lane V/C Ratio 0.178 - 0.054 0.267 -
HCM Control Delay (s) 14 - 68.4 17.7 -
HCM Lane LOS B - F C -
HCM 95th %tile Q(veh) 0.6 - 0.2 1.1 -

Intersection							
Int Delay, s/veh	0.1						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	T T	<u></u>	7∌	WDI	JDL T	7 TODIC	
Traffic Vol, veh/h	4	4 21	410	8	4	0	
Future Vol, veh/h	4	421	410	8	4	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	- Clop		
Storage Length	125	-	_	-	75	0	
Veh in Median Storage		0	0	-	0	-	
Grade, %	-, "	0	0	_	0	_	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	3	3	4	4	2	2	
Mymt Flow	4	468	456	9	4	0	
					•		
N. A. 1. (N. A)					\ <i>I</i> '		
	Major1		Major2		Minor2		
Conflicting Flow All	464	0	-	0	937	460	
Stage 1	-	-	-	-	460	-	
Stage 2	-	-	-	-	477	-	
Critical Hdwy	4.13	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.227	-	-	-	3.518		
Pot Cap-1 Maneuver	1092	-	-	-	294	601	
Stage 1	-	-	-	-	636	-	
Stage 2	-	-	-	-	624	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1092	-	-	-	293	601	
Mov Cap-2 Maneuver	-	-	-	-	293	-	
Stage 1	-	-	-	-	636	-	
Stage 2	-	-	-	-	622	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0.1		0		17.5		
HCM LOS	0.1		U		17.5		
TIOWI LOG					U		
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1 SB	Ln2
Capacity (veh/h)		1092	-	-	-	293	-
HCM Lane V/C Ratio		0.004	-	-	-	0.015	-
HCM Control Delay (s)		8.3	-	-	-	17.5	0
HCM Lane LOS		Α	-	-	-	С	Α
HCM 95th %tile Q(veh)	0	-	-	-	0	-
·							

Intersection						
Int Delay, s/veh	0.8					
		NIMD	NET	NED	CIVII	C\A/T
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	Y	40	}	40	40	ન
Traffic Vol, veh/h	23	18	381	40	12	404
Future Vol, veh/h	23	18	381	40	12	404
Conflicting Peds, #/hr	0	0	0	0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	18	6	2	8	2	3
Mvmt Flow	24	19	401	42	13	425
NA - :/NA:	\		1-11		4-:0	
	Minor1		Major1		Major2	
Conflicting Flow All	873	422	0	0	443	0
Stage 1	422	-	-	-	-	-
Stage 2	451	-	-	-	-	-
Critical Hdwy	6.58	6.26	-	-	4.12	-
Critical Hdwy Stg 1	5.58	-	-	-	-	-
Critical Hdwy Stg 2	5.58	-	-	-	-	-
Follow-up Hdwy	3.662	3.354	-	-	2.218	-
Pot Cap-1 Maneuver	301	623	-	-	1117	-
Stage 1	629	-	-	-	-	-
Stage 2	609	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	296	623	_	-	1117	_
Mov Cap-2 Maneuver	296	-	_	_	-	_
Stage 1	629	_				_
Stage 2	600	-				
Slaye 2	000	-	-	-	-	-
Approach	NW		NE		SW	
HCM Control Delay, s	15.5		0		0.2	
HCM LOS	С					
Minor Long/Major M	.1	NET	NIEDA	1\\\/ 1	CIAII	CMT
Minor Lane/Major Mvm	IL	NET	NEKN	IWLn1	SWL	SWT
Capacity (veh/h)		-	-		1117	-
HCM Lane V/C Ratio		-	-	0.112		-
HCM Control Delay (s)		-	-	15.5	8.3	0
HCM Lane LOS		-	-	С	Α	Α
HCM 95th %tile Q(veh)		-	-	0.4	0	-

Intersection						
Int Delay, s/veh	1.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	CDL	EDK	NDL			אמט
Traffic Vol, veh/h	1 21	60	77	↑↑ 614	↑ ↑	31
Future Vol, veh/h	21	60	77	614	633	31
Conflicting Peds, #/hr	1	0	1	014	033	1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -		-		-	None
Storage Length	125	0	0	-	_	INUITE
Veh in Median Storage		-	-	0	0	_
Grade, %	,# 0	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
	5				3	3
Heavy Vehicles, %		5	6	6		
Mvmt Flow	23	65	84	667	688	34
Major/Minor I	Minor2	N	/lajor1		Major2	
Conflicting Flow All	1208	362	723	0		0
Stage 1	706	_	_	_	-	_
Stage 2	502	_	_	_	_	_
Critical Hdwy	6.9	7	4.22	_	_	_
Critical Hdwy Stg 1	5.9	<u>-</u>	-	_	_	_
Critical Hdwy Stg 2	5.9	_	_	_	_	_
Follow-up Hdwy	3.55	3.35	2.26	_	_	_
Pot Cap-1 Maneuver	171	626	849	_	_	_
Stage 1	443	-	040	_	_	_
Stage 2	565	_	_	_		
Platoon blocked, %	505	-	-	-		-
	154	625	849	-		-
Mov Cap-1 Maneuver			049	-	-	-
Mov Cap-2 Maneuver	154	-	-	-	-	-
Stage 1	443	-	-	-	-	-
Stage 2	509	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	16.8		1.1		0	
HCM LOS	C		1.1		0	
TIOWI LOO	J					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1 I		SBT
Capacity (veh/h)		849	-		625	-
HCM Lane V/C Ratio		0.099	-	0.148		-
HCM Control Delay (s)		9.7	-	32.4	11.4	-
HCM Lane LOS		Α	-	D	В	-
HCM 95th %tile Q(veh)		0.3	-	0.5	0.3	-

Intersection							
Int Delay, s/veh	0.2						
<u> </u>		EDT	WDT	WDD	CDI	CDD	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ች	†	^}	-	Ţ	7	
Traffic Vol, veh/h	2	528	783	7	7	1	
Future Vol, veh/h	2	528	783	7	7	1	
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	125	-	-	-	75	0	
Veh in Median Storage	e,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	
Heavy Vehicles, %	2	2	2	2	28	2	
Mvmt Flow	2	556	824	7	7	1	
	Major1		Major2		Minor2		
Conflicting Flow All	832	0	-	0	1388	828	
Stage 1	-	-	-	-	828	-	
Stage 2	-	-	-	-	560	-	
Critical Hdwy	4.12	-	-	-	6.68	6.22	
Critical Hdwy Stg 1	_	-	-	-	5.68	-	
Critical Hdwy Stg 2	-	-	-	-	5.68	-	
Follow-up Hdwy	2.218	-	-	-	3.752	3.318	
Pot Cap-1 Maneuver	801	-	-	-	138	371	
Stage 1	-	-	-	-	388	-	
Stage 2	_	_	_	-	523	_	
Platoon blocked, %		_	_	_	0_0		
Mov Cap-1 Maneuver	801	_	_	_	138	371	
Mov Cap 1 Maneuver	-	_	_	_	138	-	
Stage 1	_	_	_	_	388	_	
9	_		-	_	522		
Stage 2	-	-	-	-	522	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0		0		30.4		
HCM LOS					D		
					J		
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1	SBL _{n2}
Capacity (veh/h)		801	_	-	-	138	371
HCM Lane V/C Ratio		0.003	-	-	_	0.053	
HCM Control Delay (s))	9.5	-	_	-	32.6	14.7
HCM Lane LOS		A	_	_	_	D	В
HCM 95th %tile Q(veh)	0	_	_	_	0.2	0
TOWN JOHN JOHNE Q(VEI)	1	U	-	-	_	0.2	U

Intersection						
Int Delay, s/veh	7.1					
·		NIVAID	NICT	NED	CVA	CVACT
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	¥	40	4	00	•	सी
Traffic Vol, veh/h	110	40	502	36	6	689
Future Vol, veh/h	110	40	502	36	6	689
Conflicting Peds, #/hr	0	0	0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	5	4	2	6	2	2
Mvmt Flow	118	43	540	39	6	741
Maiay/Minay	Minard		1-:1		Maia#0	
	Minor1		Major1		Major2	
Conflicting Flow All	1313	559	0	0	578	0
Stage 1	559	-	-	-	-	-
Stage 2	754	-	-	-	-	-
Critical Hdwy	6.45	6.24	-	-	4.12	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.336	-	-	2.218	-
Pot Cap-1 Maneuver	172	525	-	-	996	-
Stage 1	567	-	-	-	-	-
Stage 2	459	-	-	-	_	-
Platoon blocked, %			_	-		-
Mov Cap-1 Maneuver	170	525	_	_	996	_
Mov Cap-2 Maneuver	170	-	_	_	-	_
Stage 1	567	_	_	_	_	_
Stage 2	454	_		_	_	_
Olaye Z	707					
Approach	NW		NE		SW	
HCM Control Delay, s	65.3		0		0.1	
HCM LOS	F					
NA:	_1	NET	NIEDN	IVA/I 4	CVA/I	CVA/T
Minor Lane/Major Mvn	nt	NET		WLn1	SWL	SWT
Capacity (veh/h)		-	-		996	-
HCM Lane V/C Ratio		-		0.779		-
HCM Control Delay (s)	-	-		8.6	0
HCM Lane LOS		-	-	F	Α	Α
HCM 95th %tile Q(veh	1)	-	-	5.4	0	-

Intersection							
Int Delay, s/veh	1.9						
		EDD	NDI	NDT	ODT	CDD	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	<u>ነ</u>	7	<u>ነ</u>	^	^	•	
Traffic Vol, veh/h	37	46	45	1291	808	6	
Future Vol, veh/h	37	46	45	1291	808	6	
Conflicting Peds, #/hr	4	0	2	0	0	2	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	125	0	0	-	-	-	
Veh in Median Storage	e, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	94	94	94	94	94	94	
Heavy Vehicles, %	6	6	7	2	2	2	
Mvmt Flow	39	49	48	1373	860	6	
						-	
		_		_			
	Minor2		/lajor1		Major2		
Conflicting Flow All	1651	435	868	0	-	0	
Stage 1	865	-	-	-	-	-	
Stage 2	786	-	-	-	-	-	
Critical Hdwy	6.92	7.02	4.24	-	-	-	
Critical Hdwy Stg 1	5.92	-	-	-	-	-	
Critical Hdwy Stg 2	5.92	-	-	_	_	-	
Follow-up Hdwy	3.56	3.36	2.27	_	_	-	
Pot Cap-1 Maneuver	86	558	741	-	-	-	
Stage 1	363	-	_	_	_	_	
Stage 2	399	_	_	_	_	_	
Platoon blocked, %	000			_	_	_	
Mov Cap-1 Maneuver	80	557	741	_	_	_	
Mov Cap-1 Maneuver	80	55 <i>1</i>	741	_	_	_	
•		-	-	-	-	-	
Stage 1	362	-	-	-	-	-	
Stage 2	372	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	45.7		0.3		0		
HCM LOS	E				-		
	_						
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1		SBT	
Capacity (veh/h)		741	-	80	557	-	
HCM Lane V/C Ratio		0.065	-	0.492	0.088	-	
HCM Control Delay (s))	10.2	-	87.5	12.1	-	
HCM Lane LOS		В	-	F	В	-	
HCM 95th %tile Q(veh)	0.2	-	2.1	0.3	-	
	,						

