

279 TOWN OF CHAPEL HILL

Town Hall 405 Martin Luther King Jr. Boulevard Chapel Hill, NC 27514

Item Overview

Item #: 11., File #: [21-0769], Version: 1

Meeting Date: 10/13/2021

Receive Updated Risk Assessment for Police Station Property.

Staff:

Department: Manager's Office

Maurice Jones, Town Manager Mary Jane Nirdlinger, Deputy Town Manager Laura Selmer, Economic Development Specialist John Richardson, Community Resilience Officer

Overview: The Town Council continues to consider the long-term land use and remediation options for the Police Station property, located at 828 Martin Luther King Jr Blvd. The latest option includes the Town entering into the North Carolina Brownfields Program and partnering with Belmont Sayre, a local developer, to create a mixed-use redevelopment of the property that could include a new Municipal Services Center, retail, and housing. As part of this process, the Town continues to work with environmental consulting services firm, Hart & Hickman, to complete an updated Human Health and Ecological Risk Assessment. This assessment will help the Town to better understand risk under the current land use scenario and possible future redevelopment scenarios. See the attached presentation, executive summary, and full report for findings and details.

Recommendation(s):

That the Council receive the attached presentation and report and continue to provide guidance, as needed.

Fiscal Impact/Resources: The cost of the updated risk assessment was \$28,700. Additional fiscal impacts will be discussed as part of other items related to the potential future land uses and remediation options for the property.

Where is this project in its process?

Attachments:

- Consultant Presentation
- Risk Assessment Executive Summary
- Risk Assessment Report

The Agenda will reflect the text below and/or the motion text will be used during the meeting.

PRESENTER: Genna Olson, Principal Geologist, Hart & Hickman

RECOMMENDATION: That the Council receive the attached presentation and report and continue to provide guidance, as needed.

TOWN OF CHAPEL HILL

Risk Assessment Results

Prepared by

SMARTER ENVIRONMENTAL SOLUTIONS

October 1, 2021

Topics of Discussion

- Introduction & Background
- Human Health Risk Assessment
- Ecological Risk Assessment
- Conclusions & Recommendations

- Mixture of coal combustion products (CCPs) and construction debris buried across much of the property.
- Primary compounds of concern are metals.

2020 interim remedial measures:

- Excavation of coal combustion products (CCPs) along Bolin Creek Trail
- Stabilization of embankment and stormwater management controls

Some elevated concentrations of metals in perched water within fill materials, but limited or no groundwater impact in wells screened in non-fill zones in the underlying aquifer.

No significant impact to surface water in Bolin Creek.

No groundwater users (such as water supply wells) in the area.

- Prior risk assessment focused on area of greenway.
 Concluded that interim remedial measures effectively reduced risk such that greenway trail is safe for use.
- More comprehensive human-health and ecological risk assessment recently performed for the site as a whole. Goal was to define the final measures recommended under the current land use scenario and possible future redevelopment scenarios.

 Science & Engineering Consultants

 STI Keisler Dr # 102, Cary, NC 27518 I 919.858.9898

 HUMAN HEALTH AND ECOLOGICAL RISK

 ASSESSMENT REPORT

 Sta Martin Luther King, Jr. Boulevard Property

 Chapel Hill, North Carolina

 May 6, 2021

PREPARED FOR:

TOWN OF CHAPEL HILL CHAPEL HILL, NORTH CAROLINA

PREPARED BY:

SYNTERRA CORPORATION CARY, NORTH CAROLINA

> Kevin P. Kelt, G.I.T Project Geologis

Devide. Durth_ David L. Durcklee, P.G.

Senior Hydrogeologist

Kenneth Rudo, Ph. D Toxicologist

Topics of Discussion

- Introduction & Background
- Human Health Risk Assessment
- Ecological Risk Assessment
- Conclusions & Recommendations

Human Health Risk Assessment

North Carolina Department of Environmental Quality Risk Calculator June 2021 Version					
COVER PAGE	TABLE OF CONTENTS				
		LINKS			
NCDEQ Risk Calculator User Guide	What's New Risk Evaluation Equations and Calculations Preliminary Soil Remediatio Goals (PSRG) Table				
	Residential Vapor Intrusion Screening Levels (VISL) Table Non-Residential VISL Table				
	DATA	INPUT SHEETS			
	1. Exposure F	athways & Parameters			
A. Complete Exposure Pathways	Complete Exposure Pathways Exposure Factors and Target Risks D. Sample Statistics				
	2. Exposure	Point Concentrations			
A. Soil	B. Groundwater C. Su	rface Water D. Soil Gas E. Air			
	DATA O	UTPUT SHEETS utput for All Calculators			
A. Risk	for Individual Pathways	B. Sitewide Risk			
	2. Direct Contact	Soil and Water Calculators			
A. RESIDENT Soil B. RESIDENT Groundwater Use C. NON-RESIDENTIAL WORKER Soil D. NON-RESIDENTIAL WORKER Soil E. CONSTRUCTION WORKER Soil Soil					
F. RECREATOR/ TRESPASSER Soil G. RECREATOR/ TRESPASSER Surface Water					
	3. Vapor I	ntrusion Calculators			
A. RESIDENT Groundwater to Indoor Air	B. RESIDENT iil Gas to Indoor Air C. RESIDENT Indoor Air	D. NON- E. NON- RESIDENTLAL WORKER WORKER Groundwater to Indoor Air Air			
	4. Contaminant Migration Worksheets				
A. Soil to Groundwater Forward Mode	B. Groundwater to Groundwater Forward Mode	C. Soil to Surface Water Forward Mode			
E. Soil to Groundwater Backward Mode	E. Soil to Groundwater Backward Mode E. Soil to Surface Water Backward Mode Backward Mode E. Soil to Surface Water Backward Mode				
For NCDEQ Use Only UNPROTECT ALL SHEETS PROTECT ALL SHEETS					

- Risk assessment calculations performed using the DEQ Risk Calculator.
- Recommendations to address exceedances of acceptable risk levels could include remediation, land-use restrictions (LURs), or other measures.

Human Health Risk Assessment - Exposure Pathways Evaluation

- Exposure Unit (EU) = Areas of similar land-use and exposure characteristics
- Evaluated risk for both current and possible future site occupants.
- EU #1 Upper Level
 - Residents
 - Non-residential workers
 - Construction workers
- EU #2 Lower Level
 - Greenway user
 - Construction workers
- EU #3 Embankment
 - Current exposure minimal, evaluated future risks for all possible users to identify whether additional measures needed.

290

Human Health Risk Assessment - Exposure Pathways Evaluation

SOIL

Direct contact soil exposure pathway – dermal contact, ingestion, or outdoor inhalation of particulates from impacted soil or coal combustion products (CCPs)

SURFACE WATER

Direct contact surface water exposure pathway – dermal contact or ingestion of impacted surface water

STREAM SEDIMENT

Direct contact sediment exposure pathway – dermal contact, ingestion, or outdoor inhalation of particulates from impacted stream sediment

VAPOR INTRUSION

Migration of volatile vapors into buildings

GROUNDWATER

Direct contact groundwater use pathway – ingestion, dermal contact, or inhalation associated with water supply well use Pathway evaluated for all three exposure units.

Pathway evaluated for surface water in Bolin Creek (Exposure Unit #2).

Pathway evaluated for stream sediment in Bolin Creek (Exposure Unit #2).

Pathway not complete because no volatile compounds present.

Pathway not complete because no water supply wells present and land-use restriction preventing future installation of water supply wells proposed.

Human Health Risk Assessment - Exposure Parameters

Reasonable maximum exposure (RME) – the highest exposure reasonably likely to occur, generally assumed to be in the range of the 90th and 99.9th percentiles (US EPA, 2001).

90 to 99.9% of time people will be exposed at levels <u>less</u> than risk assessment assumes.

- DEQ default exposure parameters used for resident, non-residential worker, and construction worker, which represent RME.
- For greenway user, site-specific values calculated which represent 98th percentile based on trail survey.

Human Health Risk Assessment - Exposure Point Concentrations

- Metals are naturally occurring in North Carolina soils.
- Metals representative of naturally occurring conditions removed for the purpose of defining areas where remediation or other measures needed to address risks.

Human-Health Risk Assessment – Exposure Point Concentrations

- Risk calculations used maximum concentrations in designated depth zone.
 - If deeper samples exposed during grading and not covered by impervious surfaces post-redevelopment, recommend additional risk evaluation or cover with 2 ft of clean fill.

Human Health Risk Assessment – Target Risk Levels

- Based on EPA and NCDEQ risk assessment guidance, exceedances of the following target risk levels will be considered "triggers" for additional action:
 - Non-cancer hazard index > 1
 - Cancer risk > 1 in 10,000 (10⁻⁴)
- Per typical Brownfields redevelopment process, actions may be performed to minimize exposure even if target risk levels are not exceeded.

Non-cancer hazard index (HI) or hazard quotient (HQ) = The ratio of the amount of a contaminant a person is exposed to versus the amount that may cause non-cancer harmful effects.

Individual Excess Lifetime Cancer Risk (CR) = Increase over background in an individual's probability of getting cancer over a lifetime due to exposure to a chemical.

Human-Health Risk Assessment – Non-Residential Worker

Exposure assumptions:

- Exposure for 25 yrs, 250 d/yr, and 8 hr/d.
- Dermal exposure of head, hands, and forearms.
- Ingestion of 100 mg/d of soil.

Risk assessment results:

• No exceedances of acceptable risk levels.

Site considered safe for current or future non-residential workers.

Human-Health Risk Assessment – Greenway User

Exposure assumptions:

- Adult exposure for 20 yrs, 364 d/yr, and 1 hr/d.
- Child exposure for 6 yrs, 52 d/yr and 0.5 hr/d.
- Dermal exposure of head, hands, forearms, lower legs, and feet.
- Ingestion of 200 mg/d of soil by a child and 100 mg/d of soil by an adult.

Risk assessment results:

• No exceedances of acceptable risk levels.

Site considered safe for current or future greenway users.

Human-Health Risk Assessment - Resident

Exposure assumptions:

- Exposure for 6 yrs as a child and 20 yrs as an adult, 350 d/yr, and 24 hr/d.
- Dermal exposure of head, hands, forearms, lower legs, and feet.
- Ingestion of 200 mg/d of soil by a child and 100 mg/d of soil by an adult.

Risk assessment results:

- Samples in yellow indicate coal combustion products (CCPs) in embankment area.
 Recommend addressing in conjunction with permanent measures for embankment.
- For sample in red (S-4), recommendremediation or other measures to addressimpacts.

No current residents, risk management recommendations apply if site is redeveloped for residential use.

Human-Health Risk Assessment – Construction Worker

Exposure assumptions:

- Exposure for 1 yr, 250 d/hr, and 8 hr/d.
- Dermal exposure of head, hands, and forearms.
- Ingestion of 330 mg/d of soil.
- Significantly increased outdoor inhalation of particulates.

Risk assessment results:

- Several samples with exceedances.
- Recommend Environmental Management Plan (EMP) requiring personal protective equipment (PPE) and other measures to eliminate construction worker exposures.

Future construction worker risk can be addressed via EMP.

Topics of Discussion

- Introduction & Background
- Human Health Risk Assessment
- Ecological Risk Assessment
- Conclusions & Recommendations

Ecological Risk Assessment Results

- Initial screening level comparison of concentrations to EPA Ecological Screening Values (ESVs).
- EPA ESVs are based on conservative endpoints and ecological effects data, and represent preliminary screening criteria to evaluate the potential for ecological risk (or lack thereof). Not considered remediation goals.
- Compared concentrations of stream sediment, surface water, and soil (0-2 ft) above background levels to EPA ESVs.

Image reference: KY Department of Fish & Wildlife Resources

Ecological Risk Assessment Results

- No exceedances of EPA Ecological Screening Values (ESVs) in surface water or stream sediment in Bolin Creek, which is most ecologically sensitive area.
- Samples in yellow indicate exceedances of ESVs in embankment area. Recommend addressing in conjunction with permanent measures for embankment.
- Samples in red indicate exceedances of ESVs in upper or lower level soil. DEQ does not commonly require evaluation of ecological risks for soil. If required by DEQ or if the Town wishes to take voluntary actions, H&H recommends remediation or other measures to address or further evaluate potential ecological risks in the area of these samples.

Topics of Discussion

- Introduction and Background
- Human Health Risk Assessment
- Ecological Risk Assessment
- Conclusions & Recommendations

Conclusions & Recommendations

- Human-health risk is safe for current site uses (non-residential workers and greenway users).
- Ecological risk is acceptable for Bolin Creek.
- For the area of the embankment, recommend implementation of permanent measures to prevent erosion and address exposed coal combustion products (CCPs), which exceed acceptable risk levels for a resident, construction worker, and ecological receptors.
- If the site is redeveloped for residential use, recommend remediation or other measures to address impacts in the upper level in the area of sample S-4.
- Outside of the embankment area, ecological risk screening indicated localized exceedances of Ecological Screening Values (ESVs) at three sample locations. DEQ does not commonly require evaluation of ecological risks for soil. If required by DEQ or if the Town wishes to take voluntary actions, recommend remediation or other measures to address or further evaluate risks in the area of these samples.
- Recommend Environmental Management Plan (EMP) manage risks to construction workers.

Conclusions & Recommendations

- Risk calculations based on 0-2 ft samples for residents, non-residential workers, and greenway users, and 0-10 ft samples for construction worker. If deeper samples exposed during grading and not covered by impervious surfaces post-redevelopment, recommend additional risk evaluation or cover with 2 ft of clean fill.
- Recommend land use restriction (LUR) preventing the future installation of water supply wells at the site.
- Final LURs will be detailed in a Brownfields Agreement (BFA). The BFA will be filed on the deed for the property, and requires annual certification that LURs are being complied with in perpetuity.

Questions?

Smarter Environmental Solutions

Executive Summary Risk Assessment 828 Martin Luther King Jr. Boulevard Chapel Hill, Orange County, North Carolina

Hart & Hickman, PC (H&H) has completed human health and ecological risk assessment activities for the property located at 828 Martin Luther King (MLK) Jr. Boulevard in Chapel Hill, Orange County, North Carolina (site). This document provides an executive summary of the risk assessment background, methodology, and results. Refer to the Risk Assessment Report dated October 7, 2021 for details regarding the assessment.

Background Information

Previous assessment activities indicated that the site was initially used as a borrow pit from the late 1950s to early 1960s, and then was used as a fill site by a previous owner for construction debris and coal combustion products (CCPs) from the mid-1960s to the mid-1970s. In the early 1980s, the Town of Chapel Hill (Town) acquired the property and constructed a building that is currently used for police department operations. The site consists of an upper level where the borrow pit was located which is now occupied by the police department building and associated parking areas, and a lower level adjacent to Bolin Creek where the Bolin Creek Trail (hereinafter also referred to as the greenway) is located. The upper and lower levels are separated by a steep embankment. The site layout and area of CCPs are depicted on Figure 1.

Assessment activities were conducted to investigate potential environmental impacts associated with CCPs at the site from 2013 to 2020. The investigation activities included collection and laboratory analysis of CCPs, groundwater, soil, sediment, and surface water samples. The results of the assessment activities identified concentrations of certain metals in soil and CCP samples and in perched groundwater zones within the fill material. However, groundwater assessment activities identified to no impacts in the underlying unconfined aquifer downgradient of the fill area. Assessment activities also identified no significant impacts to stream sediment or surface water in Bolin Creek.

Preliminary risk assessment activities were performed to evaluate risks for greenway users in the trail area in 2019. Based on the results, interim remedial measures (IRMs) were implemented in

2020. IRMs included excavation and off-site disposal of soil and exposed CCPs along Bolin Creek Trail, stabilization and cover of exposed CCPs along the embankment between the upper and lower portions of the site, and temporary measures to address stormwater and erosion control in the area of the embankment. Additional risk assessment activities performed after IRMs concluded that the greenway trail is safe for users. Under present conditions, CCP fill material at the site is covered by at least 2 ft of soil cover, with the exception of localized areas in the upper level with 1 to 2 ft of soil cover and areas of exposed CCPs along the embankment.

The Town is considering redevelopment of the site and has entered the site into the North Carolina Department of Environmental Quality (DEQ) Brownfields Program. The Town requested that H&H perform the additional risk assessment activities documented in this report to define the final measures recommended for the site as a whole to address CCP impacts, both under the current land use scenario and possible future redevelopment scenarios.

Risk Assessment Methodology

The risk assessment activities were completed in general accordance with DEQ and United States Environmental Protection Agency (EPA) risk assessment guidance (DEQ, 2020, DEQ, 2021a, EPA, 2018a, EPA, 2018b). For the purpose of risk characterization, the site was divided into three exposure units (EUs) that represent areas of similar land use and potential receptors. EU #1 encompasses the upper level in the vicinity of the existing police department building and associated parking areas, EU #2 encompasses lower level in the area of Bolin Creek and the adjacent Bolin Creek Trail, and EU #3 encompasses the embankment between EU #1 and EU #2. The exposure units are depicted on Figure 2.

For the human-health risk assessment, an exposure pathway evaluation was performed to identify pathways by which residents, non-residential workers, construction workers, or greenway trail users could be exposed to impacted media within each EU. Risks were calculated for each complete exposure pathway assuming conservative reasonable maximum exposures. The DEQ Risk Calculator was used to calculate potential cancer risk (CR) and non-cancer hazard index (HI). Based on EPA and DEQ guidance (DEQ, 2021a, EPA, 2018b) remediation or other measures to

address risks are recommended for calculated CR above one in 10,000 (1.0E-04) or HI of greater than 1.0.

The ecological risk assessment activities were limited to an initial screening comparison of detected concentrations to the Ecological Screening Values (ESVs) established by EPA Region 4. Per DEQ and EPA guidance (DENR, 2003, EPA, 2018a), EPA ESVs are based on conservative endpoints and ecological effects data, and represent preliminary screening criteria to evaluate the potential for ecological risk (or lack thereof). ESVs are not intended to represent remediation goals, and in some cases further data evaluation can be performed instead of proceeding directly to remediation for cases where ESVs are exceeded.

The primary compounds of concern for the site are metals associated with CCPs; however, naturally-occurring background levels of metals are also present, which are derived from the natural elemental composition of the source rock underlying the site. Background samples collected from the site contained concentrations of certain metals exceeding DEQ Preliminary Soil Remediation Goals (PSRGs) in soil and stream sediment, which are attributed to naturally-occurring metals in the parent bedrock. EPA and DEQ do not require remediation of concentrations below background levels (EPA, 2002, DEQ, 2021), since these concentrations represent naturally occurring conditions that are not associated with contamination sources. Note also that DEQ PSRGs are initial screening levels based upon conservative exposure assumptions. In accordance with EPA and DEQ guidance, risk management recommendations for the site are based on risk calculations with background metals excluded.

Human-Health Risk Assessment Results

The human-health risk assessment results indicated the following:

• Human-health risk was evaluated for possible future residents in the area of EU #1 (upper level) and EU #3 (embankment). The results of the risk evaluation indicated that acceptable risk levels were exceeded for a future resident in both units (with and without background concentrations included), with risks being driven by the following sample locations: the manganese concentration in soil sample S-4 in EU #1 (upper level), and the arsenic concentrations in samples S-7, HH-10, and HH-11 in EU #3 (embankment). The

samples exceeding acceptable risk levels for a possible future resident are depicted on Figure 3.

- Human-health risk was evaluated for possible current or future non-residential workers in the area of EU #1 (upper level) and EU #3 (embankment). The results of the risk evaluation indicated acceptable risk levels for a non-residential worker in both units. Therefore, the site is considered safe for non-residential workers.
- Human-health risk was evaluated for possible future construction workers in the area of all three exposure units (upper level, lower level, and embankment). The results of the risk evaluation indicated that acceptable risk levels were exceeded for a construction worker in all three units, with multiple samples identified as risk drivers. If background concentrations are removed, acceptable risk levels were exceeded for a construction worker in EU #1 (upper level) and EU #3 (embankment). The samples exceeding acceptable risk levels for a possible future construction worker are depicted on Figure 4.
- Human-health risk was evaluated for possible current and future greenway users in the area of EU #2 (lower level) and EU #3 (embankment). The results of the risk evaluation indicated acceptable risk levels for greenway users in both units. Therefore, the site is considered safe for greenway users.

Ecological Risk Assessment Results

The results of the ecological risk screening indicated the following:

- The area of Bolin Creek (EU #2) is the area with the highest likelihood of potential ecological receptors. The results of the risk evaluation indicated no significant ecological risk for surface water and sediment in Bolin Creek.
- Exceedances of ESVs for multiple metals were identified in samples of exposed CCPs collected along the embankment in EU #3 (S-7, HH-9, HH-10, and HH-11).
- Localized exceedances of ESVs were also identified at two soil sample locations within EU #1 (S-4 and MW-7) and one individual soil sample location within EU #2 (SED-13).

The samples exceeding ESVs for ecological receptors are depicted on Figure 5.

Recommendations

H&H's recommendations to address potential human-health and ecological risks identified as part of the risk assessment are detailed below. In addition to recommendations related to specific sample locations which are drivers for potential risks, in some cases land-use restrictions (LURs) are recommended to confirm the assumptions made during the risk assessment activities remain valid. LURs are expected to be specified in a future Brownfields Agreement with the DEQ Brownfields Program, which will be filed on the deed for the property and remain in perpetuity. The Brownfields Program requires annual certifications from the property owner that LURs are being complied with in perpetuity, which will confirm that potential risks addressed via LURs will be managed long-term.

- Exposed CCPs are present in the area of the embankment. The risk evaluation indicated exceedances of acceptable risk levels for a resident, construction worker, and/or ecological receptors based on metals concentrations in several samples of exposed CCPs collected in the embankment area (S-7, HH-9, HH-10, and HH-11). The potential for erosion to transport CCPs from the area of the embankment into the greenway area is considered an additional concern. The Town implemented temporary measures to minimize the potential for erosion as part of the IRMs implemented in 2020; however, H&H recommends implementation of permanent measures to address exposed CCPs and prevent erosion in the embankment area. These measures could effectively be performed in conjunction with site redevelopment activities.
- If the site is redeveloped for residential use, H&H recommends remediation or other actions (ex., excavation, impervious cover to prevent exposure, resampling to verify concentrations) to address impacts in the upper level in the area of sample S-4.
- Outside of the embankment area, the ecological risk screening indicated localized exceedances of ESVs at two soil sample locations within EU #1 (S-4 and MW-7) and one individual soil sample location within EU #2 (SED-13). DEQ does not commonly require evaluation of ecological risks for soil (DEQ, 2021c). As such, DEQ may not require additional actions with regard to the exceedances of ESVs in these samples. If required by DEQ or if the Town wishes to take voluntary actions, H&H recommends remediation or other measures to address or further evaluate potential ecological risks in the area of samples S-4, MW-7, and SED-13.