2: West Site Driveway/UNC Park-and-Ride Dr & Estes Drive Extension

Intersection												
Int Delay, s/veh	0.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ĵ.			₽			4		ሻ	ĵ.	
Traffic Vol, veh/h	1	862	6	19	355	8	1	0	2	5	0	0
Future Vol, veh/h	1	862	6	19	355	8	1	0	2	5	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	_	None	-	_	None	-	-	None	-	-	None
Storage Length	125	_	-	100	_	-	-	-	-	75	-	-
Veh in Median Storage		0	_	_	0	-	-	0	-	-	0	_
Grade, %	-	0	_	_	0	-	-	0	_	-	0	_
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	7	7	2	2	2	40	2	2
Mvmt Flow	1	958	7	21	394	9	1	0	2	6	0	0
Major/Minor	Major1		ľ	Major2			Minor1		ı	Minor2		
Conflicting Flow All	403	0	0	964	0	0	1404	1409	961	1405	1408	399
Stage 1	-	-	-	-	-	-	963	963	-	441	441	-
Stage 2	_	_	_	_	_	_	441	446	_	964	967	_
Critical Hdwy	4.12			4.12			7.12	6.52	6.22	7.5	6.52	6.22
Critical Hdwy Stg 1	7.12	_	_	T. 14	_	_	6.12	5.52	0.22	6.5	5.52	U.ZZ -
Critical Hdwy Stg 2			_	_	_		6.12	5.52		6.5	5.52	
Follow-up Hdwy	2.218	_	_	2.218	_	_	3.518	4.018	3.318	3.86	4.018	3.318
Pot Cap-1 Maneuver	1156	_	_	714		_	117	139	311	97	139	651
Stage 1	- 100	_	_	- 17	_	_	307	334	-	528	577	-
Stage 2	_	_	_	_	_	_	595	574	_	262	333	_
Platoon blocked, %		_	_		_	_	550	J1- 1		202	500	
Mov Cap-1 Maneuver	1156	_	_	714	_	_	114	135	311	94	135	651
Mov Cap-2 Maneuver		_	_	-	_	_	114	135	-	94	135	-
Stage 1	_	_	_	_	_	_	307	334	_	528	560	_
Stage 2	_	_	_	_	_	_	578	557	_	260	333	_
2.0.30 =							3, 3	30.		_00	300	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.5			23.6			45.7		
HCM LOS				3.0			20.0 C			+0.7 E		
							J			_		
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2		
Capacity (veh/h)		197	1156	-	-	714			94	-		
HCM Lane V/C Ratio		0.017	0.001	_	_	0.03	_	_	0.059	_		
HCM Control Delay (s)		23.6	8.1	-	_	10.2	_	_		0		
HCM Lane LOS		20.0 C	A	_	_	В	_	_	+0.7 E	A		
HCM 95th %tile Q(veh))	0.1	0	-	_	0.1	-	-	0.2	-		
		0.1				5.1			0.2			

HCM 2010 TWSC

Intersection						
Int Delay, s/veh	0.9					
Movement	NBL	NBR	NET	NER	SWL	SWT
				NER		
Lane Configurations	<u> </u>	7	\$	C	\	270
Traffic Vol, veh/h	1	12	863	6	95	379
Future Vol, veh/h	1	12	863	6	95	379
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	50	0	-	-	100	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1	13	959	7	106	421
N.A. ' (N.A.	N 4'					
	Minor1		//ajor1		Major2	
Conflicting Flow All	1594	962	0	0	966	0
Stage 1	962	-	-	-	-	-
Stage 2	632	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	118	310	_	_	713	_
Stage 1	371	-	_	_	_	-
Stage 2	530	_	_	_	_	_
Platoon blocked, %	300		_	_		_
Mov Cap-1 Maneuver	100	310	_	_	713	_
Mov Cap-1 Maneuver	231	310	-	-	113	-
				-	-	-
Stage 1	371	-	-	-	-	-
Stage 2	451	-	-	-	-	-
Approach	NB		NE		SW	
HCM Control Delay, s	17.4		0		2.2	
HCM LOS	C		- 0		۷.۲	
TIOWI LOO	J					
Minor Lane/Major Mvn	nt	NET	NER	NBLn11	VBLn2	SWL
Capacity (veh/h)		-	-	231	310	713
HCM Lane V/C Ratio		-	-	0.005	0.043	0.148
HCM Control Delay (s))	-	-	20.7	17.1	10.9
HCM Lane LOS		-	-	С	С	В
HCM 95th %tile Q(veh)	_	-	0	0.1	0.5
	7			J	J. 1	3.0

Intersection						
Int Delay, s/veh	1.3					
		AllArio	NIET	NED	0\4/	OVACE
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	¥	00	\$	0.5	<u> </u>	120
Traffic Vol, veh/h	51	22	787	95	12	422
Future Vol, veh/h	51	22	787	95	12	422
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	100	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	8	14	2	2	17	7
Mvmt Flow	56	24	865	104	13	464
Major/Minor	Minor1	N	Major1		Major2	
						0
Conflicting Flow All	1407	917	0	0	969	0
Stage 1	917	-	-	-	-	-
Stage 2	490	-	-	-	4.07	-
Critical Hdwy	6.48	6.34	-	-	4.27	-
Critical Hdwy Stg 1	5.48	-	-	-	-	-
Critical Hdwy Stg 2	5.48	-	-	-	-	-
Follow-up Hdwy	3.572		-	-	2.353	-
Pot Cap-1 Maneuver	149	313	-	-	654	-
Stage 1	380	-	-	-	-	-
Stage 2	604	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	146	313	-	-	654	-
Mov Cap-2 Maneuver	273	-	-	-	-	-
Stage 1	380	-	-	-	-	-
Stage 2	592	-	-	-	-	-
•						
A nara a ah	NI\A/		NE		CW	
Approach	NW				SW	
HCM Control Delay, s	22.6		0		0.3	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NET	NERN	IWLn1	SWL	SWT
Capacity (veh/h)		_		284	654	_
HCM Lane V/C Ratio		_	_	0.282	0.02	-
HCM Control Delay (s)		_	_	22.6	10.6	-
HCM Lane LOS		_	_	C	В	_
HCM 95th %tile Q(veh))			1.1	0.1	_
HOW JOHN JOHNE W(VEI)	1	_	_	1.1	0.1	_

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	ĵ.			4		ሻ	f)	
Traffic Vol, veh/h	4	425	4	13	414	8	4	0	13	4	0	0
Future Vol, veh/h	4	425	4	13	414	8	4	0	13	4	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	125	-	-	100	-	-	-	-	-	75	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	<u>-</u>	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	3	3	2	2	4	4	2	2	2	2	2	2
Mvmt Flow	4	472	4	14	460	9	4	0	14	4	0	0
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	469	0	0	477	0	0	976	981	474	984	979	464
Stage 1	403	-	-	411	-	-	483	483	- 4/4	493	493	-
Stage 2	_			_	_	_	493	498	_	491	486	
Critical Hdwy	4.13	_	_	4.12	_	_	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	7.10	_	_	T. 12	_	_	6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 1		_		_	_	_	6.12	5.52		6.12	5.52	_
Follow-up Hdwy	2.227	_	_	2.218	_	_	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1087	_	_	1085	_	_	230	249	590	228	250	598
Stage 1	-	_	_	-	_	_	565	553	-	558	547	-
Stage 2	_	_	_	_	_	_	558	544	_	559	551	_
Platoon blocked, %		_	_		_	_	500	711		300	301	
Mov Cap-1 Maneuver	1087	_	_	1085	_	_	227	245	590	220	246	598
Mov Cap-2 Maneuver		_	_	-	_	_	227	245	-	220	246	-
Stage 1	-	_	_	-	_	_	563	551	-	556	540	_
Stage 2	_	_	_	_	_	_	551	537	_	543	549	_
-							30,	30.		3.3	3.0	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0.2			13.8			21.7		
HCM LOS	0.1			0.2			13.0 B			C C		
TOW LOO							U			U		
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WRP	SBLn1	SRI n2		
Capacity (veh/h)		429	1087		LDIX	1085	7701	WDI\	220	OBLITE		
HCM Lane V/C Ratio		0.044				0.013	-	-	0.02	-		
		13.8	8.3	-	-	8.4	-	-	21.7	0		
HCM Control Delay (s) HCM Lane LOS		13.0 B	0.3 A	-	-	0.4 A	-	-	21.7 C	A		
HCM 95th %tile Q(veh	١	0.1	0	-	-	0	-	-	0.1	- A		
HOW SOUL WHIE CALACH)	0.1	U	-	-	U	-	-	0.1	-		

Intersection						
Int Delay, s/veh	1.4					
Movement	NBL	NBR	NET	NER	SWL	SWT
Lane Configurations	ሻ	7	4		ሻ	<u></u>
Traffic Vol, veh/h	4	63	434	4	65	440
Future Vol, veh/h	4	63	434	4	65	440
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	-	-	100	-
Veh in Median Storag	e,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	4	70	482	4	72	489
Majay/Minay	Minord		1-:1		Maia#0	
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1117	484	0	0	487	0
Stage 1	484	-	-	-	-	-
Stage 2	633	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	229	583	-	-	1076	-
Stage 1	620	-	-	-	-	-
Stage 2	529	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		583	-	-	1076	-
Mov Cap-2 Maneuver	347	-	-	-	-	-
Stage 1	620	-	-	-	-	-
Stage 2	494	-	-	-	-	-
Approach	NB		NE		SW	
HCM Control Delay, s			0		1.1	
			U		1.1	
HCM LOS	В					
Minor Lane/Major Mvi	mt	NET	NER	NBLn11	VBLn2	SWL
Capacity (veh/h)		-	-	347	583	1076
HCM Lane V/C Ratio		-	-	0.013	0.12	0.067
HCM Control Delay (s	s)	-	-		12	8.6
LICM Land LOC	,			0	п	Α.

С

HCM Lane LOS

HCM 95th %tile Q(veh)

В

0.4

0.2

Α

Intersection						
Int Delay, s/veh	0.9					
		NIMD	NET	NED	CIVII	CMT
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	¥	40	}	F7	ነ	105
Traffic Vol, veh/h	40	18	440	57	12	465
Future Vol, veh/h	40	18	440	57	12	465
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	100	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	18	6	2	8	2	3
Mvmt Flow	42	19	463	60	13	489
NA = : = =/NA:= :	N 4: 4		1-:- 4		M-1. C	
	Minor1		//ajor1		Major2	
Conflicting Flow All	1008	493	0	0	523	0
Stage 1	493	-	-	-	-	-
Stage 2	515	-	-	-	-	-
Critical Hdwy	6.58	6.26	-	-	4.12	-
Critical Hdwy Stg 1	5.58	-	-	-	-	-
Critical Hdwy Stg 2	5.58	-	-	-	-	-
Follow-up Hdwy	3.662	3.354	-	-	2.218	-
Pot Cap-1 Maneuver	249	568	-	-	1043	-
Stage 1	582	-	-	-	-	-
Stage 2	568	-	-	-	-	-
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	246	568	_	_	1043	-
Mov Cap 1 Maneuver	373	-	_	_		_
Stage 1	582	_	_	_	_	_
Stage 2	561	-	_		_	_
Staye 2	100	-	-	-	-	-
Approach	NW		NE		SW	
HCM Control Delay, s	15.1		0		0.2	
HCM LOS	С					
Minor Long /Maior Mar	a.t	NET	NEDA	I\A/I 4	CIAII	CMT
Minor Lane/Major Mvn	П	NET		IWLn1	SWL	SWT
Capacity (veh/h)		-	-		1043	-
HCM Lane V/C Ratio		-	-	0.146		-
HCM Control Delay (s)	-	-		8.5	-
HCM Lane LOS		-	-	С	Α	-
HCM 95th %tile Q(veh	1)	-	-	0.5	0	-
,						