311

- To address construction worker risks, H&H recommends implementation of an anticipated LUR requiring preparation of an Environmental Management Plan (EMP), which will detail measures to prevent construction worker exposure, manage impacted soil, and minimize the potential for off-site migration during construction (i.e., redevelopment) activities.
- The risk assessment calculations were based on soil samples collected at depths of 0 to 2 feet below ground surface (ft bgs) for a resident, non-residential worker, and greenway user, and samples collected at depths of 0 to 10 ft bgs for a construction worker. If impacted soil or CCPs at deeper depths are exposed during site redevelopment, additional risk evaluation should be performed to confirm that potential exposure to these soils does not exceed acceptable risk levels. If the site is redeveloped, the Brownfields Program will also likely require confirmatory sampling and risk evaluation in areas of potentially impacted soil or CCPs that are not covered by impervious surfaces (buildings, pavement, etc.) or at least 2 ft of clean fill.
- H&H recommends a LUR preventing the future installation of water supply wells or other use or exposure of groundwater at the site.

6

<u>LEGEND</u>

SITE PROPERTY BOUNDARY

BOL	.IN	CR	Е	EI	K
BOL	.IN	CR	E	EI	h

-328 TOPOGRAPHIC CONTOUR ELEVATION (FT MSL)

CCP UNDER > 2 FT COVER

CCP UNDER < 2 FT COVER

CCP EXPOSED AT GROUND SURFACE (HYDROSEEDED)

STORMWATER CULVERT

BOLIN CREEK TRAIL

SILT FENCE

STORM DIVERSION CHANNEL

STORM OUTFALL CHANNEL

CCP AREA DESIGNATION

230

SITE MAP

TOWN OF CHAPEL HILL 828 MARTIN LUTHER KING JR. BOULEVARD CHAPEL HILL, NORTH CAROLINA

hart hickman	2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geology
DATE: 6-22-21	REVISION NO. 0
JOB NO. TCH-009	FIGURE NO. 1

LEGEND

SITE PROPERTY BOUNDARY

BOLIN CREEK

- MONITORING WELL LOCATION (FALCON ENGINEERING)
- TEMPORARY MONITORING WELL LOCATION (FALCON ENGINEERING)
- SOIL BORING LOCATION (FALCON ENGINEERING)
- SURFACE WATER SAMPLE LOCATION (FALCON ENGINEERING)
- MONITORING WELL LOCATION (H&H)
- SOIL SAMPLE LOCATION (H&H)
- A DRAINAGE PATHWAY, SURFACE WATER/SEDIMENT SAMPLE LOCATION (H&H)

STORMWATER CULVERT

BOLIN CREEK TRAIL

- EXPOSURE UNIT #1 UPPER LEVEL
- EXPOSURE UNIT #2 LOWER LEVEL
- EXPOSURE UNIT #3 EMBANKMENT

SAMPLE LOCATION AND EXPOSURE UNIT MAP

TOWN OF CHAPEL HILL 828 MARTIN LUTHER KING JR. BOULEVARD CHAPEL HILL, NORTH CAROLINA

hart hickman	2923 South Tryon Street-Suite 10 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geo
DATE: 9-10-21	REVISION NO. 0
JOB NO. TCH-009	FIGURE NO. 2

ster Projects/Town of Chapel Hill (TCH)/TCH-009 - Police Station - Remedial Services/Risk Assessment/Figures/Figures, 20210831 dwg, FIG 4A, 9/30/2021 4:12:16 PM, st

LEGEND

BOLIN CREEK

- MONITORING WELL LOCATION (FALCON ENGINEERING)
- TEMPORARY MONITORING WELL LOCATION (FALCON ENGINEERING)
- SOIL BORING LOCATION (FALCON ENGINEERING)
- SURFACE WATER SAMPLE LOCATION (FALCON ENGINEERING)
- MONITORING WELL LOCATION (H&H)
- SOIL SAMPLE LOCATION (H&H)
- A DRAINAGE PATHWAY, SURFACE WATER/SEDIMENT SAMPLE LOCATION (H&H)

STORMWATER CULVERT

BOLIN CREEK TRAIL

- EXPOSURE UNIT #1 UPPER LEVEL
- EXPOSURE UNIT #2 LOWER LEVEL
- EXPOSURE UNIT #3 EMBANKMENT

NOTES:

- 1. ONLY COMPOUNDS THAT DRIVE EXCEEDANCES OF ACCEPTABLE RISK LEVELS (CARCINOGENIC RISK > 1.0E-04 AND HAZARD INDEX > 1.0) ARE SHOWN.
- 2. FT BGS = FEET BELOW GROUND SURFACE

APPROXIMATE 0 115 230 SCALE IN FEET					
RESIDENTIAL HUMAN HEALTH RISK DRIVERS MAP					
TOWN OF CHAPEL HILL 828 MARTIN LUTHER KING JR. BOULEVARD CHAPEL HILL, NORTH CAROLINA					
hart hickman	2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geology				
DATE: 9-10-21	REVISION NO. 0				
JOB NO. TCH-009	FIGURE NO. 3				

LEGEND

- BOLIN CREEK
- MONITORING WELL LOCATION (FALCON ENGINEERING)
- TEMPORARY MONITORING WELL LOCATION (FALCON ENGINEERING)
- SOIL BORING LOCATION (FALCON ENGINEERING)
- SURFACE WATER SAMPLE LOCATION (FALCON ENGINEERING)
- MONITORING WELL LOCATION (H&H)
- SOIL SAMPLE LOCATION (H&H)
- A DRAINAGE PATHWAY, SURFACE WATER/SEDIMENT SAMPLE LOCATION (H&H)

STORMWATER CULVERT

- BOLIN CREEK TRAIL
- EXPOSURE UNIT #1 UPPER LEVEL
- EXPOSURE UNIT #2 LOWER LEVEL
- EXPOSURE UNIT #3 EMBANKMENT

NOTES:

- 1. ONLY COMPOUNDS THAT DRIVE EXCEEDANCES OF ACCEPTABLE RISK LEVELS (CARCINOGENIC RISK > 1.0E-04 AND HAZARD INDEX > 1.0) ARE SHOWN.
- 2. FT BGS = FEET BELOW GROUND SURFACE

	V
0 11 SCALE I	XIMATE 5 230 N FEET
CONSTRUCTION WORKER HUMAN HEALTH RISK DRIVERS MAP	
TOWN OF CHAPEL HILL 828 MARTIN LUTHER KING JR. BOULEVARD CHAPEL HILL, NORTH CAROLINA	
hart hickman	2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geology
DATE: 9-10-21	REVISION NO. 0

FIGURE NO. 4

JOB NO. TCH-009

316

LEGEND

SITE PROPERTY BOUNDARY

BOLIN CREEK

- ONITORING WELL LOCATION (FALCON ENGINEERING)
- TEMPORARY MONITORING WELL LOCATION (FALCON ENGINEERING)
- SOIL BORING LOCATION (FALCON ENGINEERING)
- SURFACE WATER SAMPLE LOCATION (FALCON ENGINEERING)
- MONITORING WELL LOCATION (H&H)
- SOIL SAMPLE LOCATION (H&H)
- DRAINAGE PATHWAY, SURFACE WATER/SEDIMENT SAMPLE LOCATION (H&H)

STORMWATER CULVERT 1

BOLIN CREEK TRAIL

- EXPOSURE UNIT #1 UPPER LEVEL
- EXPOSURE UNIT #2 LOWER LEVEL
- **EXPOSURE UNIT #3 EMBANKMENT**

-SAMPLE ID & DATE S-4 (4/29/13) -SAMPLE DEPTH DEPTH (FT BGS) 1' CONCENTRATION CADMIUM 1.5 (mg/kg) COBALT 30 COPPER 65 MANGANESE 1,500 NICKEL 43 -CONSTITUENT

NOTES:

- ONLY SAMPLES EXCEEDING ECOLOGICAL SCREENING 1 VALUES (ESVs) AND BACKGROUND SCREENING VALUES (BSVs) ARE SHOWN.
- FT BGS = FEET BELOW GROUND SURFACE 2 IN BGS = INCHES BELOW GROUND SURFACE mg/kg = MILLIGRAMS PER KILOGRAM

ECOLOGICAL RISK DRIVERS MAP

ECT	TOWN OF CHAPEL HILL
828 N	MARTIN LUTHER KING JR. BOULEVARD
	CHAPEL HILL, NORTH CAROLINA

hart hickman	2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geology
DATE: 9-10-21	REVISION NO. 0
JOB NO. TCH-009	FIGURE NO. 5

Risk Assessment Report

828 Martin Luther King Jr. Blvd. Property Chapel Hill, North Carolina IHSB Site No. NONCD0001486 Brownfields Project No. 21061-17-060

> H&H Job No. TCH-009 October 7, 2021

SMARTER ENVIRONMENTAL SOLUTIONS

2923 South Tryon Street, Suite 100 Charlotte, NC 28203 704.586.0007 main 3921 Sunset Ridge Rd , Suite 301 Raleigh, NC 27607 919.847.4241 main

www.harthickman.com

Risk Assessment Report 828 Martin Luther King Jr. Blvd. Property Chapel Hill, North Carolina <u>H&H Job No. TCH-009</u>

Table of Contents

Section	<u>Page No.</u>
1.0 Introduction	1
2.0 Site Background Information	
2.1 Site Location and Surrounding Land Use	3
2.2 Site Description	3
2.3 Site History	4
2.3.1 Site Ownership and Operational History	4
2.3.2 Previous Environmental Investigations	4
3.0 Environmental Setting	7
3.1 Site Topography	7
3.2 Surface Water Hydrology	7
3.3 Geology	8
3.4 Hydrogeology	9
4.0 Summary of Environmental Conditions	
4.1 Background Conditions	11
4.2 Extent of CCPs	
4.3 Soil and CCP Concentrations	
4.4 Groundwater	
4.5 Surface Water	
4.6 Stream Sediment	14
5.0 Human-Health Risk Assessment	15
5.1 Exposure Pathways Evaluation	
5.2 Exposure Unit Designations	
5.3 Exposure Point Concentrations	
5.4 Exposure Parameters	
5.5 Toxicity Factors	21

i

5.6 Risk Assessment Results	22
5.6.1 Exposure Unit #1 – Upper Level	23
5.6.2 Exposure Unit #2 – Lower Level	24
5.6.3 Exposure Unit #3 - Embankment	24
6.0 Ecological Risk Assessment	26
6.1 Exposure Units	26
6.2 Exposure Point Concentrations	27
6.3 Ecological Screening Evaluation	
6.3.1 Soil Ecological Screening	
6.3.2 Stream Sediment Ecological Screening	30
6.3.3 Surface Water Ecological Screening	31
7.0 Conclusions and Recommendations	32
8.0 References	35

List of Tables

Table 1	Summary of Human Health Risk Assessment Results
Table 2	Soil Ecological Screening Table

- Table 3
 Stream Sediment Ecological Screening Table
- Table 4Surface Water Ecological Screening Table

List of Figures

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Sample Location and Exposure Unit Map
Figure 4A	Residential Human Health Risk Drivers Map
Figure 4B	Construction Worker Human Health Risk Drivers Map
Figure 5	Ecological Risk Drivers Map

List of Appendices

- Appendix A Historical Data Tables and Figures
- Appendix B Summary of Background Screening Values Calculations
- Appendix C DEQ Risk Calculator Documentation

Risk Assessment Report 828 Martin Luther King Jr. Blvd. Property Chapel Hill, North Carolina H&H Job No. TCH-009

1.0 Introduction

This Risk Assessment Report has been prepared by Hart & Hickman, P.C. (H&H) to document the results of human health and ecological risk assessment activities completed for the property located at 828 Martin Luther King (MLK) Jr. Boulevard in Chapel Hill, Orange County, North Carolina (site).

The site is comprised of one land parcel that is approximately 10.24 acres in size and contains a two-story approximately 35,000 sq ft building located in the north-central portion. The building and associated parking areas are currently used for police department operations by the Town of Chapel Hill (Town). South of the police department operations area, the topography slopes downward along an embankment to a lower area where Bolin Creek and the Bolin Creek Trail (hereinafter also referred to as the greenway) are located. Prior to purchase of the site by the Town, the site was used by the previous owner as a borrow pit and fill site for coal combustion products (CCPs) and construction debris. The primary compounds of concern (COCs) associated with the site are metals associated with CCPs. A site location map is included as Figure 1, and a site map is included as Figure 2.

The purpose of this recent risk assessment is to evaluate the potential risk to human health or ecological receptors associated with the CCPs at the site, and whether additional remedial actions or other measures are warranted to address these risks. As discussed in Section 2.0 below, interim remedial measures were implemented by the Town in 2020 which included removal of exposed CCPs along the Bolin Creek Trail. The risk assessment activities were completed in general accordance with North Carolina Department of Environmental Quality (DEQ) and United States Environmental Protection Agency (EPA) risk assessment guidance (DEQ, 2020, DEQ, 2021a, EPA, 2018a, EPA, 2018b).

This Risk Assessment Report is organized into sections to include the following:

- Site Background Information (Section 2.0)
- Environmental Setting (Section 3.0)
- Summary of Environmental Conditions (Section 4.0)
- Human Health Risk Assessment (Section 5.0)
- Ecological Risk Assessment (Section 6.0)
- Conclusions and Recommendations (Section 7.0)
- References (Section 8.0)

2.0 Site Background Information

2.1 Site Location and Surrounding Land Use

The site is located at 828 MLK Jr. Blvd. in Chapel Hill, Orange County, North Carolina. The location of the site is shown in Figure 1, and a general layout of the site including the building, pavement, drainage features, vegetation, and greenway features is illustrated in Figure 2. The approximate geographical coordinates of the site are: 35°55'36.69"N latitude and 79°03'10.47"W longitude. The site parcel is zoned R-2 Residential 2 (4 units/acre) by the Town of Chapel Hill.

Adjacent properties are zoned as R-2, with the exception of southern adjacent properties. Southwest and southeast adjacent properties are zoned as R-4 Medium Density Residential Conditional (10 units/acre) and the south adjacent properties are zoned as NC Neighborhood Commercial.

The surrounding properties are occupied by the following:

- North and Northeast Bolinwood Drive with residential properties located beyond
- East Stratford Hills Apartments complex followed by vacant land
- South Bolin Creek followed by Lloyd Tire & Alignment and Mobil-branded gas station/Run-In-Jim's convenience store
- West MLK Jr. Blvd. followed by vacant land with residential properties located beyond

2.2 Site Description

The site is comprised of one land parcel that is approximately 10.24 acres in size and contains a two-story approximately 35,000 sq ft building located in the north-central portion of the site that is currently used for police department operations. Asphalt parking lots are located in the northwestern and central portions of the site, and wooded areas are located in the southern and

eastern portions of the site. Bolin Creek traverses the southern portion of the site, and a portion of the Bolin Creek Trail is located in the southern portion of the site just north of and parallel to Bolin Creek. The site topography consists of an elevated area where the police building and associated parking lots are located which slopes along an embankment to the south to a lower area along Bolin Creek where the Bolin Creek Trail is located. Chain-link fencing prevents access from the Bolin Creek Trail to the embankment along certain portions of the trail. Site topography is indicated in Figure 1.

2.3 Site History

2.3.1 Site Ownership and Operational History

As indicated by Orange County Tax Records, the owner of the facility prior to the Town was Richard W. Sparrow, who initially operated the site as a borrow pit from the late 1950s to the early 1960s, and then as a fill site from the mid-1960s to the mid-1970s. The Town acquired the property in 1980 and constructed the site building in the early 1980s. The building has been used for police department operations by the Town since its construction. Additional municipal offices have also been located within the site building.

The Town is currently evaluating potential on and off-site locations for mixed-used redevelopment that may include the Municipal Services Center, residential housing, and retail. As part of the evaluation process, the Town applied for entry into the DEQ Brownfields Program, and received eligibility (Brownfields Project No. 23022-19-068) via a Letter of Eligibility dated October 1, 2019.

2.3.2 Previous Environmental Investigations

Evidence of subsurface impacts associated with CCPs was first identified at the site during a *Phase I & Limited Phase II Environmental Site Assessment* completed by Falcon Engineering, Inc. in 2013. Investigation activities were then performed by Falcon and H&H under the direction of the DEQ Inactive Hazardous Sites Branch (IHSB) between 2013 and 2016, and

culminated in a *Phase II Remedial Investigation (RI) Report* dated August 14, 2017. The investigation activities included collection and laboratory analysis of CCPs, groundwater, soil, stream sediment, and surface water samples. In addition, an evaluation was performed to identify where the CCPs were potentially exposed at the ground surface.

In 2019, the Town contracted Duncklee & Dunham (D&D) and Dr. Ken Rudo of Rudo Toxicological Consultants (Rudo) to complete a preliminary human health and ecological risk assessment for the site. The risk assessment focused on the area of Bolin Creek and the Bolin Creek Trail, and included an evaluation of interim remedial measures (IRMs) to better control the risk profile of the site. Prior to performing the risk assessment, D&D and Rudo identified certain data gaps and requested that additional assessment be completed to support the risk assessment activities. In response, H&H performed additional drainage pathway soil assessment, fill material evaluation, and groundwater assessment, which is documented in a *Results of Post-Data Gap Assessment Report* dated December 1, 2020.

The initial risk assessment results concluded that interim measures, including removal of surficial coal ash in selected locations in the lower part of the site, would be protective of greenway trail users. In 2020, IRMs were implemented. IRMs included excavation and off-site disposal of soil and exposed CCPs along Bolin Creek Trail, stabilization and cover of exposed CCPs along the embankment between the upper and lower portions of the site, and temporary measures to address stormwater and erosion control in the area of the embankment. Specifically, approximately 1,004 tons of soil/CCPs at the base of the embankment and along Bolin Creek were excavated and transported off-site for disposal. In addition, super silt fencing and hydroseed were placed along the embankment, and a new storm water diversion channel was installed. The interim measures are documented in an *Interim Remedial Measures Report* dated April 19, 2021.

Following completion of the 2020 IRMs, D&D (now part of SynTerra Corporation) completed a *Human Health and Ecological Risk Assessment Report* dated May 6, 2021, which focused on potential risks in the area of Bolin Creek and the greenway trail. With regard to human health risk, the report concluded that the greenway trail is safe for users. With regard to ecological risk,

The Town requested that H&H perform additional risk assessment activities with the intent of defining the final measures recommended to address CCP impacts, both under the current land use scenario and possible future redevelopment scenarios. The results of the risk assessment performed by H&H are documented in this report. The risk assessment performed by H&H covered the site as a whole, including both the greenway trail area and the area of the current municipal operations.

As referenced in Section 2.3.1, the site has been accepted into the NC Brownfields Program, and mixed-used redevelopment that includes the Municipal Services Center, residential housing, and retail is being contemplated for the site. The Brownfields Program implements standard measures designed to address human-health risks for all projects, and did not request that the Town prepare this Risk Assessment Report. However, the Town voluntarily elected to contract H&H to complete the Risk Assessment in order to provide better explanation and transparency to the public regarding how risks will be addressed for the site. Should the Town Council decide to move forward with redevelopment of the site, future remediation, risk management, and/or redevelopment activities would be performed under the oversight of the Brownfields Program.

6

3.0 Environmental Setting

327

3.1 Site Topography

The site property is located in the Piedmont Physiographic Province of North Carolina. The Piedmont province is a plateau that divides North Carolina's mountain and coastal plain regions. It has variable topography, with elevations ranging from approximately 300 feet above mean sea level (msl) in the eastern portion to approximately 1,500 feet msl in the western portion. The Piedmont is separated from the Coastal Plain region by a fall line, or the point in which rivers transition from rocky, shallow streams to smooth-flowing streams.

Overall, the site slopes to the south from an elevation of approximately 375 ft msl near Bolinwood Drive to an elevation of approximately 300 ft above msl near Bolin Creek, which transverses the southern boundary of the site. The site topography is segmented into two gently graded areas referred to as the "upper level" and the "lower level" that are separated by a steep embankment which generally runs east-west. The upper level includes the northern and central portion of the site where the building and asphalt parking lots are located. The lower level of the site gently slopes to the southeast toward Bolin Creek and includes the Bolin Creek Trail.

3.2 Surface Water Hydrology

The land surface across the site generally slopes to the south toward Bolin Creek. Stormwater infrastructure in the upper level was upgraded in October through November 2020 to minimize the potential for runoff from the upper level to the lower level. Super silt fencing was installed along the flanks of the embankment and in other areas in the vicinity of the trail to minimize the potential for stormwater to carry CCPs to the area of the trail and greenway. Portions of the embankment were also hydroseeded with grass seed and a biodegradable growth medium to provide erosion resistance to the slopes. In addition, stormwater upgrades were implemented in the police parking lot and an existing stormwater outfall channel so that stormwater is diverted from the embankment where CCPs are present at or below land surface which minimizes the potential for future erosion of soil/CCPs along the embankment. Note that these are considered

interim measures to address erosion along the embankment, and the Town is considering permanent measures to be implemented in conjunction with site redevelopment activities. Locations of site drainage features which discharge surface water to Bolin Creek are depicted in Figure 2.

Bolin Creek and its tributaries are classified by DEQ as Class WS-V, Nutrient Sensitive Waters (NSW) surface water bodies, and are part of the Cape Fear River basin. Class WS-V surface waters are protected as upstream water supplies draining to waters used as drinking water supplies. These waters are also protected for Class C uses, including secondary recreation, fishing, wildlife, fish consumption, aquatic life including propagation, survival, and maintenance of biological integrity, and agriculture. Secondary recreation includes wading, boating, and other uses involving human body contact with water where such activities take place in an infrequent, unorganized, or incidental manner. A NSW classification is a supplemental classification to identify waters needing additional nutrient management due to excessive microscopic or macroscopic vegetation growth.

Bolin Creek discharges into Little Creek, which feeds into Jordan Lake. Jordan Lake discharges to the Haw River, which joins with the Deep River to form the Cape Fear River.

3.3 Geology

The site is located in the Piedmont Geologic Province of North Carolina, which consists of metamorphic and igneous crystalline bedrock overlain by a region of fractured and folded metamorphic and igneous crystalline bedrock. According to the Geologic Map of North Carolina (1985), the bedrock in site area is described as metamorphosed granitic rock. More detailed references (Cunningham and Daniel, 2001) describe the underlying bedrock as meta-igneous and meta-volcanic felsic rocks. Meta-igneous felsic rocks are light colored, massive to foliated metamorphosed igneous rock bodies, commonly with local shearing and jointing. Meta-volcanic felsic rocks are primarily dense, fine-grained, light colored felsic tuffs and felsic crystal tuffs, commonly with local shearing and phyllitic zones.

Based on previous assessment activities, the native shallow soil generally consists of silty clay saprolite which is approximately 5 to 15 ft thick. In areas where fill material is not present, the saprolite is underlain by a partially weathered rock (PWR) zone that is approximately 5 ft thick, and the PWR is underlain by bedrock. Depth to bedrock at the site generally ranges from approximately 10 to 15 ft bgs in the northern portion of the site near Bolinwood Road and in the southern portion of the site near Bolin Creek. Depth to bedrock in the central portion of the site where fill material has been placed is approximately 45 ft to 50 ft bgs. In areas where fill has been placed, the shallow cover soil generally consists of clayey silt fill which, in some locations, appears to be mixed with CCP. See Section 4.2 for a discussion of the extent and thickness of buried fill material across the site.

3.4 Hydrogeology

The occurrence and movement of groundwater in the Piedmont is within two separate yet interconnected water-bearing zones. A shallow water-bearing zone occurs within the saprolite (and may include alluvium near streams), and a deeper zone occurs within the underlying bedrock. Groundwater in the shallow saprolite zone occurs in the interstitial pore spaces between the grains comprising the unconsolidated saprolitic soils. Groundwater in this zone is typically under water table or unconfined conditions. Groundwater movement is generally lateral from recharge areas to small streams which serve as localized discharge points.

The occurrence and movement of groundwater in the underlying water-bearing zone within the crystalline bedrock is controlled by secondary joints, fractures, and faults within the bedrock. On a regional scale, the direction of groundwater flow is typically from highlands to major streams and groundwater sinks. The saprolite has a higher porosity than the bedrock and serves as a reservoir which supplies water to a network of fractures in the bedrock.

Based on the results of groundwater monitoring completed at the site, the direction of groundwater flow in the uppermost unconfined aquifer is south-southeast across the site towards Bolin Creek. The depth to groundwater is approximately 7 to 10 ft bgs in the most upgradient portion of the site near Bolinwood Road, and 1 to 6 ft bgs in the most downgradient portion of

the site near Bolin Creek. Groundwater is present at deeper depths in the central portion of the site where the natural ground surface elevation has been modified due to fill placement. Groundwater has been measured in the existing monitoring wells in the fill area at depths ranging from approximately 30 to 40 ft bgs. However, prior assessment activities also identified evidence of perched groundwater in the fill material, which is separated from the main underlying unconfined aquifer. As such, the groundwater depths measured in some monitoring wells (MW-1A, MW-1, MW-8, and MW-9) appear to reflect perched groundwater zones rather than the main underlying aquifer. Uncontrolled fill areas such as the site, in which layers with significantly different permeabilities are placed next to one another (i.e., debris with sand or a gravel zone immediately overlying a silt or clay layer) have a high potential for perched groundwater zones. Refer to the *Results of Post-Data Gap Assessment Report* prepared by H&H and dated December 1, 2020 for additional discussion of lines of evidence for perched groundwater conditions.

Historical tables and figures are included in Appendix A, including a summary of monitor well construction and historical groundwater elevation data, a geologic cross-section, and an unconfined aquifer potentiometric map.

4.0 Summary of Environmental Conditions

The primary COCs associated with the site are metals associated with CCPs. Naturallyoccurring background levels of metals are also present at the site. An explanation of background concentrations, extent of CCPs, and brief summaries of the site-specific COCs in soil, groundwater, surface water, and sediment are presented in the sections below. Summaries of historical data for site soil, groundwater, surface water, and sediment are included in Appendix A.

4.1 Background Conditions

Metals, including the COCs for the site, are naturally occurring within North Carolina soils. These compounds are derived from the natural elemental composition of the source rock and compound concentrations are a reflection of the rock composition. Background samples collected from the site contained concentrations of certain metals exceeding DEQ Preliminary Soil Remediation Goals (PSRGs) in soil and stream sediment, which are attributed to naturally-occurring metals in the parent bedrock. EPA and DEQ do not require remediation of concentrations below naturally occurring background levels (EPA, 2002, DEQ, 2021). Therefore, evaluation of site-specific background levels is important in determining remedial goals. Note also that the DEQ PSRGs are initial screening levels based upon conservative exposure assumptions. DEQ allows that final remedial goals be based upon a risk evaluation using the DEQ risk calculator as discussed further in Section 5.0.

In order to determine whether metals detections at the site are related to fill materials or represent background levels, H&H calculated site-specific Background Screening Values (BSVs). Based on EPA guidance (EPA, 2015a, 2018a, 2018b), the BSVs for metals in soil consist of 95% upper tolerance limits (UTLs) with 95% coverage determined using EPA's ProUCL calculator (EPA, 2015a). Due to a more limited data set which introduces more uncertainty in output of the ProUCL calculator, the BSVs for stream sediment and surface water consist of the lower of the maximum detected background concentration or twice the mean of background concentrations. Appendix B contains details regarding the basis for the BSVs and documentation of the

calculations. The BSVs are referenced in subsequent sections of this report when evaluating whether concentrations detected in individual samples represent background conditions or evidence of contamination.

4.2 Extent of CCPs

Based on prior assessment activities, fill materials placed at the site consist primarily of construction and demolition debris and fill soil intermixed with zones of CCPs. The thickness of the CCP zones primarily ranges from less than 1 ft to 3 ft, with some thicker zones up to 10 ft. Fill materials were identified to depths of approximately 40 ft, although the deepest that CCPs were observed was approximately 29 ft.

In the upper level of the site, CCPs are capped with clayey silt that ranges in thickness from less than 1 ft to approximately 10 ft thick, with most areas having greater than 2 ft of soil cover. CCP is exposed at the surface along the eastern and central portions of the embankment that separates the upper and lower levels of the site. CCPs in the western portion of the embankment are covered but with soil that is less than 2 ft thick. Erosion of CCPs along some portions of the site embankment historically resulted in deposition of a layer of CCPs in the lower level of the site north and south of the Bolin Creek Trail. However, CCPs in the lower level were excavated as part of the 2020 IRMs, and no significant CCPs are currently present in the lower level.

4.3 Soil and CCP Concentrations

Over 70 samples of soil and/or CCPs have been collected at the site over the course of historical assessment activities. Concentrations of COCs for samples that were not removed during the 2020 IRMs were compared to the current DEQ residential health-based PSRGs, industrial/commercial health-based PSRGs, and protection of groundwater PSRGs. Concentrations of metals were also compared to site-specific BSVs prior to comparison to PSRGs. The results of this comparison indicated concentrations of arsenic, barium, cobalt, manganese, mercury, and selenium above current PSRGs and BSVs, with arsenic being the most commonly detected constituent. Note that PSRGs are not intended as remediation goals and are

based on conservative risk assumptions. DEQ guidance recommends comparison of concentrations to PSRGs for initial screening purposes, but final remediation goals may be determined based on risk evaluation performed using the NC Risk Calculator, as discussed further in Section 5.0.

4.4 Groundwater

Multiple groundwater monitoring events have been performed at the site over the course of historical assessment activities. Concentrations of COCs in groundwater samples were compared to 15A NCAC 02L .0202 Groundwater Standards (2L Standards). As previously mentioned, prior assessment data indicate that there are perched water zones in the fill material, and groundwater samples collected from shallow wells in the fill are monitoring these perched zones. Perched groundwater is likely present in some zones of CCPs or just below zones of CCPs. Concentrations of metals above 2L Standards in groundwater samples from these wells (MW-1A, MW-1, MW-8, and MW-9) are associated with the presence of CCPs within or near perched groundwater. Some impacted perched groundwater may eventually migrate through underlying unsaturated zones to groundwater in the main underlying unconfined aquifer; however, this migration is slow and of low volume. As such, there is limited or no groundwater impact in monitoring wells which are screened in non-fill zones in the unconfined aquifer, including well MW-11D located directly below the fill and shallow downgradient monitoring wells MW-3A and MW-4A which are located downgradient of the fill area.

4.5 Surface Water

Surface water samples have been collected from Bolin Creek during four sampling events completed in 2013, 2014, 2016, and 2019 from three upstream locations, three locations adjacent to the site, and three downstream locations. A surface water sample was also collected from a drainage pathway at the site. No COCs were detected in surface water samples at concentrations above 15A NCAC 2B Section .0100 Surface Water Quality Standards (2B Standards). Based upon the surface water sample results, there is no evidence of surface water impact at the site which would warrant further assessment or remediation.

4.6 Stream Sediment

Stream sediment samples have been collected from Bolin Creek during two sampling events completed in 2016 and 2019 from two upstream locations, two locations adjacent to the site, and three downstream locations. Concentrations of COCs were compared to the current DEQ residential health-based PSRGs, industrial/commercial health-based PSRGs, and protection of groundwater PSRGs. Concentrations of metals were also compared to site-specific BSVs prior to comparison to PSRGs. Manganese and/or hexavalent chromium were detected in two samples at concentrations above PSRGs and site-specific BSVs. As previously mentioned, note that PSRGs are not intended as remediation goals and are based on conservative risk assumptions. DEQ guidance recommends comparison to PSRGs for initial screening purposes, but remediation goals are determined based on risk evaluation performed using the NC Risk Calculator, as discussed further in Section 5.0.

5.0 Human-Health Risk Assessment

H&H evaluated potential human-health risks associated with COCs detected in soil, groundwater, stream sediment, and surface water, and whether actions are warranted to address these risks. Actions could include remediation activities, implementation of land-use restrictions (LURs), or other measures to prevent exposures. Should the Town Council decide to move forward with redevelopment of the site, LURs are expected to be included in a Brownfields Agreement (BFA) with the DEQ Brownfields Program, which would be filed on the deed for the property and remain in perpetuity.

Risk assessment calculations were performed using the DEQ Risk Calculator (June 2021), which is an Excel-based calculator tool developed by DEQ that evaluates human-health risks using equations and inputs that have been approved by DEQ and are consistent with EPA risk assessment guidance. The methodology for the risk evaluation was in general accordance with the risk assessment procedures detailed in DEQ and EPA risk assessment guidance (DEQ, 2020, DEQ, 2021a, EPA, 2018b).

5.1 Exposure Pathways Evaluation

An exposure pathway refers the mechanism by which people could potentially be exposed to COCs. A complete exposure pathway means that there is potential for human exposure to COCs, while an incomplete exposure pathway means that exposure is not possible due to absence of COCs, absence of receptors, or inaccessibility (i.e., surface cover such as pavement, no water supply well usage, etc). An exposure pathways evaluation was performed to identify current and potential future complete pathways for receptor exposure to site COCs. Below is a list of exposure pathways and a discussion of whether each pathway is complete for the site. For convenience, these pathways are addressed using the same naming conventions and order used in the DEQ Risk Calculator.

Direct Contact Soil and Water Exposure Pathways

- Direct contact soil exposure pathway This pathway covers health-based soil exposure via ingestion, dermal contact, or outdoor inhalation of volatiles and particulates. Receptor scenarios considered for this exposure pathway are detailed below.
 - Resident Site use is currently non-residential; therefore, the direct contact soil exposure pathway is currently incomplete for the resident scenario. Under a future scenario, this exposure pathway could become complete in certain areas if the site is used for residential purposes.
 - Non-residential worker The direct contact soil exposure pathway is currently complete for non-residential workers in the area of the police department building where impacted soil is not covered by pavement, building floor slabs, or non-impacted soil cover. Under a future land use scenario, this exposure pathway could become complete in additional areas if building floor slabs, pavement, or non-impacted soil cover are removed.
 - Construction worker Per DEQ guidance (DEQ, 2021a), the Risk Calculator uses very conservative default inputs that represent worst-case situations and may result in overly restrictive risk values when evaluating the construction worker pathway. Therefore, the results of the construction worker evaluation performed using the Risk Calculator should not drive a cleanup level. Instead, the results are intended to be used to help guide safety concerns for imminent or potential future construction activities. An Environmental Management Plan (EMP) detailing methods to prevent construction worker exposure and manage impacted soil during construction activities is required by the Brownfields Program and will be specified in a LUR. Implementation of this EMP will result in the direct contact soil exposure pathway being incomplete for a construction worker. This pathway was evaluated as part of the risk assessment to help identify potential areas of concern to be addressed by the EMP, but does not drive proposed remediation goals.
 - Recreator The southern portion of the site is used as a public green space and contains the Bolin Creek Trail for recreational use; therefore, this pathway is currently complete for greenway users under both the current and future land use

scenarios. For consistency, the recreator receptor is referred to as a greenway user throughout this report.

- Direct contact groundwater use exposure pathway This pathway covers health-based groundwater exposure via ingestion, dermal contact, or inhalation associated with use of groundwater from a water supply well. For the subject site, assessment data do not indicate groundwater impacts extending beyond the site property boundary, no water supply wells are currently present at the site, and a LUR preventing the future installation of water supply wells is proposed as part of the BFA. Implementation of this LUR will result in the groundwater use exposure pathway being incomplete. Therefore, this pathway was not evaluated as part of the risk assessment. However, possible direct contact with surface water and sediment from groundwater seepage to surface water is considered an exposure pathway as discussed below.
- Direct contact surface water exposure pathway This pathway covers health-based surface water exposure via ingestion or dermal contact during a recreational scenario. This pathway is considered complete for greenway users in the area of Bolin Creek under both the current and future land use scenarios.
- Direct contact sediment exposure pathway This pathway covers health-based stream sediment exposure via ingestion, dermal contact, or outdoor inhalation of volatiles and particulates. This pathway is not specifically covered in the DEQ Risk Calculator. Per DEQ guidance (DEQ, 2021a), this pathway was evaluated by entering sediment concentrations under the direct contact soil exposure pathway for a greenway user in the area of Bolin Creek. However, note that this approach overestimates risk since sediment will usually be covered by water, which limits human exposure and eliminates inhalation risk.

Vapor Intrusion Exposure Pathway

 Vapor intrusion exposure pathway – The vapor intrusion pathway covers indoor inhalation risk due to intrusion of volatile organic compound vapors from subsurface soil and/or groundwater into buildings. COCs for the site are non-volatile metals associated with CCPs; therefore, this pathway is not considered complete.

17

https://harthick.sharepoint.com/sites/masterfiles-1/shared documents/aaa-master projects/town of chapel hill (tch)/tch-009 - police station - remedial services/risk assessment/report/final to client/chapel hill risk assessment report.doc

Contaminant Migration Pathways

• The contaminant migration pathways evaluate leaching of compounds from soil to groundwater, and migration of impacted groundwater towards either a downgradient water supply well or a downgradient surface water body. The Risk Calculator contains tools for predictive modeling of these pathways; however, per DEQ guidance (DEQ, 2021a), groundwater monitoring data that confirm the plume is stable and unlikely to impact a downgradient receptor are more reliable to support risk management decisions. As discussed in Section 4.3, groundwater monitoring data for the site indicate limited or no groundwater impact in monitoring wells which are screened in non-fill zones in the unconfined aquifer. Groundwater impacts, if any, will not migrate beyond the site property boundary due to the hydraulic barrier formed by Bolin Creek. In addition, as discussed in Section 4.4, surface water monitoring data indicate no significant impacts to Bolin Creek. Based on monitoring data, contaminant migration pathways are not considered a concern for the site.

5.2 Exposure Unit Designations

For the purpose of risk characterization, the site was divided into exposure units (EUs) that represent areas of similar land use and potential receptors. Three EUs were defined for the site, and the EUs are depicted in Figure 3. A description of each EU and associated exposure pathways is provided below.

- EU #1 encompasses the upper level in the vicinity of the existing police department building and associated parking areas. EU #1 is currently non-residential. Future redevelopment may include residential use. Therefore, calculations were performed to evaluate the soil direct contact pathway for a resident, non-residential worker, and construction worker within EU #1. The direct contact groundwater use pathway will be managed via a LUR preventing the installation of water supply wells. No surface water or stream sediment are located within EU #1.
- EU #2 encompasses the area of Bolin Creek and the adjacent trail area, which is also referred to as the lower level of the site. EU #2 is currently used for recreational

purposes only. EU #2 is located within a flood zone; therefore, commercial or residential redevelopment is not viable. Calculations were performed to evaluate the soil, surface water, and stream sediment direct contact pathways for a greenway user, and the soil direct contact pathway for a construction worker within EU #2. The direct contact groundwater use pathway will be managed via a LUR preventing the installation of water supply wells.

- EU #3 encompasses the embankment between EU #1 and EU #2. The embankment is not currently in use and partially fenced off to prevent access from the adjacent EU #2 greenway area. Although occupancy and uses of EU #3 are inherently limited due to the steep slope, calculations were conservatively performed to evaluate the soil direct contact pathway for a resident, non-residential worker, construction worker, or greenway user within EU #3. The direct contact groundwater use pathway will be managed via a LUR preventing the installation of water supply wells. No surface water or stream sediment are located within EU #1.
- Note that the potential for erosion to transport impacts from the area of the embankment (EU #3) into the greenway area (EU #2) is an additional concern. The Town implemented temporary measures to minimize the potential for erosion as part of the IRMs implemented in 2020; however, H&H recommends implementation of permanent measures to prevent erosion in conjunction with site redevelopment activities.

5.3 Exposure Point Concentrations

Exposure point concentrations were defined for the soil, sediment, and surface water direct contact exposure pathways. Analytes considered in the risk assessment conservatively included all detected constituents designated by DEQ as COCs requiring analysis for the site (see DEQ letter dated February 11, 2016). The data sets used for the risk assessment included the following:

• The soil EPC data set included the full set of historical soil sampling data, with several exceptions. First, soil samples that were excavated during the 2020 IRMs were removed from the data set. Secondly, at locations that were sampled more than once, only the

more recent samples were included in the data set. Lastly, based on EPA risk assessment guidance (EPA, 2018b), soil samples collected at depths 2 ft bgs or less were used for risk calculations for residents, non-residential workers, and greenway users, and samples collected at depths of 10 ft bgs or less were used for risk calculations for construction workers. Note that if impacted soil or CCPs at deeper depths are exposed during site redevelopment, additional risk evaluation should be performed to confirm surface soils do not exceed acceptable risk levels. If the site is redeveloped, the Brownfields Program will also likely require confirmatory sampling and risk evaluation in areas of potentially impacted soil or CCPs that are not covered by impervious surfaces (buildings, pavement, etc.) or at least 2 ft of clean fill.

- For surface water, more recent data is considered most representative of current conditions, but EPCs also need to account for possible variations in surface water concentrations over time. To account for potential variability over time, the surface water EPC data set included surface water samples collected within the past five years (2016 and 2019 sampling events).
- For stream sediment, two sampling events have been performed to date in 2016 and 2019. The locations sampled in 2016 were resampled in 2019, so the 2019 is considered most representative of current conditions and was used as the EPC data set.

Per DEQ guidance (DEQ, 2020), maximum concentrations for each constituent of concern detected in the referenced data sets were used as the EPCs. Following initial risk calculations, the EPC dataset was further refined to exclude metals detected at concentrations below site-specific BSVs. As previously discussed, the BSVs established for the site consisted of the 95% UTL with 95% coverage for background soil, and the lower of two times the mean or the maximum detected concentration for background surface water and sediment. EPC tables are included in Appendix C.

5.4 Exposure Parameters

The default exposure parameters incorporated in the DEQ Risk Calculator were used for the risk evaluation for a resident, non-residential worker, and construction worker. These exposure

parameters are consistent with EPA default exposure parameters (EPA, 2021), where established, and are intended to represent a reasonable maximum exposure (RME) scenario. RME is defined by EPA as the highest exposure that is reasonably expected to occur at a site, generally assumed to be in the range of the 90th and 99th percentiles (EPA, 2001). To calculate risks specific for greenway users, H&H calculated site-specific exposure factors based on greenway user polling data collected by the Town. Specifically, for adult and child exposure frequency, soil exposure time, and water exposure time, H&H used values equal to or more conservative than the 98th percentile of responses reported during the greenway user survey. This approach is consistent with RME as defined by EPA, and represents "worst-case" exposures. Following is a brief summary of the most pertinent exposure parameters, but please refer to the NC Risk Calculator documentation in Appendix C for a full list of exposure parameters used in the calculations:

- Residential exposure for 6 years (yrs) as a child and 20 yrs as an adult (26 yrs total), 350 days per year (d/yr), and 24 hours per day (hr/d).
- Non-residential exposure for 25 yrs (adult only), 250 d/yr, and 8 hr/d.
- Construction worker exposure for 1 yr (adult only), 250 d/yr, and 8 hr/day.
- Greenway user exposure for 6 yrs as a child and 20 yrs as an adult (26 yrs total), 364 d/yr and 1 hr/d as an adult, and 52 d/yr and 0.5 hr/d as a child.
- Dermal contact with soil parameters assumes exposure of head, hands, forearms, lower legs, and feet for a resident and greenway user, and exposure of head, hands, and forearms for a non-residential worker and construction worker.
- Soil ingestion parameters assume ingestion of 200 milligrams per day (mg/d) of soil by a child (greenway user or resident), and 100 mg/d of soil by an adult (greenway user, resident, or non-residential worker). Increased ingestion of 330 mg/d of soil is assumed for a construction worker.
- Significantly increased outdoor inhalation of particulates is assumed for a construction worker, with assumed particulates at levels greater than the National Ambient Air Quality Standard established under 40 Code of Federal Regulations Part 50 for particle pollution.

21

5.5 Toxicity Factors

The conservative default toxicity factors incorporated in the DEQ Risk Calculator were used for the risk evaluation. Note that these toxicity factors account for possible development effects for pregnant women.

5.6 Risk Assessment Results

For the direct contact pathways, the DEQ Risk Calculator calculates values for potential cancer risk (CR) and potential non-cancer hazard quotient (HQ) or hazard index (HI) as described below:

- CR is defined as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to a potential carcinogen. For example, a CR of one in 10,000 (1.0E-04) indicates one person in 10,000 may have an increased risk of cancer due to exposure to a chemical.
- HQ is defined as the ratio of the amount of a contaminant a person is exposed to versus the amount that may cause non-cancer harmful effects, while HI is defined the sum of HQs for individual contaminants for a given scenario. For example, a HI of less than 1 indicates the exposure is unlikely to cause non-cancer harmful effects.

For each receptor scenario, CR and HQ values for complete exposure pathways are summed to determine the cumulative risk for each receptor. The cumulative CR and HI values for each receptor are then compared to the DEQ acceptable risk values. DEQ considers a cumulative CR of 1.0E-4 and HI of 1.0 or less to be acceptable (DEQ, 2021a). Similarly, EPA considers exceedances of a CR of 1E-04 and HI of 1 to be triggers requiring remediation or other actions to reduce exposures (EPA, 2018b).