Intersection												
Int Delay, s/veh	8.0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	£		ሻ	ĵ.			4		ሻ	ĵ.	
Traffic Vol, veh/h	2	530	2	6	791	7	8	0	23	7	0	1
Future Vol, veh/h	2	530	2	6	791	7	8	0	23	7	0	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	<u>-</u>	-	None	-	<u>-</u>	None
Storage Length	125	-	-	0	-	-	-	-	-	75	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	90	90	95	95	90	90	90	95	90	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	28	2	2
Mvmt Flow	2	558	2	7	833	7	9	0	26	7	0	1
Major/Minor	Major1			Major2			Minor1			Minor2		
	840	0		_	0		1413	1416		1426	1414	836
Conflicting Flow All		0	0	560	0	0	563	563	559			
Stage 1	-	-	-	-	-	-	850	853	-	576	850 564	-
Stage 2 Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.38	6.52	6.22
Critical Hdwy Stg 1	4.12	-	-	4.12	-	-	6.12	5.52	0.22	6.38	5.52	0.22
Critical Hdwy Stg 2	-		-	-			6.12	5.52	-	6.38	5.52	_
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018		3.752	4.018	3.318
Pot Cap-1 Maneuver	795	-	_	1011	-	-	115	137	529	99	138	367
Stage 1	795	-	-	1011	-	-	511	509	529	321	377	30 <i>1</i>
Stage 2	-	-	-	-	-	-	355	376	-		508	-
Platoon blocked, %	-	_	_	-	-	-	333	3/0	-	400	500	-
Mov Cap-1 Maneuver	795	-		1011	-	-	114	136	529	94	137	367
Mov Cap-1 Maneuver	195	-	_	-	_	_	114	136	529	94	137	30 <i>1</i>
Stage 1	-	-	<u>-</u>	_	-	-	510	508	-	000	374	-
Stage 2	-	-	_		_	_	352	373	_	437	507	_
Olaye Z	-	•					002	515	_	707	301	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.1			20.1			42.5		
HCM LOS							С			Е		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBI n2		
Capacity (veh/h)		273	795			1011	-	-	94	367		
HCM Lane V/C Ratio			0.003	_		0.007	_		0.078			
HCM Control Delay (s)		20.1	9.5	_	_	8.6	_	_	46.5	14.8		
HCM Lane LOS		20.1	3.5 A	_	_	Α	_	_	40.5 E	В		
HCM 95th %tile Q(veh)	0.4	0		_	0	_	_	0.2	0		
TOW JOHN JOHN WING WING	1	0.7	U			0			0.2	J		

Interception							
Intersection	4 4						
Int Delay, s/veh	1.4						
Movement	NBL	NBR	NET	NER	SWL	SWT	
Lane Configurations	ሻ	7	î,		ሻ	†	
Traffic Vol, veh/h	8	113	558	2	29	806	
Future Vol, veh/h	8	113	558	2	29	806	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	50	0	-	-	200	-	
Veh in Median Storage		-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	9	126	620	2	32	896	
N.A ' /N.A'	NA"		4.1.4				
	Minor1		Major1		Major2		
Conflicting Flow All	1581	621	0	0	622	0	
Stage 1	621	-	-	-	-	-	
Stage 2	960	-	-	-	-	-	
Critical Hdwy	6.42	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	-	-	2.218	-	
Pot Cap-1 Maneuver	120	487	-	-	959	-	
Stage 1	536	-	-	-	-	-	
Stage 2	372	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	116	487	-	-	959	-	
Mov Cap-2 Maneuver	247	-	-	-	-	-	
Stage 1	536	-	-	-	-	-	
Stage 2	360	-	-	-	-	-	
Approach	NB		NE		SW		
HCM Control Delay, s	15.2		0		0.3		
HCM LOS	C		J		0.0		
Minau Lana (Maiau M	_4	NET	NED	VIDL 4 -1	NDL O	CIAII	CVA/T
Minor Lane/Major Mvn	ıτ	NET	NERI	NBLn11		SWL	SWT
Capacity (veh/h)		-	-	247	487	959	-
HCM Lane V/C Ratio		-	-		0.258		-
HCM Control Delay (s)		-	-	20.1	14.9	8.9	-

С

0.1

В

Α

0.1

HCM Lane LOS

HCM 95th %tile Q(veh)

Intersection						
Int Delay, s/veh	3.2					
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	INVVL	INVVIX		NER		
Traffic Vol, veh/h	118	40	♣ 607	66	ሻ	↑ 716
Future Vol, veh/h	118	40	607	66	6	716
Conflicting Peds, #/hr	0	0	007	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	-	None	-	None
Storage Length	0	None -	-	None -	200	NOHE -
Veh in Median Storage		-	0	-	200	0
Grade, %	, # 0 0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	5	4	2	6	2	2
Mvmt Flow	127	43	653	71	6	770
Major/Minor	Minor1	N	/lajor1	N	Major2	
Conflicting Flow All	1471	688	0	0	724	0
Stage 1	688	-	_	_	-	-
Stage 2	783	_	_	_	_	_
Critical Hdwy	6.45	6.24	_	_	4.12	_
Critical Hdwy Stg 1	5.45	-	_	_	7.12	_
Critical Hdwy Stg 2	5.45	_	_	_	_	_
Follow-up Hdwy	3.545	3.336	_	_	2.218	_
Pot Cap-1 Maneuver	138	443	_	_	879	_
Stage 1	493	-	_	_	-	_
Stage 2	445	_	_	_	_	_
Platoon blocked, %	773	_	_	_	_	_
	137	443	-	-	879	_
Mov Cap-1 Maneuver	275	443		-	0/9	-
Mov Cap-2 Maneuver			-	-	-	
Stage 1	493	-	-	-	-	-
Stage 2	442	-	-	-	-	-
Approach	NW		NE		SW	
HCM Control Delay, s	30.9		0		0.1	
HCM LOS	D		•		•••	
	_					
		NET	NEDA	11 A // A	014/1	OME
Minor Lane/Major Mvm	ıt	NET	NEKN	IWLn1	SWL	SWT
Capacity (veh/h)		-	-	304	879	-
HCM Lane V/C Ratio		-	-	0.559		-
HCM Control Delay (s)		-	-	30.9	9.1	-
HCM Lane LOS		-	-	D	Α	-
HCM 95th %tile Q(veh))	-	-	3.2	0	-

2: West Site Driveway/UNC Park-and-Ride Dr & Estes Drive Extension

Intersection												
Int Delay, s/veh	0.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	f			4			4		ሻ	f)	
Traffic Vol, veh/h	1	862	6	19	355	8	1	0	2	5	0	0
Future Vol, veh/h	1	862	6	19	355	8	1	0	2	5	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	_	None	-	_	None	-	-	None	_	-	None
Storage Length	125	-	-	_	-	-	-	-	-	75	-	-
Veh in Median Storage		0	-	-	0	-	-	0	-	-	0	_
Grade, %	-	0	_	_	0	-	-	0	_	-	0	_
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	7	7	2	2	2	40	2	2
Mvmt Flow	1	958	7	21	394	9	1	0	2	6	0	0
Major/Minor	Major1		_ N	Majora			Minor1		_N	Minor2		
	Major1	0		Major2	0			1400			1400	200
Conflicting Flow All	403	0	0	964	0	0	1404	1409	961	1405	1408	399
Stage 1	-	-	-	-	-	-	963	963	-	441	441	-
Stage 2	- 1 10	-	-	4.12	-	-	441	446	6 22	964	967	6 22
Critical Hdwy Stg 1	4.12	-	-	4.12	-	-	7.12 6.12	6.52 5.52	6.22	7.5 6.5	6.52 5.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.5	5.52	
Critical Hdwy Stg 2	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.86	4.018	3.318
Follow-up Hdwy	1156	-	-	714	-	-	117	139	311	3.66 97	139	651
Pot Cap-1 Maneuver	1130	-	-	/ 14	-	-	307	334	311	528	577	051
Stage 1 Stage 2	-	-	-	-	-	-	595	574		262	333	
Platoon blocked, %	-	-	-	-	-	-	333	3/4	-	202	555	-
Mov Cap-1 Maneuver	1156	-	-	714	-	-	114	134	311	93	134	651
Mov Cap-1 Maneuver	1130	_	-	114	_	-	114	134	-	93	134	- 001
Stage 1	-	-	<u>-</u>	-	-	-	307	334	-	528	555	-
Stage 2	-	-	-	-	-	-	572	552	<u>-</u>	260	333	_
Glaye Z	•	-		_	_	_	512	JJ2	<u>-</u>	200	555	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.5			23.6			46.2		
HCM LOS							С			Е		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2		
Capacity (veh/h)		197	1156	-	-	714	-	_	93	-		
HCM Lane V/C Ratio			0.001	_	_	0.03	_	_	0.06	_		
HCM Control Delay (s)		23.6	8.1	-	-	10.2	0	-	46.2	0		
HCM Lane LOS		C	A	-	_	В	A	-	E	A		
HCM 95th %tile Q(veh)	0.1	0	-	_	0.1	-	-	0.2	-		
	,	• • •										

3: Estes Drive Extension & East Site Driveway

Intersection							
Int Delay, s/veh	1						
Movement	NBL	NBR	NET	NER	SWL	SWT	Į
Lane Configurations	ሻ	7	1>	TILIT	OVIL	4	
Traffic Vol, veh/h	1	12	863	6	95	379	
Future Vol, veh/h	1	12	863	6	95	379	
Conflicting Peds, #/hr	0	0	0	0	0	0/0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-		
Storage Length	50	0	_	-	_	-	
Veh in Median Storage		-	0	_	_	0	
Grade, %	0	-	0	_	_	0	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	1	13	959	7	106	421	
Majay/Minay	N //: /		1-14	_	Ania TO		
	Minor1		Major1		Major2		
Conflicting Flow All	1594	962	0	0	966	0	
Stage 1	962	-	-	-	-	-	
Stage 2	632	-	-	-	-	-	
Critical Hdwy	6.42	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	- 0.40	-	
Follow-up Hdwy		3.318	-	-	2.218	-	
Pot Cap-1 Maneuver	118	310	-	-	713	-	
Stage 1	371	-	-	-	-	-	
Stage 2	530	-	-	-	-	-	
Platoon blocked, %	0.5	0.40	-	-	740	-	
Mov Cap-1 Maneuver	95	310	-	-	713	-	
Mov Cap-2 Maneuver	95	-	-	-	-	-	
Stage 1	371	-	-	-	-	-	
Stage 2	427	-	-	-	-	-	
Approach	NB		NE		SW		
HCM Control Delay, s	19.1		0		2.2		
HCM LOS	С						
Minor Lane/Major Mvn	nt	NET	NEDI	NBLn11	JRI n2	SWL	
	IL	INCI					
Capacity (veh/h) HCM Lane V/C Ratio		-	-	95 0.012	310	713	
HCM Control Delay (s)		-	-	43.3	17.1	10.9	
HCM Lane LOS		-	-	43.3 E	17.1	10.9 B	
HCM 95th %tile Q(veh	\	-	-	0	0.1	0.5	
HOW JOHN JOHN Q(VEH	1	-	_	U	U. I	0.0	