Note that calculated cumulative CR and HI values do not include risks associated with lead. Currently, there is no EPA reference dose or cancer potency factor to quantify risks associated with exposures to lead. Exposure risks to lead are characterized based on predicted blood lead levels. The DEQ Risk Calculator flags a lead concentration when the concentration exceeds the DEQ health-based residential or industrial/commercial PSRGs for lead (400 mg/kg and 800 mg/kg, respectively). Lead has not been detected at concentrations above DEQ health-based

PSRGs in samples collected at the site; therefore, lead is not considered to be a compound posing a significant risk for the site.

Cumulative CR and HI values calculated for each exposure unit and receptor scenario are summarized in Table 1. Risk calculator documentation is included in Appendix C. A discussion of the results is presented below.

5.6.1 Exposure Unit #1 – Upper Level

EU #1 covers the upper level in the area of the existing police department building. In the area of EU #1, calculated CR and HI values do not exceed DEQ acceptable risk limits for a non-residential worker. Therefore, the area of EU #1 is considered safe for non-residential workers, and no further evaluation of this exposure unit/receptor is considered warranted.

For a future resident in EU #1, the calculated cumulative CR value is acceptable; however, the calculated HI value exceeds the DEQ acceptable risk level of 1, both with and without background concentrations included. As previously referenced, background concentrations are excluded when determining remedial goals for the site. With background levels excluded, the COC driving the risk level above 1 is limited to manganese within the S-4 sample. This sample was collected at a depth of 1 ft bgs in the wooded area southwest of the police department building during the initial site assessment activities in April 2013, as reported in the Phase I & Limited Phase II Environmental Site Assessment prepared by Falcon Engineering and dated July 18, 2013. If the site is redeveloped for residential use, H&H recommends remediation (ex., excavation, cover to prevent exposure) or other actions (ex., resampling to verify concentrations) to address impacts in the area of sample S-4. Samples driving exceedances of residential risk levels are identified on Figure 4A.

For a construction worker, the calculated cumulative CR value was acceptable; however, calculated HI value exceeds the DEQ acceptable risk level of 1, both with and without background concentrations included. The COCs driving the risk level greater than 1 include manganese, arsenic, and mercury. Samples driving exceedances of construction worker risk

levels are identified on Figure 4B. As previously discussed, the Risk Calculator uses very conservative default inputs that represent worst-case situations and may result in overly restrictive risk values when evaluating the construction worker pathway. Construction worker risks will be managed via a LUR requiring preparation of an EMP, which will detail measures to prevent construction worker exposure, manage impacted soil during construction activities, and minimize the potential for off-site migration of impacted soil via surface water or windborne pathways.

5.6.2 Exposure Unit #2 – Lower Level

EU #2 covers the lower level in the area of the greenway trail and Bolin Creek. For a current and future greenway user, the calculated CR and HI values do not exceed DEQ acceptable risk limits. Therefore, the area of EU #2 is considered safe for greenway users, and no further evaluation of this exposure unit/receptor is considered warranted.

For a construction worker, the initial evaluation including background levels indicated the calculated cumulative CR value was acceptable, but the calculated HI value exceeds the DEQ acceptable risk level of 1. If background levels are excluded, the calculated CR and HI values do not exceed DEQ acceptable risk levels. Because risks associated with contamination do not exceed acceptable risk levels, no remediation or other measures are considered warranted to address construction worker risks in EU#2. However, the Brownfields Program will likely require an EMP for the site as a whole, including EU #2, which will detail measures to prevent construction worker exposure, manage impacted soil during construction activities, and minimize off-site migration pathways.

5.6.3 Exposure Unit #3 - Embankment

EU #3 covers the area of the embankment between the upper and lower level. As previously noted, EU #3 is not currently used and occupancy is limited by fencing and a steep slope; however, H&H conservatively evaluated the same receptors designated for the upper and lower levels for this exposure unit.

For a potential current or future greenway user, the calculated CR and HI values do not exceed DEQ acceptable risk limits. Therefore, the area of EU #3 is considered safe for greenway users, and no further evaluation of this exposure unit/receptor is considered warranted.

345

For a potential current or future non-residential worker, the calculated CR and HI values do not exceed DEQ acceptable risk limits. Therefore, the area of EU#3 is considered safe for non-residential workers, and no further evaluation of this exposure unit/receptor is considered warranted.

For a potential future resident, the calculated cumulative CR value was acceptable; however, calculated HI value exceeds the DEQ acceptable risk limit, both with and without background levels included. With background levels excluded, the COC driving the exceedance is arsenic in samples S-7, HH-10, and HH-11. CCPs are exposed in areas of the embankment and the samples driving the risk exceedance were CCP samples. H&H recommends remediation or other measures (several examples given above) to address exposed CCPs in the area of the embankment. Samples driving exceedances of residential risk levels are identified on Figure 4A.

For a construction worker, the calculated cumulative CR value was acceptable; however, the calculated HI value exceeds the DEQ acceptable risk level, both with and without background levels included. The COCs driving the exceedance include manganese and arsenic. Samples driving exceedances of construction worker risk levels are identified on Figure 4B. Construction worker risks will be managed via a LUR requiring preparation of an EMP, which will detail measures to prevent construction worker exposure, manage impacted soil during construction activities, and minimize potential off-site migration.

https://harthick.sharepoint.com/sites/masterfiles-1/shared documents/aaa-master projects/town of chapel hill (tch)/tch-009 - police station - remedial services/risk assessment/report/final to client/chapel hill risk assessment report.doc

6.0 Ecological Risk Assessment

Due to the presence of potential ecological receptors in the area of Bolin Creek, H&H conducted initial screening activities related to ecological risk assessment. Based on DEQ guidance (DEQ, 2021b), the initial screening activities consisted of comparison of detected concentrations to the Ecological Screening Values (ESVs) established by EPA Region 4. The Guidelines for Performing Screening Level Ecological Risk Assessments within the Division of Waste Management (DENR, 2003) and EPA Region 4 Ecological Risk Assessment Supplemental Guidance (EPA, 2018a) were consulted during the initial screening; however, please note that H&H's evaluation did not constitute a full Screening Level Ecological Risk Assessment (SLERA).

Per DEQ and EPA guidance (DENR, 2003, EPA, 2018a), EPA ESVs are based on conservative endpoints and ecological effects data, and represent preliminary screening criteria to evaluate the potential for ecological risk (or lack thereof). ESVs are not intended to represent remediation goals. The purpose of the initial ESV screening activities performed by H&H was to evaluate whether additional actions are warranted to further evaluate or address ecological risks for the site. This section details the EPCs used for the screening, and the results of the ESV screening for surface water, sediment, and soil.

6.1 Exposure Units

The ecological risk assessment included evaluation of data with respect to the same exposure units established in the human health risk assessment. The EUs were further evaluated with respect to the potential for significant ecological receptors to be present, as detailed below.

• EU #1 encompasses the upper level in the vicinity of the existing police department building. Ecological receptors are less likely to be present in the area of EU #1 due to the buildings and pavement associated with the police department building. However, some ecological receptors could potentially be present in the wooded areas surrounding the facility; therefore, this unit was conservatively screened for ecological risk. No stream

sediment or surface water are located within this unit, so the only complete exposure pathway for ecological receptors is surface soil exposure.

- EU #2 encompasses the area of Bolin Creek and the adjacent trail area. EU #2 is • considered the unit with the highest likelihood of potential ecological receptors. Complete exposure pathways for ecological receptors include surface soil exposure, sediment exposure, and surface water exposure.
- EU #3 encompasses the embankment between EU #1 and EU #2. The potential for ecological receptors in this area is considered moderate. No stream sediment or surface water are located within this unit, so the only complete exposure pathway for ecological receptors is surface soil exposure.
- As previously discussed, note that the potential for erosion to transport impacts from the area of the embankment (EU #3) into the greenway area (EU #2) is an additional concern. The Town implemented temporary measures to minimize the potential for erosion as part of the interim remediation measures implemented in 2020; however, H&H recommends implementation of permanent measures to prevent erosion in conjunction with site redevelopment activities.

6.2 Exposure Point Concentrations

Analytes considered in the risk assessment conservatively included all detected constituents designated by DEQ as COCs requiring analysis for the site (see DEQ letter dated February 11, 2016). Similar to the human-health risk assessment, the data set used for the risk assessment included the following:

- The surface water EPC data set included surface water samples collected within the past • five years (2016 and 2019 sampling events).
- The stream sediment EPC data set included the most recent samples collected in 2019. •
- The soil EPC data set included the full set of historical soil sampling data with the exception of (1) soil samples that were excavated during the 2020 IRMs, (2) locations that were resampled, in which case only the latest data was included, and (3) samples collected at depths of more than 2 ft bgs. Samples collected from 0 to 2 ft bgs were used

based on prior guidance from DEQ personnel. This is consistent with or more conservative than EPA guidance, which recommends collection of samples for terrestrial ecological risk assessment at depths on the order of 25 to 30 cm, or 0.8 to 1 ft (EPA, 2015b).

Maximum concentrations for each constituent of concern detected in the referenced data sets were used as the EPCs. Concentrations were initially compared to ESVs directly without consideration of background concentrations. Where concentrations exceeded ESVs, concentrations were also compared to the established site-specific BSVs to evaluate exceedances potentially attributable to contamination rather than background conditions. As previously discussed, the BSVs established for the site consisted of the 95% UTL with 95% coverage for background soil, and the lower of two times the mean or the maximum detected concentration for background surface water and sediment.

6.3 Ecological Screening Evaluation

The results of the ecological risk evaluation for the soil, stream sediment, and surface water exposure pathways are detailed below. COCs identified at concentrations above BSVs and ESVs are shown on Figure 5.

6.3.1 Soil Ecological Screening

The designated soil EPCs within the three exposure units were compared to the EPA Soil ESVs as summarized in Table 2. The results of the comparison for each exposure unit are discussed below.

Exposure Unit #1

Within EU #1 (upper level), soil concentrations were identified above the EPA ESVs in multiple samples. However, the majority of the detections are below the site-specific BSVs and therefore considered representative of background conditions. Concentrations above both EPA ESVs and BSVs were identified only in soil samples S-4 and MW-7.

Sample S-4 contained cadmium, cobalt, copper, manganese, and nickel at concentrations above ESVs and BSVs. As previously discussed, this sample was collected at a depth of 1 ft bgs in the wooded area southwest of the police department building during the initial site assessment activities in April 2013. This sample was also identified as a driver for residential risk exceedances during the human health risk assessment.

Sample MW-7 is a soil sample collected from the boring for well MW-7 at a depth of 0-1 ft bgs in 2016. This sample contained copper at a concentration above both the ESV and BSV. This sample was collected in the eastern portion of the site approximately 120 ft cross-gradient of the area of CCPs. The detected concentration is higher than copper concentrations collected from CCPs in the source area. Based on review of the data, the copper detected in sample MW-7 is likely not associated with the CCP disposal area and is considered an outlier. Additional sampling may be beneficial to confirm concentrations in the area of well MW-7.

It should be noted that DEQ does not commonly require evaluation of ecological risks for soil (DEQ, 2021b). As such, DEQ may not require additional actions with regard to the exceedances of ESVs in S-4 and MW-7. If required by DEQ or if the Town wishes to take voluntary actions, H&H recommends remediation or other measure to address or further evaluate potential ecological risks in the area of samples S-4 and MW-7.

Exposure Unit #2

Within EU #2 (lower level), soil concentrations were identified above the EPA ESVs in multiple samples. However, the majority of the detections are below the site-specific BSVs and therefore considered representative of background conditions. Concentrations above both EPA ESVs and BSVs were identified only in sample SED-13 which is a drainage pathway sample located near the bridge of the Bolin Creek Trail.

At the SED-13 location, samples were collected at both 0-2 and 2-6 inches bgs. Barium was detected at concentrations above the ESV and BSV in both sample depths. Selenium and strontium were also detected at concentrations above the ESVs and BSVs in the 0-2-inch bgs sample depth.

As previously referenced, DEQ does not commonly require evaluation of ecological risks for soil (DEQ, 2021b). As such, DEQ may not require additional actions with regard to the exceedances of ESVs in SED-13. If required by DEQ or if the Town wishes to take voluntary actions, H&H recommends remediation or other measure to address or further evaluate potential ecological risks in the area of sample SED-13.

Exposure Unit #3

Within EU #3 (embankment), concentrations were identified above both EPA ESVs and BSVs in each sample collected (S-7, H-9, H-10, and H-11). Constituents detected above ESVs and BSVs include arsenic, barium, beryllium, mercury, selenium, and strontium. CCPs are exposed in areas of the embankment and the samples indicating exceedances were CCP samples. H&H recommends remediation or other measures to address exposed CCPs in the area of the embankment.

6.3.2 Stream Sediment Ecological Screening

The designated stream sediment EPCs in the area of Bolin Creek (EU #2) were compared to the EPA Sediment ESVs, as summarized in Table 3. The results of the comparison indicated barium in samples SED-4 (Adjacent to the site) and SED-5 (Downstream near the southeast property boundary) and total chromium in samples SED-4 (Adjacent) and SED-7 (Downstream and offsite) at concentrations above the EPA ESVs. For these exceedances, concentrations were then compared to the established BSVs. The concentrations were found to be below the BSVs, and are therefore considered representative of background conditions. The fact that these constituents represent background conditions is further confirmed by the detection of both barium and chromium at concentrations above EPA ESVs in the upgradient background sediment samples collected at the site.

Note that Table 3 also lists EPA Region 4 Refinement Screening Values (RSVs) for sediment. The RSVs are based on less conservative ecological effects data, and are intended to be used as a second-tier screening where ESVs are exceeded. Although sediment concentrations appear

indicative of background conditions and therefore do not warrant remediation, the concentrations (including those at background locations).do not exceed RSVs and therefore are not considered a significant ecological risk.

6.3.3 Surface Water Ecological Screening

The designated surface water EPCs in the area of Bolin Creek (EU #2) were compared to the EPA Region 4 Acute and Chronic Surface Water ESVs, as well as the NC 2B Standards. The ESVs and 2B Standards for some constituents vary based on hardness. Based on historical sampling, the average hardness in Bolin Creek was calculated as 54.5 milligrams per liter (mg/L). Based on this value, the published ESVs based on a hardness of 50 mg/L were used. NC 2B Standards were derived using the DEQ Hardness-Dependent Metal Calculator dated July 26, 2021, and the average site-specific hardness of 54.5 mg/L. For constituents with no established 2B Standard, concentrations were compared to the NC In-Stream Target Values for Surface Water (July 26, 2021).

Table 4 provides a summary of surface water EPCs in comparison the referenced ecological screening criteria. As shown, no concentrations were found to exceed EPA Region 4 Acute and Chronic Surface Water ESVs, NC 2B Standards, or NC In-Stream Target Values for Surface Water.

7.0 Conclusions and Recommendations

H&H has completed human-health and ecological risk assessment activities for the property located at 828 MLK Jr. Boulevard in Chapel Hill. The purpose of the risk assessment activities was to evaluate potential human health and ecological risks for CCPs at the site under the current land use scenario and possible future redevelopment scenarios. The risk assessment was performed in general accordance with DEQ and EPA risk assessment guidance (DEQ, 2020, DEQ, 2021a, EPA, 2018a, EPA 2018b), using conservative inputs intended to represent reasonable maximum exposure scenarios. A summary of the results is presented below.

Human-Health Risk Assessment Results

The human-health risk assessment results indicated the following:

- Human-health risk was evaluated for possible future residents in the area of EU #1 (upper level) and EU #3 (embankment). The results of the risk evaluation indicated that acceptable risk levels were exceeded for a future resident in both units (with and without background concentrations included) with risks being driven by metals in the following locations:
 - In the area of EU #1 (upper level), the driver for unacceptable risk levels for a resident is the manganese concentration in soil sample S-4.
 - In the area of EU #3 (embankment), the drivers for unacceptable risk levels for a resident are arsenic concentrations in samples S-7, HH-10, and HH-11.
- Human-health risk was evaluated for possible current or future non-residential workers in the area of EU #1 (upper level) and EU #3 (embankment). The results of the risk evaluation indicated acceptable risk levels for a non-residential worker in both units. Therefore, the site is considered safe for non-residential workers under both current and future use scenarios.
- Human-health risk was evaluated for possible future construction workers in the area of all three exposure units (upper level, lower level, and embankment). The results of the risk evaluation indicated acceptable risk levels were exceeded for a construction worker in all three units. If background concentrations are removed, acceptable risk levels were exceeded for a construction worker in EU #1 (upper level) and EU #3 (embankment).

• Human-health risk was evaluated for possible current and future greenway users in the area of EU #2 (lower level) and EU #3 (embankment). The results of the risk evaluation indicated acceptable risk levels for greenway users in both units. Therefore, the site is considered safe for greenway users.

Ecological Risk Assessment Results

The results of the ecological risk screening indicated the following:

- The area of Bolin Creek (EU #2) is the area with the highest likelihood of potential ecological receptors. The results of the risk evaluation indicated no significant ecological risk for surface water and sediment in Bolin Creek.
- Exceedances of ESVs for multiple metals were identified in samples of exposed CCP collected along the embankment in EU #3 (S-7, HH-9, HH-10, and HH-11).
- Localized exceedances of ESVs were also identified at two soil sample locations within EU #1 (S-4 and MW-7) and one individual soil sample location within EU #2 (SED-13).

Recommendations

H&H's recommendations to address potential human-health and ecological risks identified as part of this risk assessment are detailed below. In addition to recommendations related to specific sample locations which are drivers for potential risks, in some cases LURs are recommended to confirm the assumptions made during the risk assessment activities remain valid. LURs are expected to be covered under a future BFA, which would be prepared under the jurisdiction of the DEQ Brownfields Program and filed on the deed for the property. The Brownfields Program requires annual certifications from the property owner that LURs are being complied with in perpetuity, which will confirm that potential risks addressed via LURs will be managed long-term.

• Exposed CCPs are present in the area of the embankment. The risk evaluation indicated exceedances of acceptable risk levels for a resident, construction worker, and/or ecological receptors based on metals concentrations in several samples of exposed CCPs collected in the embankment area (S-7, HH-9, HH-10, and HH-11). The potential for erosion to transport CCPs from the area of the embankment into the greenway area is considered an additional concern. The Town implemented temporary measures to

minimize the potential for erosion as part of the interim remediation measures implemented in 2020; however, H&H recommends implementation of permanent measures to address exposed CCPs and prevent erosion in the embankment area. These measures could effectively be performed in conjunction with site redevelopment activities.

- If the site is redeveloped for residential use, H&H recommends remediation or other actions (ex., excavation, impervious cover to prevent exposure, resampling to verify concentrations) to address impacts in the upper level in the area of sample S-4.
- Outside of the embankment area, the ecological risk screening indicated localized exceedances of ESVs at two soil sample locations within EU #1 (S-4 and MW-7) and one individual soil sample location within EU #2 (SED-13). DEQ does not commonly require evaluation of ecological risks for soil (DEQ, 2021b). As such, DEQ may not require additional actions with regard to the exceedances of ESVs in these samples. If required by DEQ or if the Town wishes to take voluntary actions, H&H recommends remediation or other measures to address or further evaluate potential ecological risks in the area of samples S-4, MW-7, and SED-13.
- To address construction worker risks, H&H recommends implementation of an anticipated LUR requiring preparation of an EMP, which will detail measures to prevent construction worker exposure, manage impacted soil and minimize the potential for offsite migration during construction (i.e., redevelopment) activities.
- The risk assessment calculations were based on soil samples collected at depths of 0 to 2 ft bgs for a resident, non-residential worker, and greenway user, and samples collected at depths of 0 to 10 ft bgs for a construction worker. If impacted soil or CCPs at deeper depths are exposed during site redevelopment, additional risk evaluation should be performed to confirm that potential exposure to these soils does not exceed acceptable risk levels. If the site is redeveloped, the Brownfields Program will also likely require confirmatory sampling and risk evaluation in areas of potentially impacted soil or CCPs that are not covered by impervious surfaces (buildings, pavement, etc.) or at least 2 ft of clean fill.
- H&H recommends a LUR preventing the future installation of water supply wells or other use or exposure of groundwater at the site.

8.0 References

- Cunningham and Daniel, 2001. Investigation of Ground-Water Availability and Quality in Orange County, North Carolina. Cunningham, W.L. and C.C. Daniel, III, US Geological Survey. Raleigh, NC. Water-Resources Investigations Report 00-4286.
- DENR, 2003. Guidelines for Performing Screening Level Ecological Risk Assessments within the North Carolina Division of Waste Management. North Carolina Department of Environment and Natural Resources (currently DEQ), Division of Waste Management. October 2003.
- DEQ, 2016. *Chapel Hill Police Department Property Letter*. North Carolina Department of Environmental Quality. February 2016.
- DEQ, 2020. Technical Guidance for Risk-Based Environmental Remediation of Sites (Revised), North Carolina Department of Environmental Quality. April 2020.
- DEQ, 2021a. *Guidelines for Assessment and Cleanup of Contaminated Sites*, North Carolina Department of Environmental Quality Division of Waste Management Superfund Section Inactive Hazardous Sites Branch. July 2021.
- Dragun and Chekiri, 2005. *Elements in North American Soils, Second Edition*. Dragun, James, and Khaled Chekiri. 2005.
- Falcon, 2013. *Phase I & Limited Phase II Environmental Site Assessment*. Falcon Engineering, Inc. October 2013.
- H&H, 2017. Phase II Remedial Investigation (RI) Report. Hart & Hickman, PC. August 2017.
- H&H, 2020. Results of Post-Data Gap Assessment. Hart & Hickman, PC. December 2020.
- H&H, 2021. Interim Remedial Measures Report. Hart & Hickman, PC. April 2021.
- NCGS, 1985. Geologic Map of North Carolina: North Carolina Geological Survey, General Geologic Map. North Carolina Geological Survey. 1985.
- Synterra, 2021. Human Health and Ecological Risk Assessment Report. Synterra Corporation. May 2021.
- USEPA, 2001. *Risk Assessment Guidance for Superfund: Volume III Part A.* U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. December 2001.

USEPA, 2002. *Role of Background in the CERCLA Cleanup Program*. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Office of Emergency and Remedial Response. April 2002.

- USEPA, 2015a. *ProUCL Version 5.1 User Guide*. U.S. Environmental Protection Agency, Office of Research and Development. October 2015.
- USEPA, 2015b. Determination of the Biologically Relevant Sampling Depth for Terrestrial and Aquatic Ecological Risk Assessments. U.S. Environmental Protection Agency, Ecological Risk Assessment Support Center, National Center for Environmental Assessment, Office of Research and Development. October 2015.
- USEPA, 2018a. Region 4 Ecological Risk Assessment Supplemental Guidance (Update). U.S. Environmental Protection Agency, Scientific Support Section, Superfund Division, EPA Region 4. March 2018.
- USEPA, 2018b. Region 4 Human Health Risk Assessment Supplemental Guidance. U.S. Environmental Protection Agency, Scientific Support Section, Superfund Division, EPA Region 4. March 2018.
- USEPA, 2021. Regional Screening Levels (RSLs) User's Guide. U.S. Environmental Protection Agency. May 2021.

357

Table 1 (Page 1 of 1) Summary of Human Health Risk Assessment Results 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job No. TCH-009

		RISK ASSES	SMENT RESULTS INC	CLUDING BACKGRC		ONS		
Experies Dethurou	Resid	ential	Non-Reside	ntial Worker	Constructi	on Worker	Greenway User	
Exposure Pathway	Carcinogenic Risk	Hazard Index	Carcinogenic Risk	Hazard Index	Carcinogenic Risk	Hazard Index	Carcinogenic Risk	Hazard Index
			Exposure	Unit #1 - Upper Leve	el			
Soil Direct Contact	2.4E-05	3.6E+00	4.8E-06	2.4E-01	7.0E-06	1.1E+01	N/A	N/A
Exposure Unit #2 - Lower Level								
Soil Direct Contact	N/A	N/A	N/A	N/A	1.4E-06	3.6E+00	8.4E-06	4.1E-01
Sediment Direct Contact	N/A	N/A	N/A	N/A	N/A	N/A	1.8E-06	9.1E-02
Surface Water Direct Contact	N/A	N/A	N/A	N/A	N/A	N/A	3.2E-07	1.7E-02
Cumulative Risk for Exposure Unit #2*	N/A	N/A	N/A	N/A	1.4E-06	3.6E+00	8.7E-06	4.2E-01
Exposure Unit #3 - Embankment								
Soil Direct Contact	9.4E-05	3.1E+00	2.0E-05	2.2E-01	4.4E-06	8.8E+00	3.4E-05	4.6E-01

		RISK ASSES	SMENT RESULTS EX	CLUDING BACKGRO	OUND CONCENTRATI	ONS		
Experience Bothway	Resid	ential	Non-Res	sidential	Construction	on Worker	Greenway User*	
Exposure Failiway	Carcinogenic Risk	Hazard Index	Carcinogenic Risk	Hazard Index	Carcinogenic Risk	Hazard Index	Carcinogenic Risk	Hazard Index
			Exposure	Unit #1 - Upper Leve				
Soil Direct Contact	2.1E-05	1.3E+00	4.7E-06	9.1E-02	5.4E-06	1.1E+01	N/A	N/A
			Exposure	Unit #2 - Lower Leve	əl			
Soil Direct Contact	N/A	N/A	N/A	N/A	8.1E-07	3.9E-01	8.0E-06	7.5E-02
Sediment Direct Contact	N/A	N/A	N/A	N/A	N/A	N/A	7.1E-13	2.1E-03
Surface Water Direct Contact	N/A	N/A	N/A	N/A	N/A	N/A	3.2E-07	1.7E-02
Cumulative Risk for Exposure Unit #2	N/A	N/A	N/A	N/A	8.1E-07	3.9E-01	8.3E-06	9.1E-02
Exposure Unit #3 - Embankment								
Soil Direct Contact	8.9E-05	2.1E+00	2.0E-05	1.5E-01	3.4E-06	8.5E+00	3.3E-05	3.1E-01

Notes:

N/A = Not applicable

Bold Red indicates an exceedance of NCDEQ acceptable risk levels (Carcinogenic Risk <1.0E-04 and Hazard Index <1.0).

* Cumulative risk calculated for EU #2 since more than one exposure pathway is complete. Cumulative risk indicates the higher of the sediment or soil risk, combined with the surface water risk. This is considered appropriate since a receptor could not be exposed to both soil and sediment at the same time and the same exposure pathways are covered by both risk calculations.

³⁵⁸ Table 2 (Page 1 of 1) Soil Ecological Screening Table 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina <u>H&H Job No. TCH-009</u>

Site-Specific BY ⁰⁷ 18 3.015 67.80 0.029 0.31 57.25 7.02 7.02 7.03 69.11 1.149 0.250 49.40 0.891* 2.72 2.30 EFR Seguest 541* UPUE UPUE <t< th=""><th>Sample ID</th><th>Sample Date</th><th>Material Sampled (Soil or CCP)</th><th>Sample Depth (ft or in bgs)</th><th>arsenic</th><th>barium</th><th>beryllium</th><th>cadmium</th><th>hexavalent chromium</th><th>trivalent chromium</th><th>total chromium</th><th>cobalt</th><th>copper</th><th>lead</th><th>manganese</th><th>mercury</th><th>nickel</th><th>selenium</th><th>strontium</th><th>thallium</th><th>vanadium</th><th>zinc</th></t<>	Sample ID	Sample Date	Material Sampled (Soil or CCP)	Sample Depth (ft or in bgs)	arsenic	barium	beryllium	cadmium	hexavalent chromium	trivalent chromium	total chromium	cobalt	copper	lead	manganese	mercury	nickel	selenium	strontium	thallium	vanadium	zinc
EPA Region 4 Sull ESV ²⁶ 18 30 2.5 0.8 0.24 2.6 2.3 1.3 2.8 1.1 2.20 0.01 38 0.52 0.66 0.05 7.8 4.6 S-4 04/29/13 CCP 1.1 1.4 2.4 N.D 1.6 N.A N.A N.A 2.2 3.0 6.5 2.0 1.600 0.011 4.8 N.D N.A N.A N.A 2.2 3.0 6.5 2.0 1.600 0.011 4.8 N.D N.D 4.4 6.6 0.055 1.6 0.067 1.2 -0.71 3.0 4.0 1.4 3.0 2.0 1.3 3.0 0.071 4.1 3.0 0.043 1.3 1.4 1.0 2.1 1.2 2.1 3.0 0.017 1.4 3.0 0.017 1.4 1.0 1.1 1.0 1.0 1.0 0.0 0.007 0.0 0.0 0.0 0.0 0.0 0.0 <		Site-Speci	fic BSV ⁽¹⁾		3.015	87.86	0.929	0.313	5.725	70.2	70.2	36.31	77.3	59.11	1,149	0.256	19.49	2.503	43.19	0.981*	227	230
Upper Level Samples (Exposeru Unit #1 SH 0.4/29/13 CCP 1 ft 14 24 ND 15 NA NA 22 30 65 20 1,500 0.011 43 ND NA NA 22 30 65 20 1,500 0.011 43 ND NA NA 22 30 65 20 1,500 0.011 43 ND NA NA NA 22 30 65 20 0.052 8.8 0.69 31 <0,671 44 45 55 11 10 32 <0,671 44 135 HH-4 110,316 Soil 0.1 ft 2.4 72 1,00 <0.31		EPA Region	4 Soil ESV ⁽²⁾		18	330	2.5	0.36	0.34	26	23	13	28	11	220	0.013	38	0.52	96	0.05	7.8	46
S-4 04/29/13 CCP 1ft 14 PA ND 15 NA NA NA 22 30 65 20 1500 0.011 43 ND NA ND 21 120 HH-1 11/03/16 Soil 0-18 3.4 110 0.79 0.45 0.55 21 79 25 27 360 0.067 12 <0.70 40.80 40.80 40.80 40.80 40.80 40.80 40.80 40.80 40.80 40.80 40.80 40.80		1	1			1		U	pper Level S	Samples (E	xposure Un	it #1)										
HH-1 1100/16 ¹⁵ Soil 0-1ft 5.9 120 100 20.35 0.45 20.55 21 7.9 25 27 360 0.057 12 -0.51 30 -0.51 41 35 HH-2 1100/16 Soil 0-1ft 4.9 100 0.72 0.43 13.57 14 12 21 30 260 0.065 5.9 1.0 25 4.84 43 HH-3 1100/16 Soil 0-1ft 2.4 72 1.00 0.28 0.464 14 122 1 30 260 0.076 8.9 2.4 360 0.076 8.9 2.4 2.6 0.076 8.9 2.4 2.6 0.076 1.0 2.5 4.48 43 100 HH-4 1102/16 Soil 0-1ft XA NA	S-4	04/29/13	CCP	1 ft	14	24	ND	1.5	NA	NA	22	30	65	20	1,500	0.011	43	ND	NA	ND	21	120
HH-2 11003/16 Soil 0-11 3.4 110 0.79 <0.35 0.54 19.46 20 8.4 17 16 380 BH 0.067 12 <0.71 41 35 HH-3 11003/16 Soil 0-11 9.9 200 1.30 <0.33	HH-1	11/03/16	Soil	0-1 ft	5.9	120	1.00	<0.29	0.45	20.55	21	7.9	25	27	350	0.052	8.8	0.69	31	<0.58	48	50
HH-2 11/03/16 Soil 0-11 4.9 140 0.33 -0.423 0.43 13.67 14 12 21 30 260 0.085 5.9 1.0 25 <0.25 40.85 43 HH-4 11/03/16 Soil 0-11t 2.4 72 1.00 <0.23		11/03/16 ⁽⁵⁾	Soil	0-1 ft	3.4	110	0.79	< 0.35	0.54	19.46	20	8.4	17	18	360 BH	0.067	12	<0.71	30	< 0.71	41	35
HH-3 11/03/16 Soil 0-1 ft 2.4 7.2 1.00 <0.33 0.46 J 1.7.34 18 7.8 31 2.4 350 0.076 8.9 2.4 36 <0.956 42 0.66 73 70 HH-4 11/03/16 Soil 0-1 ft 2.4 73 0.75 <0.30	HH-2	11/03/16	Soil	0-1 ft	4.9	140	0.93	<0.29	0.43	13.57	14	12	21	30	260	0.085	5.9	1.0	25	< 0.58	48	43
HH-4 11003/16 Soil 0-1 ft 2.4 72 1.00 40.26 0.20 44.5 45 16 37 2.3 830 <0.023 33 40 0.023 33 40 0.023 33 41 12.2 40.60 33 51 14 12.2 0.060 33 51 14 12.2 33 410 40.23 23 23 410 40.223 33 410 40.223 33 410 40.2025 14 12.2 23 84 19 9.3 410 40.2025 14 12.2 23 830 40.025 14 12.2 23 830 40.025 14 12.2 23 830 40.025 833 40.0 830 40.20 14 12.2 12.2 12.1 11 10 30.3 130 10.3 131 10.3 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8 <td>HH-3</td> <td>11/03/16</td> <td>Soil</td> <td>0-1 ft</td> <td>9.9</td> <td>200</td> <td>1.30</td> <td>< 0.33</td> <td>0.46 J</td> <td>17.54</td> <td>18</td> <td>7.8</td> <td>31</td> <td>24</td> <td>350</td> <td>0.076</td> <td>8.9</td> <td>2.4</td> <td>36</td> <td><0.65</td> <td>53</td> <td>100</td>	HH-3	11/03/16	Soil	0-1 ft	9.9	200	1.30	< 0.33	0.46 J	17.54	18	7.8	31	24	350	0.076	8.9	2.4	36	<0.65	53	100
HH-5 11/03/16 Soil 0-1 ft 2.4 7.3 0.7.5 < 2.3 8.4 19 9.3 410 < 1.4 1.2 2.3 0.0 39 51 HH-5 10/27/16 Soil 0-1 ft NA	HH-4	11/03/16	Soll	0-1 ft	2.4	72	1.00	< 0.28	0.50	44.5	45	16	37	2.3	630	< 0.023	33	<0.56	42	0.60	73	70
HH-6 10/2/116 Soli 0-1 ft NA	HH-5	11/03/16	Soll	0-1 ft	2.4	73	0.75	< 0.30	< 0.14	23	23	8.4	19	9.3	410	<0.025	14	1.2	23	<0.60	39	51
HH-7 10/2/1/6 Soli 0-1 ft NA	HH-6	10/27/16	Soll	0-1 ft	NA	NA	NA	NA	< 0.33	20	20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-7 I100/18 Soli 0-1 ft 2.6 07 0.0 0.09 9.11 100 1.00 1.00 0.030 2.9 0.050 0.05 <t< td=""><td>HH-/</td><td>10/27/16</td><td>Soll</td><td>0-1 ft</td><td>NA</td><td>NA 07</td><td>NA 0.07</td><td>NA 10.20</td><td><0.61</td><td>22</td><td>22</td><td>NA</td><td>NA 100</td><td>NA</td><td>NA 100</td><td>NA 0.020</td><td>NA</td><td>NA</td><td>NA</td><td>NA 10.50</td><td>NA</td><td>NA</td></t<>	HH-/	10/27/16	Soll	0-1 ft	NA	NA 07	NA 0.07	NA 10.20	<0.61	22	22	NA	NA 100	NA	NA 100	NA 0.020	NA	NA	NA	NA 10.50	NA	NA
Enhammed amples (Exposite damples (Exposite damples) S-7 01/31/14 CCP 0-4 ft 44 2,500 NA ND 1.4 27.6 29 NA NA 11 NA 0.44 NA 4.5 NA NA NA NA NA NA NA NA NA 11 NA 0.44 NA 4.5 NA NA <t< td=""><td>IVIVV-7</td><td>11/01/16</td><td>501</td><td>0-1 π</td><td>2.0</td><td>67</td><td>0.87</td><td><0.30</td><td>0.89</td><td>9.11 Samples (E</td><td></td><td>3.9</td><td>180</td><td>7.0</td><td>100</td><td>0.030</td><td>2.9</td><td><0.59</td><td>0.7</td><td><0.59</td><td>61</td><td>46</td></t<>	IVIVV-7	11/01/16	501	0-1 π	2.0	67	0.87	<0.30	0.89	9.11 Samples (E		3.9	180	7.0	100	0.030	2.9	<0.59	0.7	<0.59	61	46
31-7 01/3/14 02-P 04/0 10- <th10-< th=""> 10- 10- 1</th10-<>	6 7	01/31/1/	CCP	0.4.ft	44	2 500	NA			3ampies (⊏		NA	NIA	11	NIA	0.44	NΙΔ	4.5	NΙΛ	NIA	NΙΛ	NΙΔ
HH-10 OH/03/19 CCP 0-11 ft 60.3 2.970 5.14 0.162 Jt <1.60 12.7 <td></td> <td>01/31/14</td> <td>CCP</td> <td>0-4 ft</td> <td>3 37</td> <td>131</td> <td>0.398 1</td> <td></td> <td><1.29</td> <td>12.7</td> <td>12.7</td> <td>5.97</td> <td>14.5</td> <td>NA</td> <td>260</td> <td>0.44</td> <td>3 50</td> <td>4.5</td> <td>33.2</td> <td>NA</td> <td>NA</td> <td>NA</td>		01/31/14	CCP	0-4 ft	3 37	131	0.398 1		<1.29	12.7	12.7	5.97	14.5	NA	260	0.44	3 50	4.5	33.2	NA	NA	NA
HH-10 O4/05/19 OCP O-1 II 40.0 2,70 5.19 O.20 J 0.467 J 10.3	HH_10	04/03/19	CCP	0-1 ft	60.3	2 970	5 14	0.162	<1.20	13.8	12.7	9.84	51 3	ΝA	73.3	0.22	17.1	5.04	269	NA	NΔ	NA
Internal of the orthold Orthold Orthold Onthold Orthold	HH-11	04/03/19	CCP	0-1 ft	42.5	3 260	5.9	0.220.1	0 467 .1	18.7	19.0	13.4	55.3	NA	113	0.43	23.5	9.05	234	NA	NA	NA
SS-7 02/18/16 Soil 2-12 in 3.1 84 0.60 ND NA NA 14 6.9 15 13 500 0.038 5.9 ND 31 ND 37 37 HH-8 10/27/16 Soil 0-1 ft 3.6 100 1.00 <0.30	Lower Level Samples (Exposure Unit #2)																					
HH-8 10/27/16 Soil 0-1 ft 3.6 100 1.00 <0.30 <0.35 19 19 12 29 18 570 0.036 9.0 <0.60 28 <0.60 52 54 MW-6 11/02/16 Soil 0-1 ft 2.9 38 0.61 <0.26	SS-7	02/18/16	Soil	2-12 in	3.1	84	0.60	ND	NA	NA	14	6.9	15	13	500	0.038	5.9	ND	31	ND	37	37
MW-6 11/02/16 Soil 0-1 ft 2.9 38 0.61 <0.26 0.21 J 9.79 10 9.5 23 12 570 0.082 8.2 1.0 22 0.81 31 77 SED-3A 04/05/19 Soil 0-1 ft 3.45 33.9 0.418 J <0.582	HH-8	10/27/16	Soil	0-1 ft	3.6	100	1.00	< 0.30	< 0.35	19	19	12	29	18	570	0.036	9.0	<0.60	28	<0.60	52	54
SED-3A 04/05/19 Soil 0-1 ft 3.45 33.9 0.418 J <0.582 <1.16 17.4 17.4 16.5 6.97 NA 560 <0.0054 5.82 0.237 J 9.6 NA NA SED-5A 04/04/19 Soil 0-1 ft 1.25 13.5 0.156 J <0.571	MW-6	11/02/16	Soil	0-1 ft	2.9	38	0.61	<0.26	0.21 J	9.79	10	9.5	23	12	570	0.082	8.2	1.0	22	0.81	31	77
SED-5A 04/04/19 Soil 0-1 ft 1.25 13.5 0.156 J <0.571 0.352 J 13.2 13.6 5.95 39.1 NA 243 0.0071 4.38 <0.571 10.9 NA NA NA SED-8 04/05/19 Drainage Pathway Soil 2-6 in 2.41 49.1 0.313 J 0.122 J <1.25	SED-3A	04/05/19	Soil	0-1 ft	3.45	33.9	0.418 J	<0.582	<1.16	17.4	17.4	16.5	6.97	NA	560	< 0.0054	5.82	0.237 J	9.6	NA	NA	NA
SED-8 04/05/19 Drainage Pathway Soil 2-6 in 2.41 49.1 0.313 J 0.122 J <1.25 12.0 12 7.01 14.3 NA 423 0.063 4.66 1.01 15.2 NA NA NA SED-9 04/05/19 Drainage Pathway Soil 2-6 in 1.16 33.8 0.199 J <0.660	SED-5A	04/04/19	Soil	0-1 ft	1.25	13.5	0.156 J	<0.571	0.352 J	13.2	13.6	5.95	39.1	NA	243	0.0071	4.38	<0.571	10.9	NA	NA	NA
SED-9 04/05/19 Drainage Pathway Soil 2-6 in 1.16 33.8 0.199 J <0.660 0.461 J 21.6 22.1 9.11 10.1 NA 431 0.013 6.68 <0.660 16.7 NA NA NA SED-10 04/05/19 Drainage Pathway Soil 2-6 in 1.29 24.4 0.118 J 0.221 J 0.418 J 12.0 12.4 4.43 10.8 NA 195 0.037 4.03 0.273 J 8.1 NA NA NA SED-12 08/27/19 Drainage Pathway Soil 0-2 in 4.73 102 0.765 J 0.214 J <1.68	SED-8	04/05/19	Drainage Pathway Soil	2-6 in	2.41	49.1	0.313 J	0.122 J	<1.25	12.0	12	7.01	14.3	NA	423	0.063	4.66	1.01	15.2	NA	NA	NA
SED-10 04/05/19 Drainage Pathway Soil 2-6 in 1.29 24.4 0.118 J 0.221 J 0.418 J 12.0 12.4 4.43 10.8 NA 195 0.037 4.03 0.273 J 8.1 NA NA NA NA Bell 201 08/27/19 Drainage Pathway Soil 0-2 in 4.73 102 0.765 J 0.214 J <1.68 27.6 27.6 6.17 23.1 NA 341 0.042 7.69 0.961 25.4 NA	SED-9	04/05/19	Drainage Pathway Soil	2-6 in	1.16	33.8	0.199 J	<0.660	0.461 J	21.6	22.1	9.11	10.1	NA	431	0.013	6.68	<0.660	16.7	NA	NA	NA
Best Price 08/27/19 Drainage Pathway Soil 0-2 in 4.73 102 0.765 J 0.214 J <1.68 27.6 6.17 23.1 NA 341 0.042 7.69 0.961 25.4 NA NA NA 04/05/19 Drainage Pathway Soil 2-6 in 3.97 122 0.499 J 0.204 J <1.74	SED-10	04/05/19	Drainage Pathway Soil	2-6 in	1.29	24.4	0.118 J	0.221 J	0.418 J	12.0	12.4	4.43	10.8	NA	195	0.037	4.03	0.273 J	8.1	NA	NA	NA
Odd/05/19 Drainage Pathway Soil 2-6 in 3.97 1.22 0.499 J 0.204 J <1.74 9.45 6.04 19.7 NA 319 0.077 4.95 1.36 32.8 NA NA NA B 08/27/19 Drainage Pathway Soil 0-2 in 12.4 958 1.56 0.284 J <2.03	SED 12	08/27/19	Drainage Pathway Soil	0-2 in	4.73	102	0.765 J	0.214 J	<1.68	27.6	27.6	6.17	23.1	NA	341	0.042	7.69	0.961	25.4	NA	NA	NA
BBD-13 08/27/19 Drainage Pathway Soil 0-2 in 12.4 958 1.56 0.284 J <2.03 29.4 13.9 38.9 NA 538 0.12 19.2 3.07 125 NA NA NA 04/05/19 Drainage Pathway Soil 2-6 in 14.5 724 1.1 0.171 J <1.58	3LD-12	04/05/19	Drainage Pathway Soil	2-6 in	3.97	122	0.499 J	0.204 J	<1.74	9.45	9.45 B	6.04	19.7	NA	319	0.077	4.95	1.36	32.8	NA	NA	NA
04/05/19 Drainage Pathway Soil 2-6 in 14.5 724 1.1 0.171 J <1.58 14.0 14 7.58 27.1 NA 563 0.075 8.73 1.69 70.5 NA NA NA	SED 13	08/27/19	Drainage Pathway Soil	0-2 in	12.4	958	1.56	0.284 J	<2.03	29.4	29.4	13.9	38.9	NA	538	0.12	19.2	3.07	125	NA	NA	NA
	3ED-13	04/05/19	Drainage Pathway Soil	2-6 in	14.5	724	1.1	0.171 J	<1.58	14.0	14	7.58	27.1	NA	563	0.075	8.73	1.69	70.5	NA	NA	NA
SED-18 04/05/19 Drainage Pathway Soil 2-6 in 4.53 137 0.534 J < 0.689 < 1.38 18.7 18.7 11.1 28.2 NA 464 0.051 9.00 1.85 32.6 NA NA NA	SED-18	04/05/19	Drainage Pathway Soil	2-6 in	4.53	137	0.534 J	<0.689	<1.38	18.7	18.7	11.1	28.2	NA	464	0.051	9.00	1.85	32.6	NA	NA	NA
SED-19 04/05/19 Drainage Pathway Soil 2-6 in 1.55 20.0 0.161 J <0.588 0.435 J 21.7 22.1 7.98 8.38 NA 266 0.0073 4.94 0.334 J 15 NA NA NA	SED-19	04/05/19	Drainage Pathway Soil	2-6 in	1.55	20.0	0.161 J	<0.588	0.435 J	21.7	22.1	7.98	8.38	NA	266	0.0073	4.94	0.334 J	15	NA	NA	NA
SED-20 04/05/19 Drainage Pathway Soil 2-6 in 0.792 31.4 0.152 J < 0.687 < 1.37 5.76 5.76 B 4.5 9.1 NA 360 0.012 2.19 0.263 J 11.5 NA NA NA	SED-20	04/05/19	Drainage Pathway Soil	2-6 in	0.792	31.4	0.152 J	<0.687	<1.37	5.76	5.76 B	4.5	9.1	NA	360	0.012	2.19	0.263 J	11.5	NA	NA	NA
SED-21 04/05/19 Drainage Pathway Soil 2-6 in 1.12 25.9 0.149 J < 0.591 < 1.18 20.9 20.9 4.44 6.58 NA 221 0.011 2.70 0.286 J 12.8 NA NA NA	SED-21	04/05/19	Drainage Pathway Soil	2-6 in	1.12	25.9	0.149 J	<0.591	<1.18	20.9	20.9	4.44	6.58	NA	221	0.011	2.70	0.286 J	12.8	NA	NA	NA
Excavation H-3 05/11/20 Soil 1-2 ft 2.41 71.0 <3.28 <1.31 0.410 J 40.2 40.6 14.1 43.4 NA 251 0.0485 J 12.5 1.46 J 58.1 NA NA NA	Excavation H-3	05/11/20	Soil	1-2 ft	2.41	71.0	<3.28	<1.31	0.410 J	40.2	40.6	14.1	43.4	NA	251	0.0485 J	12.5	1.46 J	58.1	NA	NA	NA
Excavation H-5 05/11/20 Soil 1-2 ft 1.10 J 74.5 <3.04 <1.22 0.497 J 21.1 21.6 8.25 16.9 NA 558 <0.0486 6.77 <3.04 32.2 NA NA NA	Excavation H-5	05/11/20	Soil	1-2 ft	1.10 J	74.5	<3.04	<1.22	0.497 J	21.1	21.6	8.25	16.9	NA	558	< 0.0486	6.77	<3.04	32.2	NA	NA	NA
Excavation H-6 05/11/20 Soil 1-2 ft 1.02 J 96.0 <2.97 <1.19 <1.19 14.9 14.9 7.57 10.7 NA 557 0.0222 J 4.03 <2.97 20.5 NA NA NA	Excavation H-6	05/11/20	Soil	1-2 ft	1.02 J	96.0	<2.97	<1.19	<1.19	14.9	14.9	7.57	10.7	NA	557	0.0222 J	4.03	<2.97	20.5	NA	NA	NA
Excavation H-7 11/09/20 Soil 0-1 ft 1.10 J 73.7 0.767 J <1.22 <1.22 8.04 8.04 3.68 15.0 NA 233 0.022 4.63 0.479 J 9.6 NA NA NA	Excavation H-7	11/09/20	Soil	0-1 ft	1.10 J	73.7	0.767 J	<1.22	<1.22	8.04	8.04	3.68	15.0	NA	233	0.022	4.63	0.479 J	9.6	NA	NA	NA
Excavation I-1 04/08/20 Soil 1-2 ft 2.91 67.2 <2.77 <1.11 0.457 J 26.2 26.7 13.0 18.3 NA 594 0.042 8.25 <2.77 26.3 NA NA NA	Excavation I-1	04/08/20	Soil	1-2 ft	2.91	67.2	<2.77	<1.11	0.457 J	26.2	26.7	13.0	18.3	NA	594	0.042	8.25	<2.77	26.3	NA	NA	NA
Excavation I-2 04/08/20 Soil 1-2 ft 3.65 74.1 <2.85 <1.14 0.313 J 23.3 23.6 12.0 21.4 NA 544 0.022 8.70 <2.85 17.2 NA NA NA	Excavation I-2	04/08/20	Soil	1-2 ft	3.65	74.1	<2.85	<1.14	0.313 J	23.3	23.6	12.0	21.4	NA	544	0.022	8.70	<2.85	17.2	NA	NA	NA
Excavation I-3 04/08/20 Soil 1-2 ft 2.18 61.5 <2.88 <1.15 0.387 J 13.1 13.5 9.23 19.5 NA 419 0.019 6.02 <2.88 13.3 NA NA NA	Excavation I-3	04/08/20	Soil	1-2 ft	2.18	61.5	<2.88	<1.15	0.387 J	13.1	13.5	9.23	19.5	NA	419	0.019	6.02	<2.88	13.3	NA	NA	NA