Intersection						
Int Delay, s/veh	2.3					
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	¥		₽			सी
Traffic Vol, veh/h	51	22	787	95	12	422
Future Vol, veh/h	51	22	787	95	12	422
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	8	14	2	2	17	7
Mvmt Flow	56	24	865	104	13	464
			- 500			. • 1
	Minor1	N	/lajor1		Major2	
Conflicting Flow All	1407	917	0	0	969	0
Stage 1	917	-	-	-	-	-
Stage 2	490	-	-	-	-	-
Critical Hdwy	6.48	6.34	_	-	4.27	-
Critical Hdwy Stg 1	5.48	-	-	-	-	-
Critical Hdwy Stg 2	5.48	-	_	_	_	-
Follow-up Hdwy	3.572	3,426	_	_	2.353	_
Pot Cap-1 Maneuver	149	313	_	-	654	_
Stage 1	380	-	_	_	-	_
Stage 2	604	_		_		
Platoon blocked, %	004		_		_	_
Mov Cap-1 Maneuver	145	313	_	-	654	-
•	145			-	004	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	380	-	-	-	-	-
Stage 2	588	-	-	-	-	-
Approach	NW		NE		SW	
HCM Control Delay, s	42.6		0		0.3	
HCM LOS	τ <u>2.</u> 0		- 0		0.0	
1 TOIVI LOO						
Minor Lane/Major Mvn	nt	NET	NERN	IWLn1	SWL	SWT
Capacity (veh/h)		-	-	173	654	-
HCM Lane V/C Ratio		-	-	0.464	0.02	-
HCM Control Delay (s)	-	-	42.6	10.6	0
HCM Lane LOS		-	-	Е	В	Α
HCM 95th %tile Q(veh	1)	-	-	2.2	0.1	-
2111 2211 701110 2(1011	,					

Intersection						
Int Delay, s/veh	1.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
						אמט
Lane Configurations	\	7	105	↑↑ 580	†	135
Traffic Vol, veh/h	3	99	105		1128	
Future Vol, veh/h	3	99	105	580	1128	135
Conflicting Peds, #/hr	10	0	_ 1	0	0	_ 1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	125	0	0	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	6	6	6	6	3	3
Mvmt Flow	3	106	113	624	1213	145
Major/Minor	Minor2	A	laier1		Major2	
			Major1			^
Conflicting Flow All	1834	680	1359	0	-	0
Stage 1	1286	-	-	-	-	-
Stage 2	548	-	-	-	-	-
Critical Hdwy	6.92	7.02	4.22	-	-	-
Critical Hdwy Stg 1	5.92	-	-	-	-	-
Critical Hdwy Stg 2	5.92	-	-	-	-	-
Follow-up Hdwy	3.56	3.36	2.26	-	-	-
Pot Cap-1 Maneuver	65	384	481	-	-	-
Stage 1	216	-	-	-	-	-
Stage 2	532	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	50	384	481	-	-	-
Mov Cap-2 Maneuver	50	-	-	-	-	-
Stage 1	216	-	-	-	-	-
Stage 2	407	-	-	-	-	-
2.030 2						
Approach	EB		NB		SB	
HCM Control Delay, s	19.8		2.3		0	
	19.6 C		2.3		U	
HCM LOS	U					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1 I	EBLn2	SBT
Capacity (veh/h)		481	-	50	384	-
HCM Lane V/C Ratio		0.235	-	0.065	0.277	-
HCM Control Delay (s)		14.8	-	81.9	17.9	-
HCM Lane LOS		В	_	F	С	_
HCM 95th %tile Q(veh)		0.9	_	0.2	1.1	-
		3.0		J.L		

2: West Site Driveway/UNC Park-and-Ride Dr & Estes Drive Extension

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1			4			4		ሻ	1	
Traffic Vol, veh/h	4	425	4	13	414	8	4	0	13	4	0	0
Future Vol, veh/h	4	425	4	13	414	8	4	0	13	4	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	125	_	-	_	_	-	_	_	-	75	_	-
Veh in Median Storage		0	_	_	0	_	_	0	_	-	0	_
Grade, %	-	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	3	3	2	2	4	4	2	2	2	2	2	2
Mymt Flow	4	472	4	14	460	9	4	0	14	4	0	0
		.,,_			.00			J	- 1 1		J	
									_			
	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	469	0	0	477	0	0	976	981	474	984	979	464
Stage 1	-	-	-	-	-	-	483	483	-	493	493	-
Stage 2	-	-	-	-	-	-	493	498	-	491	486	-
Critical Hdwy	4.13	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.227	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1087	-	-	1085	-	-	230	249	590	228	250	598
Stage 1	-	-	-	-	-	-	565	553	-	558	547	-
Stage 2	-	-	-	-	-	-	558	544	-	559	551	-
Platoon blocked, %	4000	-	-	40.5-	-	-						
Mov Cap-1 Maneuver	1087	-	-	1085	-	-	226	244	590	219	245	598
Mov Cap-2 Maneuver	-	-	-	-	-	-	226	244	-	219	245	-
Stage 1	-	-	-	-	-	-	563	551	-	556	538	-
Stage 2	-	-	-	-	-	-	549	535	-	543	549	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0.2			13.8			21.8		
HCM LOS	V .,			7.2			В			C		
Minor Lane/Major Mvm	.+ 1	NBLn1	EBL	EBT	EBR	WBL	WBT	WDD	SBLn1	CDI no		
						1085		WDR		ODLIIZ		
Capacity (veh/h) HCM Lane V/C Ratio		428 0.044	1087 0.004		-	0.013	-	-	219 0.02	-		
		13.8		-	-	8.4	-		21.8	-		
HCM Control Delay (s) HCM Lane LOS			8.3	-	-		0	-		0		
		0.1	A 0	-	-	A 0	A -	-	0.1	Α		
HCM 95th %tile Q(veh)		U. I	U	-	-	U	-	-	U. I	-		

Intersection						
Int Delay, s/veh	1.4					
Movement	NBL	NBR	NET	NER	SWL	SWT
Lane Configurations	NDL	T T	1 <u>NL1</u>	INLIN	OVVL	<u>- 5√√1</u>
Traffic Vol, veh/h	4	63	434	4	65	440
Future Vol, veh/h	4	63	434	4	65	440
Conflicting Peds, #/hr	0	03	434	0	00	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Siop -	None	riee -			None
	0	None 0	-		-	None
Storage Length			-	-	-	-
Veh in Median Storage	•	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	4	70	482	4	72	489
Major/Minor	Minor1	ı	Major1	ı	Major2	
Conflicting Flow All	1117	484	0	0	487	0
Stage 1	484	_	_	_	_	-
Stage 2	633	_	_	_	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_		_
Critical Hdwy Stg 2	5.42	_	-	_	_	_
Follow-up Hdwy	3.518	3 318	_	_	2.218	_
Pot Cap-1 Maneuver	229	583	_	-	1076	_
Stage 1	620	-	_	_	1070	_
Stage 2	529	_				_
Platoon blocked, %	323	_	_	_	-	_
	208	583		-	1076	
Mov Cap-1 Maneuver			-	-	1070	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	620	-	-	-	-	-
Stage 2	480	-	-	-	-	-
Approach	NB		NE		SW	
HCM Control Delay, s	12.6		0		1.1	
HCM LOS	В					
		NET	NES	NDI 4.	IDI C	0) * "
Minor Lane/Major Mvn	nt	NET	NER	NBLn11		SWL
Capacity (veh/h)		-	-	208	583	1076
HCM Lane V/C Ratio		-	-	0.021		0.067
LICM Control Dolov /o	`			22.7	40	0.0

22.7

С

0.1

12

В

0.4

8.6

Α

0.2

0

Α

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

Intersection						
Int Delay, s/veh	1.2					
		A 11 4 / 5	NET	NES	0)4"	014.7
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	Y		f)			्र
Traffic Vol, veh/h	40	18	440	57	12	465
Future Vol, veh/h	40	18	440	57	12	465
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	18	6	2	8	2	3
Mymt Flow	42	19	463	60	13	489
IVIVIII(I IOVV	72	10	700	00	10	703
Major/Minor	Minor1	Λ	//ajor1	I	Major2	
Conflicting Flow All	1008	493	0	0	523	0
Stage 1	493	-	_	_	-	-
Stage 2	515	_	_	_	_	_
Critical Hdwy	6.58	6.26	_	_	4.12	_
Critical Hdwy Stg 1	5.58	0.20	_	_	7.12	_
Critical Hdwy Stg 2	5.58	-	-	-		_
			-	-	2.218	
Follow-up Hdwy	3.662		-	-		-
Pot Cap-1 Maneuver	249	568	-	-	1043	-
Stage 1	582	-	-	-	-	-
Stage 2	568	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	245	568	-	-	1043	-
Mov Cap-2 Maneuver	245	-	-	-	-	-
Stage 1	582	-	-	-	-	-
Stage 2	558	-	_	_	-	-
					011/	
Approach	NW		NE		SW	
HCM Control Delay, s	20.2		0		0.2	
HCM LOS	С					
Minor Lane/Major Mvn	ot	NET	NEDN	WLn1	SWL	SWT
	III		INERI			3001
Capacity (veh/h)		-	-	298	1043	-
HCM Lane V/C Ratio		-	-	0.205		-
HCM Control Delay (s)	-	-	20.2	8.5	0
HCM Lane LOS		-	-	С	Α	Α
HCM 95th %tile Q(veh	1)	-	-	8.0	0	-
	7				~	

Intersection							J
Int Delay, s/veh	1.7						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
						SDK	
Lane Configurations	71	77	\	^	↑ }	24	
Traffic Vol, veh/h	21	77 77	94	640	658	31	
Future Vol, veh/h	21	77	94	640	658	31	
Conflicting Peds, #/hr	1	0	1	0	0	1	
	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	125	0	0	-	-	-	
Veh in Median Storage,		-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	5	5	6	6	3	3	
Mvmt Flow	23	84	102	696	715	34	
Major/Minor Mi	inor2		/lajor1		//ajor2		
	1286	375	750	0	-	0	
Stage 1	733	-	-	-	-	-	
Stage 2	553		-	-	-	-	
Critical Hdwy	6.9	7	4.22	-	-	-	
Critical Hdwy Stg 1	5.9	-	-	-	-	-	
Critical Hdwy Stg 2	5.9	-	-	-	-	-	
	3.55	3.35	2.26	-	-	-	
Pot Cap-1 Maneuver	152	614	829	-	-	-	
Stage 1	428	-	-	-	-	-	
Stage 2	532	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	133	613	829	-	-	-	
Mov Cap-2 Maneuver	133	-	-	-	-	-	
Stage 1	428	-	-	-	-	-	
Stage 2	466	-	-	-	_	-	
3 11 3 1							
A name a sh	ED		ND		CD		
Approach	EB		NB		SB		
HCM Control Delay, s	17.3		1.3		0		
HCM LOS	С						
Minor Lane/Major Mvmt		NBL	NBT	EBLn1 E	FRI n2	SBT	
Capacity (veh/h)		829		133	613	-	
HCM Lane V/C Ratio		0.123		0.172		_	
HCM Control Delay (s)		10	_	37.6	11.8	-	
HCM Lane LOS		A	-	37.0 E	11.0 B		
		0.4	-			-	
HCM 95th %tile Q(veh)		0.4	-	0.6	0.5	-	