Notes:

Concentrations reported in milligrams per kilogram (mg/kg).

1) Site-Specific Background Screening Value (BSV) represents 95% upper threshold level (UTL) with 95% coverage calculated using EPA ProUCL 5.1.

*Insufficient data to calculate 95% UTL; therefore, site-specific BSV indicates 2x mean concentration with non-detectable concentrations calculated as half the reporting limit

2) EPA Region 4 Soil Ecological Screening Value (ESV) (March 2018).

Bold denotes concentration above or equal to EPA Soil ESV.

Bold/Shaded denotes concentration above or equal to EPA Soil ESV and site-specific BSV.

NA = Not Analyzed

J = Detected above method detection limit but below laboratory reporting limit; therefore, result is an estimated concentration.

Table shows constituents detected in soil samples collected between 0 and 2 ft bgs, excluding background samples, samples that have been excavated, and samples collected from locations resampled at a later date. Refer to Appendix A for a summary of additional sampling data.

Hart & Hickman, PC

³⁵⁹ Table 3 (Page 1 of 1) Stream Sediment Ecological Screening Table 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job No. TCH-009

Sediment Sampling Point ID	Sample Date	arsenic	barium	beryllium	hexavalent chromium	trivalent chromium	total chromium	cobalt	copper	manganese	mercury	nickel	selenium	strontium
Site-Specific E	BSV ⁽¹⁾	2.74	38.4	0.48	0.79	69.5	70	16.388	13.8	759	0.0078	9.92	0.409	16.9
EPA Region 4 Sedin	nent ESV ⁽²⁾	9.8	20	NS	NS	NS	43.4	50	31.6	460	0.17*	22.7	0.72*	NS
EPA Region 4 Sedin	nent RSV ⁽³⁾	33	60	NS	NS	NS	111	NS	149	1,100	0.17*	48.6	1.2*	NS
SED-3 (Adjacent)	04/05/19	1.36	16.4	0.111 J	0.670 J	13.5	14.2	5.18	20.2	225	0.0054 J	4.81	<0.607	9.2
SED-4 (Adjacent)	04/05/19	2.35	20.3	0.191 J	0.456 J	63.8	64.3	7.26	8.39	293	0.0080	10.5	0.344 J	30.7
SED-5 (Downstream)	04/04/19	1.82	24.3	0.233 J	0.595 J	16.8	17.4	5.9	8.86	399	< 0.0035	4.86	<0.617	6.2
SED-6 (Downstream)	04/04/19	1.96	17.3	0.247 J	0.517 J	24.9	25.4	6.57	9.25	308	0.0058	7.15	<0.643	8.4
SED-7 (Downstream)	04/04/19	1.35	16.4	0.179 J	0.995 J	59.4	60.4	6.47	6.77	262	0.0025 J	9.04	<0.635	8.1

Notes

Concentrations reported in milligrams per kilogram (mg/kg).

1) Site-Specific Background Screening Value (BSV) indicates two times the mean detected background concentration or maximum detected background concentration, whichever is smaller

2) EPA Region 4 Sediment Ecological Screening Value (ESV) for freshwater (March 2018)

3) EPA Region 4 Sediment Refinement Screening Value (RSV) for freshwater (March 2018)

*Indicates the lower of the aquatic versus wildlife based ESVs and RSVs.

Bold denotes concentration above EPA Sediment ESV.

Bold/Shaded denotes concentration above EPA Sediment ESV and site-specific BSV.

Red denotes concentration above EPA Sediment RSV.

Red/Shaded denotes concentration above EPA Sediment RSV and site-specific BSV.

NS = Not Specified

J = Detected above method detection limit but below laboratory reporting limit; therefore, result is an estimated concentration.

Table shows constituents detected in the most recent set of surface water samples, excluding background samples. Refer to Appendix A for a summary of additional sampling data.

360 Table 4 (page 1 of 1) Surface Water Ecological Screening Table 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job No. TCH-009

Surface Water Sampling Point ID	Sample Date	arsenic	barium	total chromium ^(4,5,6)	cobalt	copper ^(4,5)	manganese	nickel ^(4,5)	selenium	strontium
Site-Specific BSV	(1)	0.44	27	0.53	0.16	1.2	22.2	0.33	0.11	100
NC 2B Standard ⁽²⁾		10(t)	1,000(t)	11	1.6 ⁽⁷⁾	5.33	NS	25(t)	5(t)	14,000 ⁽⁷⁾
EPA Region 4 Surface Water ESV (Acute) ⁽³⁾		340	2,000	16	120	7.3	1,680	261	20	48,000
EPA Region 4 Surface Water E	SV (Chronic) ⁽³⁾	150	220	11	19	5.16	93	29	5	5,300
SW-3 (Adjacent)	11/03/16	<10	27	<5.0	<5.0	<10	34	<10	<20	100
	11/03/16 ⁽⁸⁾	<10	27	<5.0	<5.0	<10	33	<10	<20	110
	04/05/19	0.45	25.7	0.62	0.26	2.8	37.4	0.50	0.11 J	88.8
	11/03/16	<10	27	<5.0	<5.0	<10	25	<10	<20	110
SW-4 (Adjacent)	04/05/19	0.42	23.6	<0.50	0.14	1.0	24.6	0.26 J	0.10 J	89.1
	04/05/19 ⁽⁸⁾	0.41	23.7	<0.50	0.14	0.98	24.8	0.26 J	0.088 J	87.7
SW E (Downstroom)	11/03/16	<10	26	<5.0	<5.0	<10	24	<10	<20	100
Sw-5 (Downstream)	04/04/19	0.40	16.9	<0.50	0.14	0.88	19.5	0.21 J	0.12 J	81.8
SW-6 (Downstream)	04/04/19	0.40	16.9	<0.50	0.14	0.84	18.7	0.21 J	0.11 J	81.3
SW-7 (Downstream)	04/04/19	0.42	18.4	<0.50	0.16	1.1	23.1	0.23 J	0.10 J	86.7
SW-21 (Drainage Pathway)	04/05/19	0.40	32.1	0.73	0.36	3.2	29.5	0.62	0.11 J	69.9
SW-21 (Drainage Pathway)	04/05/19 ⁽⁹⁾	0.15	18.3	<0.50	0.094 J	3.1	9.3	0.43 J	<0.50	43.5

Notes:

Concentrations reported in micrograms per liter (µg/L).

1) Site-Specific Background Screening Value (BSV) indicates two times the mean detected background concentration or maximum detected background concentration, whichever is smaller.

2) North Carolina Surface Water Quality Standard (NC 2B Standard) adopted per 15A NCAC 2B Section .0100. Unless otherwise noted, values are the lowest of the Freshwater, Water Supply, and Human Health values because Bolin Creek is a WS V classification surface water.

3) EPA Region 4 Surface Water Ecological Screening Value (ESV) for freshwater (March 2018).

4) 2B Standards derived using site-specific hardness data for surface water samples SW-1 through SW-7 and the DEQ Hardness-Dependent Metal Calculator dated July 26, 2021. Mean hardness for these samples was 54.5 mg/L. Value shown is the lower of the acute versus chronic values.

5) EPA ESVs based on estimated hardness of 50 mg/L, which is the value reported by EPA closest to the measured site-specific hardness 6) 2B Standard shown for total chromium indicates the lower of the hexavalent and trivalent chromium values.

7) No 2B Standard established, value shown is the NC In-Stream Target Values for Surface Water (July 26, 2021). Value shown is the lower of the acute versus chronic values.

8) Duplicate sample taken.

9) Sample was field filtered.

Bold denotes concentration above NC 2B Standard.

Bold/Shaded denotes concentration above NC 2B Standard and site-specific BSV.

Red denotes concentration above EPA Surface Water ESV (lower of acute or chronic).

Red/Shaded denotes concentration above EPA Surface Water RSV and site-specific BSV.

NS = Not Specified

J = Detected above method detection limit but below laboratory reporting limit; therefore, result is an estimated concentration.

(t) = Based upon measurement of total recoverable metal. See 15A NCAC 02B .0211 for more information.

Table shows constituents detected in surface water samples within the past five years, excluding background samples. Refer to Appendix A for a summary of additional sampling data.

U.S.G.S. QUADRANGLE MAP

CHAPEL HILL, NORTH CAROLINA, 2002

QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC)

	SITE LOC	ATION MAP		
PROJECT TOWN OF CHAPEL HILL 828 MARTIN LUTHER KING JR. BOULEVARD CHAPEL HILL, NORTH CAROLINA				
		2923 South Tryon Street Charlotte, North Carolin 704-586-0007(p) 704-58 License # C-1269 / #C-	t-Suite 100 na 28203 6-0373(f) -245 Geology	
DATE:	9-10-21	REVISION NO:	0	
JOB NO:	TCH-009	FIGURE NO:	1	

<u>LEGEND</u>

SITE PROPERTY BOUNDARY

BOL	.IN	CR	EE	K
BOL	.IN	CR	EE	ł

-328 TOPOGRAPHIC CONTOUR ELEVATION (FT MSL)

CCP UNDER > 2 FT COVER

CCP UNDER < 2 FT COVER

CCP EXPOSED AT GROUND SURFACE (HYDROSEEDED)

STORMWATER CULVERT

BOLIN CREEK TRAIL

SILT FENCE

STORM DIVERSION CHANNEL

STORM OUTFALL CHANNEL

CCP AREA DESIGNATION

230

SITE MAP

TOWN OF CHAPEL HILL 828 MARTIN LUTHER KING JR. BOULEVARD CHAPEL HILL, NORTH CAROLINA

hart hickman	2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geolog
DATE: 6-22-21	REVISION NO. 0
JOB NO. TCH-009	FIGURE NO. 2

LEGEND

SITE PROPERTY BOUNDARY

BOLIN CREEK

- MONITORING WELL LOCATION (FALCON ENGINEERING)
- TEMPORARY MONITORING WELL LOCATION (FALCON ENGINEERING)
- SOIL BORING LOCATION (FALCON ENGINEERING)
- SURFACE WATER SAMPLE LOCATION (FALCON ENGINEERING)
- MONITORING WELL LOCATION (H&H)
- SOIL SAMPLE LOCATION (H&H)
- A DRAINAGE PATHWAY, SURFACE WATER/SEDIMENT SAMPLE LOCATION (H&H)

STORMWATER CULVERT

BOLIN CREEK TRAIL

- EXPOSURE UNIT #1 UPPER LEVEL
- EXPOSURE UNIT #2 LOWER LEVEL
- EXPOSURE UNIT #3 EMBANKMENT

SAMPLE LOCATION AND EXPOSURE UNIT MAP

TOWN OF CHAPEL HILL 828 MARTIN LUTHER KING JR. BOULEVARD CHAPEL HILL, NORTH CAROLINA

hart hickman	2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geole
DATE: 9-10-21	REVISION NO. 0
JOB NO. TCH-009	FIGURE NO. 3

LEGEND

BOLIN CREEK

- MONITORING WELL LOCATION (FALCON ENGINEERING)
- TEMPORARY MONITORING WELL LOCATION (FALCON ENGINEERING)
- SOIL BORING LOCATION (FALCON ENGINEERING)
- SURFACE WATER SAMPLE LOCATION (FALCON ENGINEERING)
- MONITORING WELL LOCATION (H&H)
- SOIL SAMPLE LOCATION (H&H)
- A DRAINAGE PATHWAY, SURFACE WATER/SEDIMENT SAMPLE LOCATION (H&H)

STORMWATER CULVERT

BOLIN CREEK TRAIL

- EXPOSURE UNIT #1 UPPER LEVEL
- EXPOSURE UNIT #2 LOWER LEVEL
- EXPOSURE UNIT #3 EMBANKMENT

NOTES:

- 1. ONLY COMPOUNDS THAT DRIVE EXCEEDANCES OF ACCEPTABLE RISK LEVELS (CARCINOGENIC RISK > 1.0E-04 AND HAZARD INDEX > 1.0) ARE SHOWN.
- 2. FT BGS = FEET BELOW GROUND SURFACE

0 11 SCALE II	XIMATE 5 230 N FEET
RESIDENTIAL HUM DRIVER	IAN HEALTH RISK S MAP
TOWN OF CH 828 MARTIN LUTHER K CHAPEL HILL, NC	HAPEL HILL KING JR. BOULEVARD DRTH CAROLINA
hart hickman	2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geology
DATE: 9-10-21	REVISION NO. 0
JOB NO. TCH-009	FIGURE NO. 4A

ar Projects/Town of Chapel Hill (TCH-009 - Police Station - Remedial Services/Risk Assessment)Figures/Figures_20210831.dwg. FIG 4B, 9/30/2021 4:16/41 PM,

LEGEND

- BOLIN CREEK
- MONITORING WELL LOCATION (FALCON ENGINEERING)
- TEMPORARY MONITORING WELL LOCATION (FALCON ENGINEERING)
- SOIL BORING LOCATION (FALCON ENGINEERING)
- SURFACE WATER SAMPLE LOCATION (FALCON ENGINEERING)
- MONITORING WELL LOCATION (H&H)
- SOIL SAMPLE LOCATION (H&H)
- A DRAINAGE PATHWAY, SURFACE WATER/SEDIMENT SAMPLE LOCATION (H&H)

STORMWATER CULVERT

- BOLIN CREEK TRAIL
- EXPOSURE UNIT #1 UPPER LEVEL
- EXPOSURE UNIT #2 LOWER LEVEL
- EXPOSURE UNIT #3 EMBANKMENT

NOTES:

- 1. ONLY COMPOUNDS THAT DRIVE EXCEEDANCES OF ACCEPTABLE RISK LEVELS (CARCINOGENIC RISK > 1.0E-04 AND HAZARD INDEX > 1.0) ARE SHOWN.
- 2. FT BGS = FEET BELOW GROUND SURFACE

	V				
0 11 SCALE I	XIMATE 5 230 N FEET				
CONSTRUCTION WOR RISK DRIV	KER HUMAN HEALTH ERS MAP				
TOWN OF CHAPEL HILL 828 MARTIN LUTHER KING JR. BOULEVARD CHAPEL HILL, NORTH CAROLINA					
hart hickman	2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geology				
DATE: 9-10-21	REVISION NO. 0				

JOB NO. TCH-009

yjects/Town of Chapel Hill (TCH)/TCH-009 - Police Station - Remedial Services/Risk Assessment/Figures/Figures_20210831.dwg, FIG 5, 9/21/2021 9;

LEGEND

SITE PROPERTY BOUNDARY

BOLIN CREEK

- MONITORING WELL LOCATION (FALCON ENGINEERING)
- TEMPORARY MONITORING WELL LOCATION (FALCON ENGINEERING)
- SOIL BORING LOCATION (FALCON ENGINEERING)
- SURFACE WATER SAMPLE LOCATION (FALCON ENGINEERING)
- MONITORING WELL LOCATION (H&H)
- SOIL SAMPLE LOCATION (H&H)
- A DRAINAGE PATHWAY, SURFACE WATER/SEDIMENT SAMPLE LOCATION (H&H)

STORMWATER CULVERT

BOLIN CREEK TRAIL

- EXPOSURE UNIT #1 UPPER LEVEL
- EXPOSURE UNIT #2 LOWER LEVEL
- EXPOSURE UNIT #3 EMBANKMENT

-SAMPLE ID & DATE S-4 (4/29/13) -SAMPLE DEPTH DEPTH (FT BGS) 1' CONCENTRATION CADMIUM 1.5 (mg/kg) COBALT 30 COPPER 65 MANGANESE 1,500 NICKEL 43 -CONSTITUENT

NOTES:

- 1. ONLY SAMPLES EXCEEDING ECOLOGICAL SCREENING VALUES (ESVs) AND BACKGROUND SCREENING VALUES (BSVs) ARE SHOWN.
- 2. FT BGS = FEET BELOW GROUND SURFACE IN BGS = INCHES BELOW GROUND SURFACE mg/kg = MILLIGRAMS PER KILOGRAM

ECOLOGICAL RISK DRIVERS MAP

ECT	TOWN OF CHAPEL HILL
828 N	MARTIN LUTHER KING JR. BOULEVARD
	CHAPEL HILL, NORTH CAROLINA

hart hickman	2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geology
DATE: 9-10-21	REVISION NO. 0
JOB NO. TCH-009	FIGURE NO. 5

Appendix A

Historical Data Tables and Figures

368 Table A-1 (page 1 of 2) Summary of Post-IRM Soil Analytical Data 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina <u>H&H Job No. TCH-009</u>