2: West Site Driveway/UNC Park-and-Ride Dr & Estes Drive Extension

Intersection												
Int Delay, s/veh	8.0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	£			4			4		ሻ	f)	
Traffic Vol, veh/h	2	530	2	6	791	7	8	0	23	7	0	1
Future Vol, veh/h	2	530	2	6	791	7	8	0	23	7	0	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	125	-	-	-	-	-	-	-	-	75	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	90	90	95	95	90	90	90	95	90	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	28	2	2
Mvmt Flow	2	558	2	7	833	7	9	0	26	7	0	1
Major/Minor	Major1		, N	Majora			Minor1			Minor2		
	Major1	^		Major2	^			4440			4444	000
Conflicting Flow All	840	0	0	560	0	0	1413	1416	559	1426	1414	836
Stage 1	-	-	-	-	-	-	563	563	-	000	850	-
Stage 2	4 40	-	-	4.40	-	-	850	853	- 6.00	576	564	- 00
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.38	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.38	5.52	-
Critical Hdwy Stg 2	2 240	-	-	2 240	-	-	6.12	5.52	2 240	6.38	5.52	2 240
Follow-up Hdwy	2.218	-		2.218	-	-	3.518		3.318	3.752	4.018	3.318
Pot Cap-1 Maneuver	795	-	-	1011	-	-	115	137	529	99	138	367
Stage 1	-	-	-	-	-	-	511	509	-	321	377	-
Stage 2	-	-	-	-	-	-	355	376	-	460	508	-
Platoon blocked, %	795	-	-	1011	-	-	113	135	529	93	136	367
Mov Cap-1 Maneuver		-	-	1011	-	-	113	135	529	93	136	30 <i>1</i>
Mov Cap-2 Maneuver	-	-	-	-	-	-	510	508		000	372	
Stage 1	-	-	-	_	-	-	349	371	-	437	507	-
Stage 2	-	-	-	-	-	-	349	3/1	-	437	507	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.1			20.2			43		
HCM LOS							С			Е		
Minor Lane/Major Mvn	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WRR	SBLn1	SRI n2		
Capacity (veh/h)	n I	271	795			1011	-	VVDIC -	93	367		
HCM Lane V/C Ratio			0.003	-		0.007	-		0.079			
HCM Control Delay (s)		20.2	9.5	-	-	8.6	0	-	47	14.8		
HCM Lane LOS		20.2 C			-	0.0 A	A	-	47 E	14.0 B		
HCM 95th %tile Q(veh	\	0.4	A 0	-	-	A 0	A -	-	0.3	0		
HOW SOUL WILL WINE WINE)	0.4	U	-	-	U	-	-	0.3	U		

3: Estes Drive
Intersection
Int Delay, s/veh
Movement
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Conflicting Peds, #/hr
Sign Control
RT Channelized
Storage Length
Veh in Median Storag
Grade, %
Peak Hour Factor
Heavy Vehicles, % Mvmt Flow
WIVIII I IOW
Major/Minor
Conflicting Flow All
Stage 1
Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
Stage 1
Stage 2
Platoon blocked, %
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1
Stage 2

Intersection							
Int Delay, s/veh	1.5						
		NDD	NICT	NED	CIAII	CVACT	
Movement	NBL	NBR	NET	NER	SWL	SWT	
Lane Configurations	ች	7	4			4	
Traffic Vol, veh/h	8	113	558	2	29	806	
Future Vol, veh/h	8	113	558	2	29	806	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	50	0	-	-	-	-	
Veh in Median Storage	e, # 0	-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mymt Flow	9	126	620	2	32	896	
maille IVII	- 3	120	ULU	_	02	000	
Major/Minor	Minor1	N	//ajor1	ı	Major2		
Conflicting Flow All	1581	621	0	0	622	0	
Stage 1	621	-	-	-	_	-	
Stage 2	960	_	_	_	_	_	
Critical Hdwy	6.42	6.22	_	-	4.12	_	
Critical Hdwy Stg 1	5.42	-	_	_	- 1.12	_	
Critical Hdwy Stg 1	5.42	_			_	_	
Follow-up Hdwy	3.518	3.318	_	-	2.218	_	
Pot Cap-1 Maneuver	120	487	_	-	959	-	
	536		-	-	303	-	
Stage 1		-	-	-	-	-	
Stage 2	372	-	-	-	-	-	
Platoon blocked, %	,	40-	-	-	0-4	-	
Mov Cap-1 Maneuver	112	487	-	-	959	-	
Mov Cap-2 Maneuver	112	-	-	-	-	-	
Stage 1	536	-	-	-	-	-	
Stage 2	347	-	-	-	-	-	
Approach	NB		NE		SW		
HCM Control Delay, s	16.6		0		0.3		
HCM LOS	С						
Minor Lane/Major Mvm	nt	NET	NFR	NBLn11	VBI n2	SWL	
Capacity (veh/h)			-	112	487	959	
HCM Lane V/C Ratio		-		0.079			
		-	-				
HCM Control Delay (s)		-	-	39.9	14.9	8.9	
HCM Lane LOS		-	-	E	В	A	
HCM 95th %tile Q(veh)	-	-	0.3	1	0.1	

Intersection						
Int Delay, s/veh	13.7					
<u> </u>		NIME	NET	NED	CIAII	CVA/T
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	440	40	^}	.00	^	€
Traffic Vol, veh/h	118	40	607	66	6	716
Future Vol, veh/h	118	40	607	66	6	716
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	5	4	2	6	2	2
Mvmt Flow	127	43	653	71	6	770
Major/Minor	Minari		laier1		Major	
	Minor1		Major1		Major2	
Conflicting Flow All	1471	688	0	0	724	0
Stage 1	688	-	-	-	-	-
Stage 2	783	-	-	-	-	-
Critical Hdwy	6.45	6.24	-	-	4.12	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545		-	-	2.218	-
Pot Cap-1 Maneuver	138	443	-	-	879	-
Stage 1	493	-	-	-	-	-
Stage 2	445	-	-	-	-	-
Platoon blocked, %			-	-		_
Mov Cap-1 Maneuver	136	443	_	_	879	-
Mov Cap-2 Maneuver	136	-	_	_	-	_
Stage 1	493	_	_	_	_	_
Stage 2	440	_	_	_	_	_
Olaye Z	770			_	-	
Approach	NW		NE		SW	
HCM Control Delay, s	134.3		0		0.1	
HCM LOS	F					
						CMT
Minor Long /Maior Ma	.4	NET	NIEDA	11 / / / /	CIAI	
Minor Lane/Major Mvm	nt	NET		IWLn1	SWL	SWT
Capacity (veh/h)	nt	-	-	165	879	-
Capacity (veh/h) HCM Lane V/C Ratio		NET - -	-	165 1.03	879 0.007	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		-	-	165 1.03 134.3	879 0.007 9.1	- - 0
Capacity (veh/h) HCM Lane V/C Ratio		-	-	165 1.03	879 0.007	-

Intersection							
Int Delay, s/veh	2.3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	T T	T T	NDL 1	† †	↑ ↑	ODIN	
Traffic Vol, veh/h	37	76	53	1302	853	6	
Future Vol, veh/h	37	76	53	1302	853	6	
Conflicting Peds, #/hr	4	0	2	0	0	2	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-		-	None	-	None	
Storage Length	125	0	0	-	-	-	
Veh in Median Storage		-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	94	94	94	94	94	94	
Heavy Vehicles, %	6	6	7	2	2	2	
Mvmt Flow	39	81	56	1385	907	6	
Major/Minor	Minor2		laier1	N	/oicr?		
			Major1		//ajor2	^	
Conflicting Flow All	1722	459	916	0	-	0	
Stage 1	913 809	-	-	-	-	-	
Stage 2	6.92	7.02	4.24	-	-	-	
Critical Hdwy	5.92	7.02	4.24	-	-	-	
Critical Hdwy Stg 1 Critical Hdwy Stg 2	5.92	-	-	-	-	-	
Follow-up Hdwy	3.56	3.36	2.27	-	-	-	
Pot Cap-1 Maneuver	77	538	710	_		-	
Stage 1	342	550	7 10	_		_	
Stage 2	388	_	_	_	_	_	
Platoon blocked, %	500			_	_	_	
Mov Cap-1 Maneuver	71	537	710	_	_	_	
Mov Cap-1 Maneuver	71	-	- 10	<u>-</u>	_	_	
Stage 1	341	_	_	_	_	_	
Stage 2	357	<u>-</u>	_	-	-	_	
Jugo 2	301						
	==				0.5		
Approach	EB		NB		SB		
HCM Control Delay, s	43.4		0.4		0		
HCM LOS	E						
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1 I	EBLn2	SBT	SBR
Capacity (veh/h)		710	_	71	537	-	-
HCM Lane V/C Ratio		0.079	-	0.554		-	-
HCM Control Delay (s)		10.5		106.1	12.9	-	-
HCM Lane LOS		В	-	F	В	-	-
HCM 95th %tile Q(veh)		0.3	-	2.3	0.5	-	-
71 2(1011)							

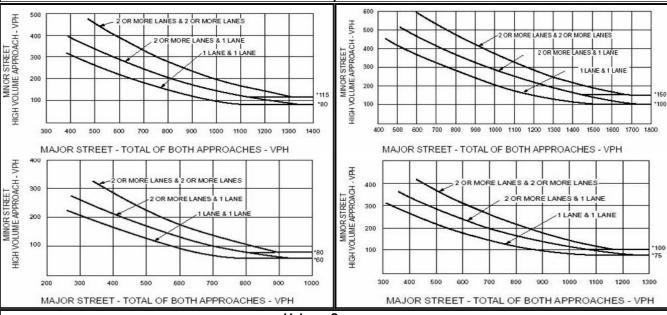
Appendix G – Signal Warrant Analysis

Warrants Summary Page 1 of 2

				Warr	ants	Summ	ary						
Information													
Analyst Agency/Co Date Performed Project ID East/West Street	H 12 C C E	NTB 1 2/21/2 H Mui ampu stes D	017 nicipal s)rive Ex	Services	6	Jurisdic Units Time Pe North/S	tion eriod An outh Str		d 2	Chapel J.S. Cu 2021 W Airport [Hill, No stoma ith Site Or	C ry	
					10								
General	iaino	1 <i>par</i> 0	CIVICCO	Сатра				Roa	dwav N	etwork			
Major Street Speed	35		☐ Po	pulation	< 10,0	000		_					
(mph) Image: Signal (ft) Nearest Signal (ft) Image: Signal System Weekend Count													
			_					┪——			r		0
		1						<u> </u>			<u> </u>	SB	
Geometry and Traffic	•	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of lanes, N		0	1	0	0	1	0	0	0	0	0	0	0
Lane usage			TR			LT			LR				
venicie volume Average (vph)	s	0	152	18	2	133	0	17	0	6	0	0	0
Peds (ped/h) / Gaps (gaps/h)			0/0			0/0			0/0			0/0	
Intersection Urisdiction Urisdiction													
Warrant 1: Eight-Hour	Vehi	cular	Volum	е									
1 A. Minimum Vehicular	Volu	mes (l	3oth m	ajor app	roach	esand-	highe	r minc	r appro	ach)	or		
1 B. Interruption of Conti	nuou	ıs Traf	fic (Bo	th major	appro	aches	and h	igher	minor a	oproach	n)or-	-	
1 (80%) Vehicularand-	- Inte	errupti	on Vol	umes (B	oth ma	ajor appr	oaches	and	highe	r minor	appro	ach)	
Warrant 2: Four-Hour V	ehic	ular \	/olume	9									
2 A. Four-Hour Vehicular	· Volu	umes	(Both r	najor ap	proacl	nesand	d high	er min	or appr	oach)			
Warrant 3: Peak Hour													✓
3 A. Peak-Hour Condition	ns (N	/linor o	delay	and m	inor vo	olumea	and tot	al vol	ume)	or			✓
3 B. Peak- Hour Vehicula	ar Vo	lumes	(Both	major a	pproa	chesar	nd high	ner mi	nor app	roach)			✓
Warrant 4: Pedestrian	/olu	me											
4 A. Four Hour Volumes	or-	-											
4 B. One-Hour Volumes													
Warrant 5: School Cros	sing	7											
5. Student Volumesand	d												
5. Gaps Same Period													
Warrant 6: Coordinated	l Sig	nal S	ystem										
6. Degree of Platooning	(Pred	domin	ant dire	ection or	both	directions	s)						
Warrant 7: Crash Expe	rienc	e											
7 A. Adequate trials of al	terna	atives,	obser	/ance ar	nd enfo	orcemen	t failed	and-	-				
7 B. Reported crashes su	usce	ptible	to corre	ection by	y signa	al (12-mo	onth per	iod)	and				