			1											1	1	Γ			1	1	1		Γ	Γ				1			T
Sample ID	Sample Date	Material Sampled (Soil or CCP)	Sample Depth (ft or in bgs)	aluminum	antimony	arsenic	aarium	oeryllium (noroc	cadmium	calcium	nexavalent chromium	rivalent chromium	otal chromium	cobalt	copper	БŢ	ead	magnesium	nanganese	mercury	molybdenum	nickel	ootassium	selenium	silver	sodium	strontium	hallium	vanadium	zinc
	Site-Speci	fic BSV ⁽¹⁾		NA	ND	3.015	87.86	0.929	NA	0.313	NA	5.725	70.2	70.2	36.31	77.3	NA	59.11	NA	1,149	0.256	NA	19.49	NA	2.503	NA	NA	43.19	0.981*	227	230
PS	RG - Protection	of Groundwater ⁽²⁾		110,000	0.90	5.8	580	63	45	3.0	NS	3.8	360,000	NS	0.90	700	150	270	NS	65	1.0	7.1	130	NS	2.1	3.4	NS	1,500	0.28	350	1,200
P	RG - Residentia	al Health-based ²⁾		16,000	6.3	0.68	3,100	31	3,100	14	NS	0.31	23,000	NS	4.7	630	11,000	400	NS	380	2.3	78	310	NS	78	78	NS	9,400	0.16	78	4,700
PSRG -	Industrial/Com	mercial Health-based ²⁾		230,000	93	3.0	47,000	470	47,000	200	NS	6.5	350,000	NS	70	9,300	160,000	800	NS	5,600	9.7	1,200	4,700	NS	1,200	1,200	NS	140,000	2.3	1,200	70,000
8.4	04/20/13	CCP	1 ft	23.000	ND	14	24	ND	ΝA	1.5	0.000	NA	Ор	per Level S	ampies	65	50.000	20	0.000	1 500	0.011	NA	43	690	ND	ND	150	NA	ND	21	120
S-5	01/31/14	CCP	0-4 ft	23,000 NA	NA	37	2 800	NA	NA	ND	5,500 NA	1.3	19.7	21	NA	NA	NA	10	3,000 NA	NA	0.30	NA	NA	NA	32	ND	NA	NA	NA	NA	NA
S-6	01/31/14	CCP	0-4 ft	NA	NA	43	3,200	NA	NA	ND	NA	2.7	19.3	22	NA	NA	NA	12	NA	NA	0.42	NA	NA	NA	6.1	ND	NA	NA	NA	NA	NA
GP-1	02/03/14	CCP	8-12 ft	NA	NA	3.5	86	NA	NA	ND	NA	ND	8.8	8.8	NA	NA	NA	26	NA	NA	0.083	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA
GP-2	02/03/14	CCP	26-28 ft	NA	NA	<u>41</u>	1,100	NA	NA	ND	NA	ND	19	19	NA	NA	NA	11	NA	NA	0.24	NA	NA	NA	4.0	ND	NA	NA	NA	NA	NA
GP-3	02/03/14	CCP	10-12 ft	NA	NA	<u>48</u>	1,200	NA	NA	ND	NA	0.53	22.47	23	NA	NA	NA	39	NA	NA	0.42	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA
GP-4	02/04/14	CCP	10-12 ft	NA	NA	<u>59</u>	2,900	NA	NA	ND	NA	ND	20	20	NA	NA	NA	11	NA	NA	0.51	NA	NA	NA	5.8	ND	NA	NA	NA	NA	NA
0.0.5	02/04/14	CCP	4-6 ft	NA	NA	72	2,800	NA 5.40	NA	ND 10.050	NA	ND 0.000 L	19	19	NA 7.05	NA 50.0	NA	9.5	NA	NA 04.7	0.33	NA	NA	NA	2.6	ND	NA	NA	NA	NA	NA
GP-5	04/03/19	CCP	4-0 IL 4.6 ft	NA	NA NA	95.9	2,350	5.40	NA NA	< 0.956	NA NA	0.830 J	12.3	16.0	10.3	50.9	NA	NA NA	NA NA	53.4	0.30	NA	17.1	NA	12	NA	NA	325	NA NA	NA	NA
	02/04/14	CCP	9-11 ft	NA	NA	65	2,030	NA	NA	ND	NA	ND	19	19	NA	NA	NA	27	NA	NA	11	NA	NA	NA	4.1	ND	NA	NA	NA	NA	NA
GP-6	04/04/19	CCP	9-10 ft	NA	NA	6.73	178	0.758	NA	0.118 J	NA	<1.11	10.0	10	5.18	11	NA	NA	NA	687	0.050	NA	6.24	NA	0.88	NA	NA	21.7	NA	NA	NA
GP-7	02/04/14	CCP	10-12 ft	NA	NA	55	1,700	NA	NA	ND	NA	ND	19	19	NA	NA	NA	11	NA	NA	0.26	NA	NA	NA	4.3	ND	NA	NA	NA	NA	NA
GP-8	02/04/14	CCP	11-15 ft	NA	NA	<u>54</u>	4,100	NA	NA	ND	NA	ND	20	20	NA	NA	NA	9.2	NA	NA	0.29	NA	NA	NA	4.5	ND	NA	NA	NA	NA	NA
GP-11	02/04/14	CCP	4-6 ft	NA	NA	<u>16</u>	450	NA	NA	ND	NA	ND	16	16	NA	NA	NA	23	NA	NA	0.35	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA
GP-12	02/04/14	CCP	2-4 ft	NA	NA	<u>52</u>	2,000	NA	NA	ND	NA	ND	19	19	NA	NA	NA	14	NA	NA	0.28	NA	NA	NA	2.1	ND	NA	NA	NA IO 50	NA	NA
HH-1	11/03/16	Soll	0-1π	NA	<0.29	<u>5.9</u>	120	1.00	NA	<0.29	NA	0.45	20.55	21	7.9	25	NA	27	NA	350 260 BH	0.052	NA	8.8	NA	0.69	NA	NA	31	< 0.58	48	50
HH-2	11/03/16	Soil	0-1 ft	NA	<0.33	<u>3.4</u> 4.9	140	0.79	NA	<0.33	NA	0.34	13.57	14	0.4	21	NA	30	NA	260	0.067	NA	5.9	NA	1.0	NA	NA	25	<0.58	41	43
HH-3	11/03/16	Soil	0-1 ft	NA	< 0.33	9.9	200	1.30	NA	< 0.33	NA	0.46 J	17.54	18	7.8	31	NA	24	NA	350	0.076	NA	8.9	NA	2.4	NA	NA	36	< 0.65	53	100
HH-4	11/03/16	Soil	0-1 ft	NA	<0.28	2.4	72	1.00	NA	<0.28	NA	0.50	44.5	45	16	37	NA	2.3	NA	630	< 0.023	NA	33	NA	< 0.56	NA	NA	42	0.60	73	70
HH-5	11/03/16	Soil	0-1 ft	NA	<0.30	2.4	73	0.75	NA	<0.30	NA	<0.14	23	23	8.4	19	NA	9.3	NA	410	<0.025	NA	14	NA	1.2	NA	NA	23	<0.60	39	51
MW-7	11/01/16	Soil	0-1 ft	NA	<0.30	2.6	67	0.87	NA	<0.30	NA	0.89	9.11	10	3.9	180	NA	7.6	NA	100	0.030	NA	2.9	NA	<0.59	NA	NA	6.7	<0.59	61	46
													Em	bankment S	Samples						1									<u> </u>	
S-7	01/31/14	CCP	0-4 ft	NA	NA	<u>44</u>	2,500	NA 0.000 L	NA	ND	NA	1.4	27.6	29	NA 5.07	NA	NA	11	NA	NA	0.44	NA	NA 2.50	NA	4.5	ND	NA	NA	NA	NA	NA
HH-9	04/03/19	CCP	0-110	NA NA	NA NA	<u>3.37</u>	2 970	0.398 J	NA NA	0.178 J	NA NA	<1.29	12.7	12.7	0.97	14.5 51.3	NA	NA NA	NA NA	200	0.31	NA NA	3.59	NA	0.722	NA NA	NA NA	33.Z 260	NA NA	NA	NA NA
HH-11	04/03/19	CCP	0-1 ft	NA	NA	42.5	3,260	5.9	NA	0.220 J	NA	0.467 J	18.7	19.2	13.4	55.3	NA	NA	NA	113	0.43	NA	23.5	NA	9.05	NA	NA	234	NA	NA	NA
							-,						Lo	wer Level S	amples																
SS-7	02/18/16	Soil	2-12 in	NA	ND	<u>3.1</u>	84	0.60	ND	ND	NA	NA	NA	14	6.9	15	NA	13	NA	500	0.038	ND	5.9	NA	ND	ND	NA	31	ND	37	37
HH-8	10/27/16	Soil	0-1 ft	NA	< 0.30	<u>3.6</u>	100	1.00	NA	<0.30	NA	< 0.35	19	19	12	29	NA	18	NA	570	0.036	NA	9.0	NA	<0.60	NA	NA	28	<0.60	52	54
MW-6	11/02/16	Soil	0-1 ft	NA	< 0.26	2.9	38	0.61	NA	< 0.26	NA	0.21 J	9.79	10	9.5	23	NA	12	NA	570	0.082	NA	8.2	NA	1.0	NA	NA	22	0.81	31	77
SED-3A	04/05/19	Soll	0-1 π 0.1 ft	NA	NA	<u>3.45</u> 1.25	33.9	0.418 J	NA	<0.582	NA	<1.16	17.4	17.4	16.5	6.97	NA	NA	NA	243	<0.0054	NA	5.82	NA	0.237 J	NA	NA	9.6	NA	NA	NA
SED-3A	04/05/19	Drainage Pathway Soil	2-6 in	NA	NA	2 41	49.1	0.313.1	NA	0.122.1	NA	<1.25	12.0	12	7.01	14.3	NA	NA	NA	423	0.0071	NA	4.50	NA	1.01	NA	NA	15.2	NA	NA	NA
SED-9	04/05/19	Drainage Pathway Soil	2-6 in	NA	NA	1.16	33.8	0.199 J	NA	<0.660	NA	0.461 J	21.6	22.1	9.11	10.1	NA	NA	NA	431	0.013	NA	6.68	NA	< 0.660	NA	NA	16.7	NA	NA	NA
SED-10	04/05/19	Drainage Pathway Soil	2-6 in	NA	NA	1.29	24.4	0.118 J	NA	0.221 J	NA	0.418 J	12.0	12.4	4.43	10.8	NA	NA	NA	195	0.037	NA	4.03	NA	0.273 J	NA	NA	8.1	NA	NA	NA
SED-12	08/27/19	Drainage Pathway Soil	0-2 in	NA	NA	<u>4.73</u>	102	0.765 J	NA	0.214 J	NA	<1.68	27.6	27.6	6.17	23.1	NA	NA	NA	341	0.042	NA	7.69	NA	0.961	NA	NA	25.4	NA	NA	NA
	04/05/19	Drainage Pathway Soil	2-6 in	NA	NA	<u>3.97</u>	122	0.499 J	NA	0.204 J	NA	<1.74	9.45	9.45 B	6.04	19.7	NA	NA	NA	319	0.077	NA	4.95	NA	1.36	NA	NA	32.8	NA	NA	NA
SED-13	08/27/19	Drainage Pathway Soil	0-2 in	NA	NA	12.4	958	1.56	NA	0.284 J	NA	<2.03	29.4	29.4	13.9	38.9	NA	NA	NA	538	0.12	NA	19.2	NA	3.07	NA	NA	125	NA	NA	NA
SED 19	04/05/19	Drainage Pathway Soli	2-0 IN	NA NA	NA NA	14.5	124	0.534 1	NA NA	0.171J	NA NA	<1.38	14.0	19 7	7.58	27.1	NA	NA NA	NA NA	203	0.075	NA NA	8.73	NA	1.09	NA NA	NA NA	70.5	NA NA	NA	NA
SED-10	04/05/19	Drainage Pathway Soil	2-0 in 2-6 in	NA	NA	1.55	20.0	0.161 J	NA	< 0.588	NA	0.435 J	21.7	22.1	7.98	8.38	NA	NA	NA	266	0.0073	NA	4.94	NA	0.334 J	NA	NA	15	NA	NA	NA
SED-20	04/05/19	Drainage Pathway Soil	2-6 in	NA	NA	0.792	31.4	0.152 J	NA	<0.687	NA	<1.37	5.76	5.76 B	4.5	9.1	NA	NA	NA	360	0.012	NA	2.19	NA	0.263 J	NA	NA	11.5	NA	NA	NA
SED-21	04/05/19	Drainage Pathway Soil	2-6 in	NA	NA	1.12	25.9	0.149 J	NA	< 0.591	NA	<1.18	20.9	20.9	4.44	6.58	NA	NA	NA	221	0.011	NA	2.7	NA	0.286 J	NA	NA	12.8	NA	NA	NA
Excavation G-1	04/16/20	Soil	2-3 ft	NA	NA	3.68	58.8	<3.08	NA	<1.23	NA	0.478 J	20.0	20.5	5.73	14.5	NA	NA	NA	193	0.052	NA	6.94	NA	<3.08	NA	NA	6.2	NA	NA	NA
Excavation H-1	05/11/20	Soil	1-2 ft	NA	NA	1.16	37.2	<2.76	NA	<1.10	NA	<1.10	20.1	20.1	10.7	15.3	NA	NA	NA	412	< 0.0442	NA	5.80	NA	<2.76	NA	NA	29.3	NA	NA	NA
Excavation H-2	05/11/20	501	1-2 ft	NA	NA	1.93	71.0	<3.25	NA	<1.30	NA	0.578 J	43.8	44.4	19.1	59.2	NA	NA	NA	265	0.0494 J	NA	10.2	NA	1.58 J	NA	NA	56.8	NA	NA	NA
Excavation H-3	05/11/20	Soil	1-2 IL 2-3 ft	NA NA	ΝA	2.41	67.1	<3.28	NA NA	<1.01	NA NA	0.388 1	40.2 25.8	40.0	20.8	43.4 24.0	NA	NA NA	NA	1 480	0.0485 J	NA NA	7.81	NA	<3.04	NA	ΝA	38.1	NA	NA	NA
Excavation H-5	05/11/20	Soil	1-2 ft	NA	NA	1.10.1	74.5	<3.04	NA	<1.22	NA	0.497 J	21.1	21.6	8.25	16.9	NA	NA	NA	558	<0.0486	NA	6.77	NA	<3.04	NA	NA	32.2	NA	NA	NA
Excavation H-6	05/11/20	Soil	1-2 ft	NA	NA	1.02 J	96.0	<2.97	NA	<1.19	NA	<1.19	14.9	14.9	7.57	10.7	NA	NA	NA	557	0.0222 J	NA	4.03	NA	<2.97	NA	NA	20.5	NA	NA	NA
Excavation H-7	11/09/20	Soil	0-1 ft	NA	NA	1.10 J	73.7	0.767 J	NA	<1.22	NA	<1.22	8.04	8.04	3.68	15.0	NA	NA	NA	233	0.022	NA	4.63	NA	0.479 J	NA	NA	9.6	NA	NA	NA
Excavation I-1	04/08/20	Soil	1-2 ft	NA	NA	2.91	67.2	<2.77	NA	<1.11	NA	0.457 J	26.2	26.7	13.0	18.3	NA	NA	NA	594	0.042	NA	8.25	NA	<2.77	NA	NA	26.3	NA	NA	NA
Excavation I-2	04/08/20	Soil	1-2 ft	NA	NA	3.65	74.1	<2.85	NA	<1.14	NA	0.313 J	23.3	23.6	12.0	21.4	NA	NA	NA	544	0.022	NA	8.70	NA	<2.85	NA	NA	17.2	NA	NA	NA
Excavation I-3	04/08/20	Soil	1-2 ft	NA	NA	2.18	61.5	<2.88	NA	<1.15	NA	0.387 J	13.1	13.5	9.23	19.5	NA	NA	NA	419	0.019	NA	6.02	NA	<2.88	NA	NA	13.3	NA	NA	NA

369 Table A-1 (page 2 of 2) Summary of Post-IRM Soil Analytical Data 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job No. TCH-009

Sample ID	Sample Date	Material Sampled (Soil or CCP)	Sample Depth (ft or in bgs)	aluminum	2 antimony	arsenic 3 015	a parium	beryllium	boron	cadmiu 0 313	calcium	52 bexavalent chromium	5 trivalent chromium	5 total chromium	8 cobalt	-addoo 77.3	Lion Na	lead 2011	⊑ Magnesium	1 14	be mercury	≥ molybdenum	lickel	Z potassium	selenium 503	a silver	unipos A	trontium 19	that unillicity 0.081*	madium 22	
De	Sile-Speci	of Croundwater ²⁾		110,000	0.00	5.015	590	63	45	3.0	NS	3.125	360.000	NS	0.00	700	150	270	NS	65	1.0	7.1	13.45	NS	2.000	3.4	NS	45.15	0.301	350	1 200
F3	PC Posidonti	al Hoalth bacod ²⁾		16,000	6.3	0.68	3 100	31	3 100	14	NS	0.31	23,000	NS	4.7	630	11 000	400	NS	380	2.3	7.1	310	NS	78	78	NS	9,400	0.20	78	4 700
PSRG -	Industrial/Com	norcial Health-based		230,000	93	3.0	47 000	470	47 000	200	NS	6.5	350,000	NS	70	9.300	160,000	800	NS	5 600	9.7	1 200	4 700	NS	1 200	1 200	NS	140 000	2.3	1 200	70,000
T OKO -	industrial/ooini	nercial ficaliti-based		200,000	00	0.0	11,000		11,000	200	110	0.0	Ba	karound S	amples	0,000	100,000	000		0,000	0.1	1,200	1,100		1,200	1,200		110,000	2.0	1,200	10,000
	11/02/16	Soil	0-1 ft	NA	< 0.30	2.1	76	0.99	NA	< 0.30	NA	0.43 J	17.57	18	27	49	NA	4.0	NA	710	< 0.023	NA	5.0	NA	< 0.59	NA	NA	25	< 0.59	190	47
MW-5 (background)	11/02/16	Soil	6-7 ft	NA	< 0.27	1.4	61	0.60	NA	< 0.27	NA	0.81	38.19	39	19	18	NA	0.55	NA	940	< 0.020	NA	20	NA	< 0.53	NA	NA	29	2.3	67	75
	11/03/16	Soil	0-1 ft	NA	<0.28	1.9	36	0.39	NA	<0.28	NA	0.87	17.13	18	6.3	16	NA	25	NA	310	0.033	NA	5.4	NA	1.6	NA	NA	15	< 0.57	34	43
BG-1 (background)	11/03/16	Soil	2-3 ft	NA	<0.29	2.3	45	0.48	NA	<0.29	NA	<0.12	19	19	7.3	18	NA	43	NA	440	0.280	NA	6.2	NA	1.6	NA	NA	15	< 0.57	35	49
500 <i>4</i> 1 1	11/03/16	Soil	0-1 ft	NA	<0.28	1.9	45	0.50	NA	<0.28	NA	0.84	16.16	17	7.4	18	NA	32	NA	410	0.045	NA	4.9	NA	1.1	NA	NA	14	< 0.56	35	44
BG-2 (background)	11/03/16	Soil	2-3 ft	NA	< 0.27	1.9	52	0.53	NA	<0.27	NA	0.70	23.3	24	7.5	20	NA	26	NA	450	0.038	NA	7.9	NA	1.7	NA	NA	19	< 0.55	37	45
500 <i>4</i> 1 1	11/03/16	Soil	0-1 ft	NA	< 0.30	1.7	44	0.43	NA	< 0.30	NA	0.21 J	23.3	16	7.5	15	NA	25	NA	410	0.024	NA	5.1	NA	1.4	NA	NA	46	< 0.60	37	40
BG-3 (background)	11/03/16	Soil	2-3 ft	NA	< 0.27	2.2	56	0.54	NA	<0.27	NA	0.88	21.12	22	7.5	18	NA	29	NA	410	0.040	NA	5.2	NA	1.2	NA	NA	19	< 0.53	40	46
	11/03/16	Soil	0-1 ft	NA	<0.29	1.7	50	0.50	NA	< 0.29	NA	< 0.13	19	19	9.5	16	NA	22	NA	450 BH	0.026	NA	6.0	NA	< 0.59	NA	NA	16 A	<0.59	53	50
BG-4 (background)	11/03/16	Soil	2-3 ft	NA	< 0.33	2.0	53	0.52	NA	0.38	NA	0.50 J	22.5	23	11	23	NA	21	NA	460 BH	0.054	NA	8.5	NA	< 0.65	NA	NA	19	<0.65	51	230
	04/03/19	Soil	0-1 ft	NA	NA	2.05 O1	64.4	0.625	NA	0.177 J	NA	5.34	39.4	44.7	14.4	26.4	NA	NA	NA	448 J6	0.022	NA	12.8	NA	0.562 J	NA	NA	17	NA	NA	NA
BG-6 (background)	04/04/19	Soil	2-3 ft	NA	NA	2.29	66.3	0.507 J	NA	0.139 J	NA	<1.19	22.9	22.9	14.7	32.3	NA	NA	NA	467	0.032	NA	7.78	NA	0.828	NA	NA	16.8	NA	NA	NA
	04/03/19	Soil	0-1 ft	NA	NA	1.97	52.7	0.410 J	NA	0.136 J	NA	<1.16	70.2	70.2	18.9	36.4	NA	NA	NA	813	0.025	NA	12.8	NA	0.543 J	NA	NA	22.6	NA	NA	NA
BG-7 (background)	04/04/19	Soil	2-3 ft	NA	NA	3.08	77.9	0.430 J	NA	0.108 J	NA	<1.16	27	27	16.3	32.5	NA	NA	NA	548	0.023	NA	6.2	NA	0.502 J	NA	NA	24.3	NA	NA	NA
BC 8 (background)	PBRC - Residential Health-based* 16,00 6.8 3.0 4.7 4.00 NS 4.7 5.00 NS 3.00 NS 7.8 <															NA	NA	NA													
BG-0 (background)	BRG-Industrial/Commercial Health-based ^P 20.000 93 3.0 47.00 47.00 200 NS 6.0 350.000 NS 7.0 9.300 100.00 800 NS 5.600 9.7 1200 47.00 NS 1200 NS 1200														NA	NA	NA														
Lu-c (abcrground) 1192/16 5/81 2/8 NA 40/27 NA 0/27 NA 0/28 NA 4/10 0/00 NA 4/12 NA 4/14 NA 1/12 NA 1/12 NA 1/12 NA 1/12 NA																															

AAA-Master Projects/Town of Chapel Hill (TCH)/TCH-009 - Police Station - Remedial Services/Risk Assessment/App A Historical Data/A-1 Historical Data Tables

Table A-2 (page 1 of 1) Summary of Stream Sediment Analytical Data 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina <u>H&H Job No. TCH-009</u>

Sediment Sampling Point ID	Sample Date	antimony	arsenic	barium	beryllium	cadmium	hexavalent chromium	trivalent chromium	total chromium	cobalt	copper	lead	manganese	mercury	nickel	selenium	strontium	thallium	vanadium	zinc
Site-Specific BS	V ⁽¹⁾	ND	2.74	38.4	0.48	ND	0.79	69.5	70	16.388	13.8	7.1	759	0.0078	9.92	0.409	16.9	ND	37	34
PSRG - Protection of Gro	oundwater ⁽²⁾	0.90	5.8	580	63	3.0	3.8	360,000	NS	0.90	700	270	65	1.0	130	2.1	1,500	0.28	350	1,200
PSRG - Resident	ial ⁽²⁾	6.3	0.68	3,100	31	14	0.31	23,000	NS	4.7	630	400	380	2.3	310	78	9,400	0.16	78	4,700
PSRG - Industrial/Com	mercial ⁽²⁾	93	3.0	47,000	470	200	6.5	350,000	NS	70	9,300	800	5,600	9.7	4,700	1,200	140,000	2.3	1,200	70,000
SED-1 (Unstream)	10/27/16	<0.32	1.2	12	<0.32	<0.32	0.24 J	22.76	23	3.9	4.2	4.0	180	<0.026	3.8	<0.64	6.9	<0.64	19	19
	04/05/19	NA	1.95 O1	38.4 J6	0.249 J	<0.636	0.428 J	65.0	65.4 J3, J6	7.63	8.42	NA	449 J6	0.0078	7.1	0.409 J	8.4	NA	NA	NA
	10/27/16	<0.33	2.1	20	0.48	<0.33	<0.40	36	36	7.8	8.0	7.1	330	<0.025	7.2	<0.65	11	<0.65	37	34
SED-2 (Unstream)	10/27/16 ⁽³⁾	<0.32	2.5	17	0.45	< 0.32	<0.40	49	49	6.5	9.1	6.7	290	<0.026	6.0	<0.63	12	<0.63	35	31
	04/05/19	NA	2.74	29.6	0.305 J	<0.619	0.796 J	56.3	57.1	20.9	13.8	NA	811	0.0053 J	9.16	0.306 J	16.9	NA	NA	NA
	04/05/19 ⁽³⁾	NA	2.02	17.4	0.222 J	<0.617	0.546 J	69.5	70	7.29	6.79	NA	347	0.0051	9.92	0.237 J	8.8	NA	NA	NA
SED-3 (Adjacent)	10/27/16	<0.32	1.6	21	0.37	< 0.32	<0.39	30	30	6.2	7.4	6.9	220	<0.026	6.8	<0.64	12	<0.64	29	35
	04/05/19	NA	1.36	16.4	0.111 J	<0.607	0.670 J	13.5	14.2	5.18	20.2	NA	225	0.0054 J	4.81	<0.607	9.2	NA	NA	NA
SED-4 (Adjacent)	10/27/16	<0.33	1.2	8.4	<0.33	<0.33	<0.38	34	34	3.5	5.2	3.5	130	<0.027	5.0	<0.65	6.4	<0.65	16	20
	04/05/19	NA	2.35	20.3	0.191 J	<0.586	0.456 J	63.8	64.3	7.26	8.39	NA	293	0.0080	10.5	0.344 J	30.7	NA	NA	NA
SED-5 (Downstream)	10/27/16	<0.31	1.4	44	0.41	<0.31	<0.37	51	51	9.5	8.6	22	860	<0.025	5.3	<0.62	13	<0.62	35	32
	04/04/19	NA	1.82	24.3	0.233 J	<0.617	0.595 J	16.8	17.4	5.9	8.86	NA	399	< 0.0035	4.86	<0.617	6.2	NA	NA	NA
SED-6 (Downstream)	04/04/19	NA	1.96	17.3	0.247 J	<0.643	0.517 J	24.9	25.4	6.57	9.25	NA	308	0.0058	7.15	<0.643	8.4	NA	NA	NA
SED-7 (Downstream)	04/04/19	NA	1.35	16.4	0.179 J	<0.635	0.995 J	59.4	60.4	6.47	6.77	NA	262	0.0025 J	9.04	<0.635	8.1	NA	NA	NA

Notes

Concentrations reported in milligrams per kilogram (mg/kg).