Warrants Summary Page 2 of 2

7 C. (80%) Volumes for Warrants 1A, 1Bor 4 are satisfied	
Warrant 8: Roadway Network	
8 A. Weekday Volume (Peak hour totaland projected warrants 1, 2 or 3)or	
8 B. Weekend Volume (Five hours total)	
Warrant 9: Grade Crossing	
9 A. Grade Crossing within 140 ftand	
9 B. Peak-Hour Vehicular Volumes	


Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010TM Version 6.90

Generated: 12/21/2017 2:21 PM

Warrants Volume Page 1 of 1

Warrants Volume Information CRS Analyst Intersection Estes Dr Ext & Airport Dr Agency/Co HNTB North Carolina, PC Jurisdiction Chapel Hill, NC Date Performed 12/21/2017 Units U.S. Customary Time Period Analyzed North/South Street Project ID CH Municipal Services Campus 2021 With Site Scenario Airport Dr East/West Street Estes Drive Extension Major Street East-West File Name Estes & Airport.xhy Project Description CH Municipal Services Campus Warrant 1 Condition A-Minimum Vehicular Volume Condition B-Interruption of Continuous Traffic Number of lanes for moving traffic on each approach Vehicles per hour on major street (total of both approaches) Vehicles per hour on higher-volume minor-street approach (one direction only) Number of lanes for moving Vehicles per hour on major street Vehicles per hour on higher-volume traffic on each approach (total of both approaches) minor-street approach (one direction only) Major Street Minor Street 100% 80% 70% 56% 100% 80% 70% 56% Major Street Minor Street 100% 80% 70% 56% 100% 80% 70% 56% 150 120 84 500 400 350 280 105 750 600 525 420 75 60 53 42 2 or more 1 600 480 420 336 150 120 105 84 2 or more 900 720 504 75 60 53 42 480 420 336 140 112 56 2 or more 2 or more 600 200 160 2 or more 2 or more 900 720 630 504 100 80 70 112 1 500 400 350 280 200 160 140 1 750 600 525 420 100 80 70 56 2 or more 2 or more Warrant 2 Warrant 3 VPH 500 400 2 OR MORE LANES & 1 LANE

	Volume Summary														
Мајо	r Street Lanes	1	Minor S	treet Lanes 1	Sp	oeed	35	Populati	Population 10						
Hours	Major Volume	Minor Volume	Total Volume	1A (100%)	1A (80%)	1B (100%)	1B (80%)	2 (100%)	3A (100%)	3B (100%)					
07-08	1316	73	1389	No	No	No	Yes	No	No	No					
08-09	0	0	0	No	No	No	No	No	No	No					
09-10	0	0	0	No	No	No	No	No	No	No					
10-11	0	0	0	No	No	No	No	No	No	No					
11-12	0	0	0	No	No	No	No	No	No	No					
12-13	974	58	1032	No	No	No	No	No	No	No					
13-14	0	0	0	No	No	No	No	No	No	No					
14-15	0	0	0	No	No	No	No	No	No	No					
15-16	0	0	0	No	No	No	No	No	No	No					
16-17	0	0	0	No	No	No	No	No	No	No					
17-18	1395	158	1553	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
18-19	0	0	0	No	No	No	No	No	No	No					
Totals	3685	289	3974	1	1	1	2	1	1	1					

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010TM Version 6.90

Generated: 12/21/2017 2:27 PM

Warrants Summary Page 1 of 2

Warrants Summary													
Information													
Analyst Agency/Co Date Performed Project ID East/West Street File Name	H 1: C C A	2/21/20 H Mur ampus irport I	017 nicipal \$ s	arolina, Services rt.xhy	PC	Intersect Jurisdic Units Time Pe North/S Major S	tion eriod An outh Str) I I	NC 86 8 Chapel U.S. Cu 2021 W NC 86 (North-S	Hill, N istoma ith Site MLK J	C ry e Scen	
Project Description CH M	unic	ipal Se	ervices	Campu	s								
General								Roa	dway N	letwork	(
Major Street Speed (mph)	35		Po	oulation	< 10,0	00		Two	o Major	Routes	6		
Nearest Signal (ft)	0		Co	ordinate	d Sign	al Syste	m	We	ekend (Count			
Crashes (per year)	0		Add	equate 1	rials c	f Alterna	atives	5-уі	Growt	h Facto	r		0
Geometry and Traffic	eometry and Traffic EB WB NB SB												
-		LT	TH	RT	LT	TH	RT	LT	TH 2	RT	LT	TH 2	RT
Number of lanes, N Lane usage		1 L	0	1 R	0	0	0	1 L	T	0	0	Z	0
Vehicle Volume Averages (vph)	S	5	0	21	0	0	0	21	210	0	0	219	14
Peds (ped/h) / Gaps 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0													
Delay (s/veh) / (veh-hr)			6.7 / 0.2			0/0			0.3 / 0.1			0/0	
Warrant 1: Eight-Hour V	/ehi	cular \	Volum:	9									
1 A. Minimum Vehicular \	∕olu	mes (E	Both ma	ajor app	roache	sand	highe	r mino	r appro	ach)	or		
1 B. Interruption of Contir	านอน	ıs Traf	fic (Bot	h major	appro	aches	and h	igher ı	minor a	pproacl	h)or-		
1 (80%) Vehicularand	- Inte	erruptio	on Volu	mes (Bo	oth ma	jor appr	oaches	and	highe	er minor	appro	ach)	
Warrant 2: Four-Hour V	ehic	ular V	olume/										
2 A. Four-Hour Vehicular	Vol	umes (Both n	najor ap _l	oroach	esand	d high	er min	or appr	oach)			
Warrant 3: Peak Hour													
3 A. Peak-Hour Condition													
3 B. Peak- Hour Vehicula	ır Vo	lumes	(Both	major a	proac	hesar	nd high	ner mi	nor app	roach)			
Warrant 4: Pedestrian V													
4 A. Four Hour Volumes	or-	-											
4 B. One-Hour Volumes													
Warrant 5: School Cros		7											
5. Student Volumesand	<u></u>												
5. Gaps Same Period													
Warrant 6: Coordinated													
6. Degree of Platooning (ant dire	ction or	both d	irections	s)						
Warrant 7: Crash Exper													
7 A. Adequate trials of alt													
7 B. Reported crashes su	isce	ptible t	o corre	ection by	signa	I (12-mo	onth per	iod)	and				

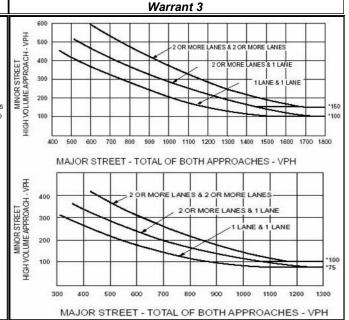
Warrants Summary Page 2 of 2

7 C. (80%) Volumes for Warrants 1A, 1Bor 4 are satisfied	
Warrant 8: Roadway Network	
8 A. Weekday Volume (Peak hour totaland projected warrants 1, 2 or 3)or	
8 B. Weekend Volume (Five hours total)	
Warrant 9: Grade Crossing	
9 A. Grade Crossing within 140 ftand	
9 B. Peak-Hour Vehicular Volumes	

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010TM Version 6.90

Generated: 12/21/2017 2:33 PM


Page 1 of 1 Warrants Volume

Warrants Volume Information Analyst CRS NC 86 & Airport Dr Chapel Hill, NC Intersection Agency/Co HNTB North Carolina, PC Jurisdiction U.S. Customary 2021 With Site Scenario NC 86 (MLK Jr Blvd) North-South Date Performed 12/21/2017 Units Time Period Analyzed North/South Street Major Street CH Municipal Services Campus Project ID East/West Street Airport Drive NC 86 & Airport.xhy File Name Project Description CH Municipal Services Campus Warrant 1

	ves for moving Vehicles per hour on major str ch approach (total of both approaches)							on higher- th (one dire	
Major Street	Minor Street	100%	80%	70%	56%	100%	80%	70%	56%
1	1	500	400	350	280	150	120	105	84
2 or more	1	600	480	420	336	150	120	105	84
2 or more	2 or more	600	480	420	336	200	160	140	112
1	2 or more	500	400	350	280	200	160	140	112

	nes for moving ch approach	Vehick (to)	Vehicles per hour on major street (total of both approaches)				Vehicles per hour on higher-volume minor-street approach (one direction only)							
Major Street	Minor Street	100%	80%	70%	56%	100%	80%	70%	56%					
1	1	750	600	525	420	75	60	53	42					
2 or more	1	900	720	630	504	75	60	53	42					
2 or more	2 or more	900	720	630	504	100	80	70	56					
1	2 or more	750	600	525	420	100	80	70	56					

Warrant 2 MINOR STREET HIGH VOLUME APPROACH - VPH 400 MORE LANES & 1 LANE 300 200 100 1100 600 700 800 900 1000 MAJOR STREET - TOTAL OF BOTH APPROACHES - VPH MINOR STREET HIGH VOLUME APPROACH - VPH LANES 8 2 OR MORE LANES 300 200 100 MAJOR STREET - TOTAL OF BOTH APPROACHES - VPH

١	/ 0	lume	Summary	

Major	Street Lanes	2+	Minor St	reet Lanes 2+	Speed		35	Populati	ion 1	0000+
Hours	Major Volume	Minor Volume	Total Volume	1A (100%)	1A (80%)	1B (100%)	1B (80%)	2 (100%)	3A (100%)	3B (100%)
07-08	1948	102	2050	No	No	Yes	Yes	No	No	No
08-09	0	0	0	No	No	No	No	No	No	No
09-10	0	0	0	No	No	No	No	No	No	No
10-11	0	0	0	No	No	No	No	No	No	No
11-12	0	0	0	No	No	No	No	No	No	No
12-13	1423	98	1521	No	No	No	Yes	No	No	No
13-14	0	0	0	No	No	No	No	No	No	No
14-15	0	0	0	No	No	No	No	No	No	No
15-16	0	0	0	No	No	No	No	No	No	No
16-17	0	0	0	No	No	No	No	No	No	No
17-18	2214	113	2327	No	No	Yes	Yes	No	No	No
18-19	0	0	0	No	No	No	No	No	No	No
Totals	5585	313	5898	0	0	2	3	0	0	0

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010TM Version 6.90

Generated: 12/21/2017 2:33 PM

Appendix H - Crash Data

Study Criteria Summary

County:ORANGECity:All and RuralDate:11/1/2012to 10/31/2017Study:ESTESDREXTSTRIP

Location: SR 1780 (Estes Dr Ext) from SR 1843 (Seawell School Rd) to NC 86 (Martin Luther King Jr. Blvd)

Report Details

				-	110	port	. DC	Lan	<u> </u>											
Acc				1				'	Total		Inju	ıries		Co	ondi	tion	Ro	ad	Trfc	Ctl
No	Crash ID	Milepost	Date	Acc	iden	t Type	Э	Da	amage	F	Α	В	С	R	L	w	Ch	Ci	Dv	Op
1	103707110	0.950	03/13/2013 08:15	RAN OF RIGHT					1500	0	0	0		1	1	1	1	0	3	
Unit	1:1 	Alchi/Dr	gs : 0	Speed:	35 	MPH	Dir:	N 		Veh	Mnvr	/Ped	Actn:		8		Obj Si	trk:	42	
2	104012507	0.950	03/01/2014 06:35	RAN OF RIGHT	F RO	AD -		\$	3000	1	0	0	0	1	3	2	7	0	13	1
Unit	1: 20	Alchi/Dr	gs: 1	Speed:	55 	MPH	Dir:	S\ 	w 	Veh	Mnvr	/Ped	Actn:	_	4		Obj Si	trk:	64	_
3	103632486	0.964	12/06/2012 17:20	ANIMAL				\$	2000	0	0	0	0	1	5	2	3	0	0	
Unit	1:1	Alchi/Dr	gs: 0	Speed:	35	MPH	Dir:	_ E		Veh	Mnvr	/Ped	Actn:	_	4		Obj Si	trk:	17	
4	104364723	1.070	04/28/2015 19:15	ANIMAL				\$	500	0	0	0	0	1	1	1	7	0	13	2
Unit	1 :1	Alchi/Dr	gs : 0	Speed:	35	MPH	Dir:	N		Veh	Mnvr	/Ped	Actn:	_	4		Obj Si	trk:	17	
5	103714748	1.250	03/24/2013 18:31	RAN OF	F RO	— — - AD - LE	 ≣FT	\$	8000	0	0	0	0	2	4	2	5	0		
Unit	1:1	Alchi/Dr	gs: 1	Speed:	35	MPH	Dir:	Е		Veh	Mnvr	/Ped	Actn:		4	C	Obj St	trk:	58	
6	103954240	1.461	12/15/2013 17:38	ANIMAL				\$	1000	0	0	0	0	1	4	1	1	0	0	- -
Unit	1:1	Alchi/Dr	gs: 0	Speed:	30	MPH	Dir:	_ S		Veh	Mnvr	/Ped	Actn:	_	4		Obj Si	trk:	17	
7	103998877	1.467	01/21/2014 16:57	RAN OF RIGHT	F RO	AD -		\$	8000	0	0	0	0	1	2	2	3	0	0	2
Unit	1:2	Alchi/Dr	gs : 0	Speed:	45	MPH	Dir:	E		Veh	Mnvr	/Ped	Actn:	_	4		Obj Si	trk:	34	_
8	103628509	1.476	12/10/2012 07:03	REAR E STOP	ND, S	SLOW (DR	\$	4400	0	0	0	1	2	1	2	1	1		
Unit	1 : 1	Alchi/Dr	gs: 0	Speed:	45	MPH	Dir:	W	,	Veh	Mnvr	/Ped	Actn:		4	c	Obj Si	trk:		
Unit	2 : 1	Alchi/Dr	gs : 0	Speed:	0	MPH	Dir:	W	1	Veh	Mnvr	/Ped	Actn:		11	C	Obj St	trk:		
9	104599113	1.500	12/14/2015 20:37	RAN OF RIGHT	F RO	— — - AD -		\$	4000	0	0	1	0	1	- 4	1	3	0	13	1
Unit	1:1	Alchi/Dr	gs : 0	Speed:	50	MPH	Dir:	W	1	Veh	Mnvr	/Ped	Actn:		4	C	Obj Si	trk:	33	
10	104685929	1.677	03/17/2016 07:54	REAR E STOP	– – ND, S	LOW C	 DR	\$	2800	0	0	0	0	1	 1	1	3	0	3	1
Unit	1:2	Alchi/Dr	gs : 0	Speed:	30	MPH	Dir:	Е		Veh	Mnvr	/Ped	Actn:		1	C	Obj St	trk:		

12/11/2017 -1-

A 1									port Tetal		Iniu	rice		_	ondi	tion	Ro	ad	Trf	: Ctl
Acc No	Crash ID	Milepost	Date	۸۵	cidon	t Type		ı	Total amage	F	A	ries B	С	R	_	w	\vdash	Ci		Op
Unit	2: 1	Alchl/Drg		Speed:		MPH			amage	•			Actn:		4		bj St		DV	Ор
												— –	- - -	_			, s, s,			
11	104977435	1.692	12/19/2016 20:43	RAN OF	F ROA	AD - LE	FT	\$	10000	0	0	1	0	1	4	1	5	0	0	
Unit	1:2 	Alchl/Drg	gs: 0 	Speed:	40	MPH 	Dir:	s 		Veh	Mnvr — —	/Ped 	Actn:	_	4 – –)bj St — —	rk: 	17	
12	104924595	1.724	10/24/2016 14:53	REAR E	ND, SI	LOW C	R	\$	1000	0	0	0	0	1	1	1	1	0	3	1
Unit	1 : 1	Alchl/Drg	gs: 1	Speed:	0	MPH	Dir:	Е		Veh l	Mnvr	/Ped	Actn:		11	C	bj St	rk:		
Unit	2 : 4	Alchi/Drg	gs: 0	Speed:	0	MPH	Dir:	Е		Veh I	Mnvr	/Ped	Actn:		11	C	bj St	rk:		
13	103647661	1.730	 12/20/2012 22:43	OTHER				\$	10000	0	0	0	3	2	 4	3	1	7	3	2
Unit	1 : 1	Alchl/Drg	gs: 0	Speed:	10	MPH	Dir:	W	,	Veh l	Mnvr	/Ped	Actn:		4	c	bj St	rk:		
Unit	2 : 1	Alchl/Drg	_	Speed:	35	MPH	Dir:	S		Veh	Mnvr	/Ped	Actn:		4	c	bj St	rk:		
14	103654207	1.730	 12/21/2012 17:20	REAR E	. – – END, SI	 LOW C	- – -	- \$	2000	0	0	0	0	2	 1	3	1	0	3	1
Unit	1:7	Alchl/Drg	gs: 0	Speed:	5	MPH	Dir:	Е		Veh l	Mnvr	/Ped	Actn:		4	c	bj St	rk:		
Unit	2 : 1	Alchl/Drg	gs: 0	Speed:	0	MPH	Dir:	E		Veh	Mnvr	/Ped	Actn:	_	11		bj St	rk:		
15	103659727	1.730	01/01/2013 17:26	LEFT TO	,	OADW	/AYS	\$	2500	0	0	0	1	2	2	3	1	0	3	1
Unit	1:4	Alchl/Drg	gs: 0	Speed:	35	MPH	Dir:	N	E	Veh I	Mnvr	/Ped	Actn:		8	C	bj St	rk:		
Unit	2 : 1	Alchl/Drg	gs: 0	Speed:	0	MPH	Dir:	S		Veh I	Mnvr	/Ped	Actn:		1	C	bj St	rk:		
Unit	3:4	Alchl/Drg	gs: 0	Speed:	15	MPH	Dir:	SI	E	Veh I	Mnvr	/Ped	Actn:		8	C	bj St	rk:		
16	103678294	1.730	02/08/2013 12:12	LEFT TO	-	AME		\$	10000	0	0	0	0	1	 1	2	1	0	3	1
Unit	1 : 1	Alchl/Drg	gs: 0	Speed:	20	MPH	Dir:	Е		Veh	Mnvr	/Ped	Actn:		4	C	bj St	rk:		
Unit	2 : 1	Alchl/Drg	gs: 0	Speed:	20	MPH	Dir:	W	•	Veh	Mnvr	/Ped	Actn:		8	C	bj St	rk:		
17	103761905	1.730	 05/20/2013 15:56	LEFT TO	-	AME		\$	8500	0	0	1	0	2	 1	3	3	0	3	1
Unit	1 : 1	Alchl/Drg	gs: 0	Speed:	30	MPH	Dir:	S		Veh	Mnvr	/Ped	Actn:		4	C	bj St	rk:		
Unit	2 : 1	Alchl/Drg	gs: 0	Speed:	15	MPH	Dir:	S		Veh	Mnvr	/Ped	Actn:		8	C	bj St	rk:		
18	103787091	1.730	06/16/2013 18:23	LEFT TO		– – – SAME		\$	6000	0	0	0	0	1	1	1	1	0	3	1
Unit	1:2	Alchl/Drg	gs: 0	Speed:	35	MPH	Dir:	S		Veh	Mnvr	/Ped	Actn:		4	C	bj St	rk:		
Unit	2 : 17	Alchl/Drg	gs : 0	Speed:	15	MPH	Dir:	Ε		Veh	Mnvr	/Ped	Actn:		8	C	bj St	rk:		
19	103892317	1.730	10/21/2013 19:13	SIDESV DIRECT		PPOS	ITE	\$	3500	0	0	0	0	1	- - 2	1	1	0	3	1
Unit	1 : 1	Alchl/Drg	gs: 0	Speed:	10	MPH	Dir:	W	,	Veh	Mnvr	/Ped	Actn:		8	c	bj St	rk:		
Unit	2 : 1	Alchl/Drg	gs: 0	Speed:	25	MPH	Dir:	Е		Veh l	Mnvr	/Ped	Actn:		4	C	bj St	rk:		

12/11/2017 -2-

Acc							Allai			Total		Iniu	ries		С	ondi	tion	Ro	ad	Trf	: Ctl
No	Crash ID	Milepost	D	ate	Acc	ciden	t Type	Э		amage	F		В	С	R	L	W	Ch	_		Ор
20	103961747	1.730	12/09/ 18	/2013 :08	SIDESW	,	SAME		\$	1800	0	0	0	0	2	4	3	1	0	3	2
Unit	1 : 1	Alchi/Dr	gs:	0	Speed:	20	MPH	Dir:	Ν		Veh	Mnvr	/Ped	Actn:		7	C	bj St	rk:		
Unit	2 : 4	Alchi/Dr	gs:	0	Speed:	20	MPH	Dir:	N		Veh	Mnvr	/Ped	Actn:		8	C	bj St	rk:		
21	104005855	1.730	02/01/	 /2014 :32	LEFT TU DIFFER		ROADV	VAYS	\$	7000	0	0	0	0	1	1	2	1	0	3	1
Unit	1 : 1	Alchi/Drg	gs:	0	Speed:	35	MPH	Dir:	W	1	Veh	Mnvr	/Ped	Actn:		4	c	bj St	rk:		
Unit	2 : 1	Alchi/Dr	gs:	0	Speed:	15	MPH	Dir:	Е		Veh	Mnvr	/Ped	Actn:	!	8	c	bj St	rk:		
22	104002496	1.730	02/14/ 14	_ /2014 :52	RIGHT 1 DIFFER		•	VAYS	\$	1550	0	0	0	0	1	1	1	1	0	3	1
Unit	1:1	Alchl/Dr	gs:	0	Speed:	30	MPH	Dir:	S		Veh	Mnvr	/Ped	Actn:		4	C	bj St	rk:		
Unit	2 : 1	Alchi/Dr	gs:	0	Speed:	10	MPH	Dir:	E		Veh	Mnvr	/Ped	Actn:	:	7	C	bj St	rk:		
23	104068211	1.730	05/16/ 15	_ /2014 :42	ANGLE				\$	2800	0	0	0	0	1	1	1	1	0	3	1
Unit	1 : 1	Alchi/Dr	gs:	0	Speed:	5	MPH	Dir:	SI	=	Veh	Mnvr	/Ped	Actn:		8	c	bj St	rk:		
Unit	2 : 2	Alchi/Dr	gs:	0	Speed:	15	MPH	Dir:	N		Veh	Mnvr	/Ped	Actn:	!	4	c	bj St	rk:		
24	104582812	1.730	11/22 01	_ /2015 :42	ANGLE				\$	12000	0	0	0	0	1	4	1	1	0	3	1
Unit	1:4	Alchi/Dr	gs:	0	Speed:	40	MPH	Dir:	s		Veh	Mnvr	/Ped	Actn:	:	4	c	bj St	rk:		
Unit	2 : 5	Alchi/Dr	gs:	0	Speed:	10	MPH	Dir:	Е		Veh	Mnvr	/Ped	Actn:		8	C	bj St	rk:		
25	105064389	1.730	04/03/	_ /2017 :46	LEFT TU ROADW	,	SAME		\$	6700	0	0	0	0	2	4	2	3	0	3	1
Unit	1:4	Alchi/Dr	gs:	0	Speed:	30	MPH	Dir:	W	,	Veh	Mnvr	/Ped	Actn:		4	c	bj St	rk:		
Unit	2 : 1	Alchi/Dr	gs:	0	Speed:	30	MPH	Dir:	Е		Veh	Mnvr	/Ped	Actn:		8	C	bj St	rk:		
Unit	3 : 4	Alchi/Dr	gs:	0	Speed:	35	MPH	Dir:	S		Veh	Mnvr	/Ped	Actn:		1	c	bj St	rk:		
			-												-						

Acc No - Accident Number

Legend for Report Details:

Injuries: F - Fatal, A - Class A, B - Class B, C - Class C Condition: R - Road Surface, L - Ambient Light, W - Weather

Rd Ch - Road Character

Rd Ci - Roadway Contributing Circumstances

Trfc Ctl - Traffic Control: Dv - Device, Op - Operating

Alchl/Drgs - Alcohol Drugs Suspected

Veh Mnvr/Ped Actn - Vehicle Maneuver/Pedestrian Action

Obj Strk - Object Struck

12/11/2017 -3-

Summary Statistics

High Level Crash Summary

Crash Type	Number of Crashes	Percent of Total
Total Crashes	25	100.00
Fatal Crashes	1	4.00
Non-Fatal Injury Crashes	6	24.00
Total Injury Crashes	7	28.00
Property Damage Only Crashes	18	72.00
Night Crashes	9	36.00
Wet Crashes	8	32.00
Alcohol/Drugs Involvement Crashes	3	12.00

Crash Severity Summary

Crash Type	Number of Crashes	Percent of Total
Total Crashes	25	100.00
Fatal Crashes	1	4.00
Class A Crashes	0	0.00
Class B Crashes	3	12.00
Class C Crashes	3	12.00
Property Damage Only Crashes	18	72.00

Vehicle Exposure Statistics

Annual ADT = 12400

Total Length = 0.78 (Miles) 1.255 (Kilometers)

Total Vehicle Exposure = 17.66 (MVMT) 28.42 (MVKMT)

Crash Rate	Crashes Per 100 Million Vehicle Miles	Crashes Per 100 Million Vehicle Kilometers
Total Crash Rate	141.55	87.96
Fatal Crash Rate	5.66	3.52
Non Fatal Crash Rate	33.97	21.11
Night Crash Rate	50.96	31.66
Wet Crash Rate	45.30	28.15
EPDO Rate	822.15	510.86

12/11/2017 -4-

Miscellaneous Statistics

Severity Index =	5.81
EPDO Crash Index =	145.20
Estimated Property Damage Total = \$	120550.00

Accident Type Summary

	Number of	Percent
Accident Type	Crashes	of Total
ANGLE	2	8.00
ANIMAL	3	12.00
LEFT TURN, DIFFERENT ROADWAYS	2	8.00
LEFT TURN, SAME ROADWAY	4	16.00
OTHER COLLISION WITH VEHICLE	1	4.00
RAN OFF ROAD - LEFT	2	8.00
RAN OFF ROAD - RIGHT	4	16.00
REAR END, SLOW OR STOP	4	16.00
RIGHT TURN, DIFFERENT ROADWAYS	1	4.00
SIDESWIPE, OPPOSITE DIRECTION	1	4.00
SIDESWIPE, SAME DIRECTION	1	4.00

Injury Summary

Injury Type	Number of Injuries	Percent of Total
Fatal Injuries	1	11.11
Class A Injuries	0	0.00
Class B Injuries	3	33.33
Class C Injuries	5	55.56
Total Non-Fatal Injuries	8	88.89
Total Injuries	9	100.00

12/11/2017 -5-

Monthly Summary

Month	Number of Crashes	Percent of Total
Jan	2	8.00
Feb	3	12.00
Mar	4	16.00
Apr	2	8.00
May	2	8.00
Jun	1	4.00
Jul	0	0.00
Aug	0	0.00
Sep	0	0.00
Oct	2	8.00
Nov	1	4.00
Dec	8	32.00

Daily Summary

Day	Number of Crashes	Percent of Total
Mon	8	32.00
Tue	3	12.00
Wed	1	4.00
Thu	3	12.00
Fri	4	16.00
Sat	2	8.00
Sun	4	16.00

12/11/2017 -6-

Hourly Summary

	Number of	Percent
Hour	Crashes	of Total
0000-0059	0	0.00
0100-0159	1	4.00
0200-0259	0	0.00
0300-0359	0	0.00
0400-0459	0	0.00
0500-0559	0	0.00
0600-0659	1	4.00
0700-0759	2	8.00
0800-0859	1	4.00
0900-0959	0	0.00
1000-1059	0	0.00
1100-1159	0	0.00
1200-1259	2	8.00
1300-1359	0	0.00
1400-1459	2	8.00
1500-1559	2	8.00
1600-1659	1	4.00
1700-1759	4	16.00
1800-1859	3	12.00
1900-1959	2	8.00
2000-2059	3	12.00
2100-2159	0	0.00
2200-2259	1	4.00
2300-2359	0	0.00

12/11/2017 -7-

Light and Road Conditions Summary

Condition	Dry	Wet	Other	Total
Day	9	3	0	12
Dark	5	4	0	9
Other	3	1	0	4
Total	17	8	0	25

Object Struck Summary

Object Type	Times Struck	Percent of Total
ANIMAL	4	44.44
DITCH	1	11.11
GUARDRAIL FACE ON SHOULDER	1	11.11
OTHER FIXED OBJECT	1	11.11
TREE	1	11.11
UTILITY POLE	1	11.11

Vehicle Type Summary

Vehicle Type	Number Involved	Percent of Total
MOTORCYCLE	1	2.33
PASSENGER CAR	27	62.79
PICKUP	5	11.63
SCHOOL BUS	1	2.33
SPORT UTILITY	7	16.28
TAXICAB	1	2.33
VAN	1	2.33

12/11/2017 -8-

Yearly Totals Summary

Accident Totals

Year	Total Accidents	Fatal Accidents	Injury Accidents	Property Damage Only Accidents
2012	4	0	2	2
2013	9	0	2	7
2014	5	1	0	4
2015	3	0	1	2
2016	3	0	1	2
2017	1	0	0	1
Total	25	1	6	18

Injury Totals

Year	Fatal Injuries	Class A, B, or C Injuries
2012	0	4
2013	0	2
2014	1	0
2015	0	1
2016	0	1
2017	0	0
Total	1	8

Miscellaneous Totals

Year	F	Property Damage	EPDO Index
2012	\$	18400	18.80
2013	\$	42800	23.80
2014	\$	22350	80.80
2015	\$	16500	10.40
2016	\$	13800	10.40
2017	\$	6700	1.00
Total	\$	120550	145.20

Type of Accident Totals

	Run Off Road &							
Year	Left Turn	Right Turn	Rear End	Fixed Object	Angle	Side Swipe	Other	
2012	0	0	2	0	0	0	2	
2013	4	0	0	2	0	2	1	
2014	1	1	0	2	1	0	0	

12/11/2017 -9-

		Run Off Road &								
Year	Left Turn	Right Turn	Rear End	Fixed Object	Angle	Side Swipe	Other			
2015	0	0	0	1	1	0	1			
2016	0	0	2	1	0	0	0			
2017	1	0	0	0	0	0	0			
Total	6	1	4	6	2	2	4			

12/11/2017 -10-

Strip Diagram

Features	Milepost	Crash IDs
SR 1843 SEWELL SCHOOL		103707110 104012507
	0.96	103632486
	0.97	
	0.98	
	0.99	
	1.00	
	1.01	
	1.02	
	1.03	
	1.04	
	1.05	
	1.06	
	1.07	104364723
	1.08	
	1.09	
	1.10	
RR LOT ENTRANCE	1.11	
	1.12	
	1.13	
	1.14	
	1.15	
	1.16	
	1.17	
	1.18	
	1.19	
	1.20	
	1.21	
	1.22	
	1.23	
	1.24 1.25	103714748
		103/14/40
	1.26	
	1.27 1.28	
	1.29 1.30	
	1.31	
	1.32	
	1.33	
	1.34	
	1.35	
	1.36	
	1.37	
	1.38	

12/11/2017 -11-

Features	Milepost	Crash IDs
	1.39	
	1.40	
	1.41	
	1.42	
	1.43	
	1.44	
	1.45	
	1.46	103954240
AIRPORT	1.47	103998877
	1.48	103628509
	1.49	
	1.50	104599113
	1.51	
	1.52	
	1.53	
	1.54	
	1.55	
	1.56	
	1.57	
	1.58	
	1.59	
FACILITIES DR	1.60	
	1.61	
	1.62	
	1.63	
	1.64	
	1.65	
	1.66	
	1.67	
	1.68	104685929
	1.69	104977435
	1.70	
	1.71	
	1.72	104924595
NC 86 SR 1750 MARTIN LUTHER KING	1.73	103647661 103654207 103659727 103678294
		103761905 103787091 103892317 103961747
		104005855 104002496 104068211 104582812
		105064389

12/11/2017 -12-

Study Criteria

Study Name	Log No.	PH No.	TIP No.	K/A Cf.	B/C Cf.	ADT	ADT Route
ESTESDREXTSTRIP				76.8	8.4	12400	40001780

Request Date Courier Service Phone No. Ext. Fax No.

Count	ty		Municipality					
Name	Code	Div.	Name	Code	Y-Line Ft.	Begin Date	End Date	Years
ORANGE	68	7	All and Rural		0	11/1/2012	10/31/2017	5.00

Location Text Requestor

SR 1780 (Estes Dr Ext) from SR 1843 (Seawell School Rd) to NC 86 (Martin Luther King Jr. Blvd)

Included Accidents	Old MP	New MP	Туре
103998877	1.531	1.467	R
104977435	1.294	1.692	R

Excluded Accidents

12/11/2017 -13-

Fiche Roads						
Name	Code					
SR 1780	40001780					
ESTES DR EXT	50009903					
SR 1750	40001750					
HILLCREST	50014034					

Strip Road

Name	Code	Begin MP	End MP	Miles	Kilometers
SR 1780	40001780	0.950	1.730	0.780	1.255

12/11/2017 -14-