1) Site-Specific Background Screening Value (BSV) indicates two times the mean detected background concentration or maximum detected background concentration, whichever is smaller.

2) North Carolina Department of Environmental Quality (DEQ) Preliminary Soil Remediation Goals (PSRGs) (July 2021)

3) Duplicate sample taken.

Bold denotes concentration above or equal to Protection of Groundwater PSRG and site-specific BSVs.

Shading indicates concentration above or equal to Residential PSRG and site-specific BSVs.

Underlining indicates concentration above or equal to Industrial/Commercial PSRG and site-specific BSVs.

ND - Not Detected; NA - Not Analyzed; NS - Not Specified

J = Detected above method detection limit but below laboratory reporting limit; therefore, result is an estimated concentration.

O1 = Analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

J3 = The associated batch QC was outside the established quality control range for precision.

J6 = The sample matrix interfered with the ability to make any accurate determination; spike value is low.

Analytical Methods:

Metals by EPA Method 6010C, 6020A, or 6020B Mercury by EPA Method 7470A Hexavalent Chromium by EPA Method 7199A

Table A-3 (page 1 of 1) Summary of Surface Water Analytical Data 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job No. TCH-009

Surface Water Sampling Point ID	Sample Date	aluminum	antimony	arsenic	barium	beryllium	cadmium ⁽³⁾	calcium	hexavalent chromium	trivalent chromium ⁽³⁾	total chromium	cobalt	copper ⁽³⁾	iron	lead ⁽³⁾	magnesium	manganese	mercury	nickel ⁽³⁾	potassium	selenium	strontium	silver ⁽³⁾	sodium	thallium	vanadium	zinc ⁽³⁾	Hardness
Site-Specific BSV		NA	ND	0.44	27	ND	ND	NA	ND	ND	0.53	0.16	1.2	ND	ND	NA	22.2	ND	0.33	NA	0.11	100	ND	NA	ND	ND	ND	54,000
NC 2B Standard ⁽²⁾		NS	NS	10(t)	1,000(t)	6.5	0.27	NS	11	45.08	NS	NS	5.33	NS	1.29	NS	NS	0.012(t)	25(t)	NS	5(t)	NS	0.06	NS	NS	NS	70.07	NS
BC-1 (Upstream)	2/5/2014	NA	NA	ND	24	NA	ND	NA	ND	ND	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	NA	NA	NA
SW-1 (Linstream)	11/3/2016	NA	<5.0	<10	27	<2.0	<1.0	NA	<0.74	NA	<5.0	<5.0	<10	<0.2	<5.0	NA	<10	<0.2	<10	NA	<20	100	NA	NA	<10	<5.0	<30	NA
	4/5/2019	NA	NA	0.44	23.1	<0.10	<0.080	NA	NA	NA	0.53	0.16	1.2	NA	NA	NA	22.2	<0.20	0.29 J	NA	0.096 J	85.3	NA	NA	NA	NA	NA	54,000
SW-2 (Upstream)	11/3/2016	NA	<5.0	<10	27	<2.0	<1.0	NA	<0.74	NA	<5.0	<5.0	<10	<0.2	<5.0	NA	11	<0.2	<10	NA	<20	100	NA	NA	<10	<5.0	<30	NA
	4/5/2019	NA	NA	0.42	23.2	<0.10	<0.080	NA	NA	NA	0.45 J	0.16	1.1	NA	NA	NA	21.2	<0.20	0.33 J	NA	0.11 J	85.5	NA	NA	NA	NA	NA	53,600
BC-2 (Bolin Creek at Site)	6/20/2013	290	ND	0.90	27	ND	ND	16,000	NA	ND	ND	0.37	2.6	860	0.50	5,300	100	ND	1.2	2,300	ND	NA	ND	7,800	ND	ND	45	NA
	2/5/2014	NA	NA	ND	24	NA	ND	NA	ND	ND	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	NA	NA	NA
	11/3/2016	NA	<5.0	<10	27	<2.0	<1.0	NA	<0.74	NA	<5.0	<5.0	<10	<0.2	<5.0	NA	34	<0.2	<10	NA	<20	100	NA	NA	<10	<5.0	<30	NA
SW-3 (Adjacent)	11/3/2016 ⁴	NA	<5.0	<10	27	<2.0	<1.0	NA	<0.74	NA	<5.0	<5.0	<10	<0.2	<5.0	NA	33	<0.2	<10	NA	<20	110	NA	NA	<10	<5.0	<30	NA
	4/5/2019	NA	NA	0.45	25.7	<0.10	<0.080	NA	NA	NA	0.62	0.26	2.8	NA	NA	NA	37.4	<0.20	0.50	NA	0.11 J	88.8	NA	NA	NA	NA	NA	55,900
	11/3/2016	NA	<5.0	<10	27	<2.0	<1.0	NA	<0.74	NA	<5.0	<5.0	<10	<0.2	<5.0	NA	25	< 0.2	<10	NA	<20	110	NA	NA	<10	<5.0	<30	NA
SW-4 (Adjacent)	4/5/2019	NA NA	NA NA	0.42	23.0	< 0.10	<0.080	NA	NA	NA	< 0.50	0.14	1.0	NA	NA	NA NA	24.0	<0.20	0.26 J	NA	0.10 J	89.1	NA	NA	NA	NA	NA	57,100
	4/5/2019	NA	INA <5.0	0.41	23.7	<0.10	<0.080	NA	NA	NA	< 0.50	0.14	0.98	NA <0.2	INA <5.0	NA	24.8	< 0.20	0.26 J	NA	0.088 J	87.7	NA	NA	NA <10	INA	NA <20	54,300
SW-5 (Downstream)	A/A/2010	NΑ	<5.0 NA	0.40	16.9	<0.10	<0.080	ΝA	<0.740 ΝΔ	NΑ	<0.50	<0.0 0.14	0.88	NA	<5.0 NA	NΑ	19.5	<0.2	0.21.1	NA	0.12 1	81.8	NA	NΑ	< TU NA	<3.0 NA	NA	53 400
SW-6 (Downstream)	4/4/2019	NA	NA	0.40	16.9	<0.10	<0.000	NA	NA	NA	<0.50	0.14	0.84	NA	NA	NA	18.7	<0.20	0.21.1	NA	0.12.3	81.3	NA	NA	NA	NA	NA	53 400
SW-7 (Downstream)	4/4/2019	NA	NA	0.42	18.4	< 0.10	<0.080	NA	NA	NA	< 0.50	0.16	1.1	NA	NA	NA	23.1	<0.20	0.23 J	NA	0.10 J	86.7	NA	NA	NA	NA	NA	54,400
	4/5/2019	NA	NA	0.40	32.1	< 0.10	< 0.080	NA	NA	NA	0.73	0.36	3.2	NA	NA	NA	29.5	<0.20	0.62	NA	0.11 J	69.9	NA	NA	NA	NA	NA	31,400

Notes:

Concentrations reported in micrograms per liter (μg/L). 1) Site-Specific Background Screening Value (BSV) indicates two times the mean detected background concentration or maximum detected background concentration, whichever is smaller. 2) North Carolina Surface Water Quality Standard (NC 2B Standard) adopted per 15A NCAC 2B Section .0100. Unless otherwise noted, values are the lowest of the Freshwater, Water Supply, and Human Health values because Boli Creek is a WS V classification surface water. Value shown is the lower of the acute versus chronic, where applicable. 3) 2B Standards derived using site-specific hardness data for surface water samples SW-1 through SW-7 and the DEQ Hardness-Dependent Metal Calculator dated July 26, 2021. Mean hardness for these samples was 54.5 mg/L.

4) Duplicate sample taken.5) Sample was field filtered.

Bold denotes concentration above NC 2B Standard and site-specific BSV.

ND = Not Detected; NA = Not Analyzed; NS = Not Specified

A = Detected above method detection limit below laboratory reporting limit; therefore, result is an estimated concentration (t) = Based upon measurement of total recoverable metal. See 15A NCAC 02B .0211 for more information.

Analytical Methods: Metals by 6010C, 6020A, or 6020B

Mercury by 7470A

Hexavalent chromium by 7199A Total hardness by Standard Method 2340B

372

Table A-4 (page 1 of 1) Summary of Well Construction and Groundwater Elevation Data 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job No. TCH-009

	Dermananter		Data		Mall	Screen	Total	Saraanad	тос	Novemb	er 9, 2016	April	3, 2019	Sepembe	er 26, 2019	February	/ 12, 2020
Well ID	Tomporary	Date Installed	Date Abandonod	Drilling Method	Matorial	Slot Size	Depth	Interval	Elevation	Depth to	Groundwater						
	remporary		Abandoneu		Waterial	(in)	(ft bls)	interval	(ft)	Water (ft bls)	Elevation (ft)	Water (ft bls)	Elevation (ft)	Water (ft bls)	Elevation (ft)	Water (ft bls)	Elevation (ft)
MW-1	Permanent	4/29/2013	N/A	DPT	2" PVC	0.01	40	30-40	346.12	35.48	310.64	30.90	315.22	35.67	310.45	35.22	310.90
MW-1A	Permanent	9/24/2019	N/A	Sonic	2" PVC	0.01	40	25-40	345.96					31.43	314.53	30.27	315.69
MW-2	Temporary	6/20/2013	6/20/2013	HA	Unknown	Unknown	8	Unknown									
MW-3	Permanent	1/27/2014	1/7/2015	Auger	2" PVC	0.01	11	6-11									
MW-4	Permanent	1/27/2014	1/6/2015	Auger	2" PVC	0.01	9.2	4.2-9.2									
MW-3A	Permanent	5/12/2015	N/A	Air Rotary	2" PVC	0.01	16	1-16	298.10	5.91	292.19	2.79	295.31	7.14	290.96	1.34	296.76
MW-4A	Permanent	5/14/2015	N/A	Air Rotary	2" PVC	0.01	19	4-19	298.00	6.72	291.28	3.20	294.80	7.83	290.17	2.22	295.78
MW-5	Permanent	11/2/2016	N/A	Air Rotary	2" PVC	0.01	27.5	17.5 - 27.5	369.33	9.27	360.06	7.03	362.30	10.24	359.09	9.67	359.66
MW-6	Permanent	11/2/2016	N/A	HSA	2" PVC	0.01	17.5	7.5 - 17.5	315.39	9.92	305.47	7.42	307.97	10.54	304.85	6.87	308.52
MW-7	Permanent	11/2/2016	N/A	Air Rotary	2" PVC	0.01	69.5	59.5 - 69.5	339.54	46.97	292.57	43.58	295.96	47.05	292.49	45.09	294.45
MW-8	Permanent	9/24/2019	N/A	Sonic	2" PVC	0.01	44.5	29.5-44.5	343.89					40.16	303.73	38.21	305.68
MW-9	Permanent	9/24/2019	N/A	Sonic	2" PVC	0.01	45.0	30-45	339.04					26.92	312.12	25.47	313.57
TMW-10	Temporary	9/24/2019	9/24/2019	Sonic	2" PVC	0.01	40.0	25-40	349.35					27.23*	322.12*		
MW-11D	Permanent	2/11/2020	N/A	HSA / Air Rotary	2" PVC	0.01	56.0	46-56	339.29							31.85	307.44

Notes:

MW-1, MW-3A, MW-4A, MW-5, MW-6, and MW-7 were surveyed by CE Group on December 8, 2016.

MW-1A, MW-8, MW-9, and TMW-10 were surveyed by H&H on September 26, 2019.

MW-11D was surveyed by H&H on March 3, 2020.

ft = feet; bls = below land surface; in = inches

DPT = Direct Push Technology; HA = Hand Auger; HSA = Hollow Stem Auger

TOC = Top of Casing; -- = Not Specified; N/A = Not Applicable

* = Depth to water gauged on September 24, 2019.

Table A-5 (page 1 of 1) Summary of Groundwater Analytical Data 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job No. TCH-009

Monitoring Well ID	Sample Date	urbidity	alkalinity	aluminum	antimony*	arsenic	arium	əeryllium	ooron	admium	alcium	ıexavalent chromium	rivalent chromium	Fotal chromium	sobalt*	opper	UO	ead	nagnesium	nanganese	nercury	molybdenum	nickel	ootassium	selenium	silver	sodium	strontium	hallium*	/anadium*	tinc
2L Standa	rd or IMAC	NS	NS	NS	1	10	700	4	700	2	NS	NS	NS	10	1	1,000	300	15	NS	50	1	NS	100	NS	20	20	NS	NS	0.2	0.3	1,000
MW-5	11/9/2016	3.8	NA	NA	<0.5	<10	51	<2.0	NA	<1.0	NA	NA	NA	<5.0	0.27 J	<10	NA	<5.0	NA	580	<0.2	NA	<10	NA	23	NA	NA	190	<2.5	0.39 J	<30
(Background)	4/3/2017	8.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4.8	NA	<10.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/3/2013	NA	NA	5,600	5.4	85	1,100	1.6	NA	0.17	110,000	NA	NA	15	15	25	6,500	5.8	25,000	7,600	ND	NA	12	7,600	2.5	ND	34,000	NA	1.0	38	52
	2/18/2016	NS	NA	NA	ND	67	1,300	11.0	ND	ND	NA	NA	NA	100	78	170	NA	36	NA	9,600	0.26	ND	58	NA	ND	ND	NA	2,900	ND	260	330
MIN/ 4	2/18/2016 ⁴	NS	NA	NA	ND	52	1,100	8.8	ND	ND	NA	NA	NA	86	61	130	NA	29	NA	9,000	0.21	ND	46	NA	ND	ND	NA	2,700	ND	200	260
14144-1	11/10/2016	475.0	NA	NA	<0.5	19	470	4.1	NA	0.15 J	NA	NA	NA	31	32	57	NA	10	NA	8,600	<0.2	NA	21	NA	23	NA	NA	2,200	<2.5	92	99
	11/10/2016 ⁴	NA	NA	NA	<0.5	<10	160	0.53 J	NA	<1.0	NA	NA	NA	<5.0	6.0	<10	NA	<5.0	NA	8,000	<0.2	NA	2.3 J	NA	<20	NA	NA	2,100	<2.5	1.2 J	<30
	4/3/2019	7.76	NA	NA	NA	22.9	1,730	<0.10	NA	<0.080	NA	NA	NA	<0.50	1.8	0.33 J	NA	NA	NA	3,090	<0.20	NA	0.60	NA	<0.50	NA	NA	4,710	NA	NA	NA
MW-1A	9/26/2019	6.63	NA	NA	NA	10	1,040	<0.50	NA	<0.40	NA	NA	NA	<2.5	1.2	<2.5	NA	NA	NA	2,420	<0.20	NA	0.82 J	NA	<2.5	NA	NA	6,360	NA	NA	NA
MW-2	6/20/2013 ¹	NA	NA	16,000	0.61	8.3	1,100	5.5	NA	0.93	260,000	NA	NA	8.4	23	1,200	13,000	27	47,000	1,200	0.18	NA	70	42,000	18	0.27	52,000	NA	0.48	71	2,200
	2/5/2014	NA	NA	NA	NA	ND	160	NA	NA	ND	NA	ND	NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA
MW-3	2/5/2014 ²	NA	NA	NA	NA	ND	250	NA	NA	ND	NA	ND	NA	24	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA
	8/15/2014 ³	1,500	NA	NA	NA	51	830	NA	NA	ND	NA	30	NA	78	NA	NA	NA	30	NA	NA	ND	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA
	8/20/2014 ⁴	13.0	NA	NA	NA	ND	220	NA	NA	ND	NA	23	NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA
	7/21/2015	5.7	NA	NA	NA	ND	67	NA	520	ND	NA	ND	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA
	2/17/2016	1.3	NA	NA	ND	ND	89	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	NA	23	ND	NA	2,400	ND	ND	ND
MW-3A	2/17/2016 ²	1.3	NA	NA	ND	ND	80	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	ND	NA	23	ND	ND	ND	NA	26	ND	NA	2,100	ND	ND	ND
	11/9/2016	1.2	NA	NA	<0.5	<10	53	<2.0	NA	<1.0	NA	NA	NA	<5.0	<0.11	<10	NA	<5.0	NA	14	<0.2	NA	<10	NA	50	NA	NA	2,400	5.4 J	0.94 J	12 J
	11/9/20162	1.2	NA	NA	<0.5	<10	53	<2.0	NA	<1.0	NA	NA	NA	<5.0	<0.11	<10	NA	<5.0	NA	15	<0.2	NA	<10	NA	52	NA	NA	2,400	5.3 J	0.95 J	<30
	4/4/2019	0.00	NA	NA	NA	0.15	68.2	<0.10	NA	<0.080	NA	NA	NA	<0.50	0.21	0.55	NA	NA	NA	5.8	<0.20	NA	0.50 J	NA	34.2	NA	NA	2,950	NA	NA	NA
MW-4	2/5/2014	NA	NA	NA	NA	140	6,500	NA	NA	1.7	NA	ND	NA	930	NA	NA	NA	250	NA	NA	1.4	NA	NA	NA	99	ND	NA	NA	NA	NA	NA
	8/20/2014	24.7	NA	NA NA	NA	ND	75	NA	NA	ND	NA	ND	NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA
	7/21/2015	24.7	NA	NA NA	NA	ND	61	NA	ND	ND	NA NA	ND	NA	ND	NA	NA NA	NA	ND	NA	NA	ND	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA NA
	2/18/2016	180.0	NA	NA	ND	ND	26	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	7.8	NA	10	ND	ND	ND	ΝA	ND	ND	NA	110	ND	ND	34
MW-4A	2/18/20164	189.0	NA	NA	ND	ND	33	ND	ND	ND	NA	NΔ	NA	ND	ND	ND	NA	8.4	NA	43	ND	ND	ND	NA	ND	ND	NA	78	ND	ND	48
	11/9/2016	4.8	NA	NA	<0.5	<10	36	<2.0	NA	<1.0	NA	NA	NA	1.2 J	<0.11	<10	NA	<5.0	NA	140	<0.2	NA	<10	NA	7.2 J	NA	NA	170	<2.5	<0.15	17 J
	4/4/2019	9.43	NA	NA	NA	<0.10	22.5	0.070 J	NA	<0.080	NA	NA	NA	<0.50	0.063 J	0.63	NA	NA	NA	6.0	<0.20	NA	1.5	NA	0.82	NA	NA	73	NA	NA	NA
	11/9/2016	2.5	NA	NA	< 0.5	<10	340	<2.0	NA	<1.0	NA	NA	NA	29	<0.11	1.9 J	NA	<5.0	NA	2,500	<0.2	NA	22	NA	20	NA	NA	690	<2.5	1.2 J	<30
	4/3/2017	7.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4.8	NA	<10.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-6	4/4/2019	4.48	NA	NA	NA	0.14	283	<0.10	NA	<0.080	NA	NA	NA	<0.50	0.33	<0.50	NA	NA	NA	2,210	<0.20	NA	0.20 J	NA	0.12 J	NA	NA	752	NA	NA	NA
	4/4/2019 ²	4.48	NA	NA	NA	0.14	279	<0.10	NA	<0.080	NA	NA	NA	<0.50	0.32	0.50 J	NA	NA	NA	2,160	<0.20	NA	0.19 J	NA	0.11 J	NA	NA	736	NA	NA	NA
	11/14/2016	8.9	NA	NA	<0.5	<10	10	<2.0	NA	<1.0	NA	NA	NA	1.3 J	0.17 J	1.6 J	NA	<5.0	NA	140	<0.2	NA	1.6 J	NA	<20	NA	NA	42	<2.5	1.1 J	26 J
MIVV-7	4/3/2019	8.95	NA	NA	NA	0.13	4.5	<0.10	NA	<0.080	NA	NA	NA	<0.50	< 0.050	0.72	NA	NA	NA	20.5	<0.20	NA	0.43 J	NA	0.10 J	NA	NA	44.9	NA	NA	NA
MW-8	9/26/2019	7.95	NA	NA	NA	6.1	219	<0.10	NA	<0.080	NA	NA	NA	0.51	4.0	0.98	NA	NA	NA	4,880	<0.20	NA	4.1	NA	<0.50	NA	NA	750	NA	NA	NA
	9/26/2019	1.74	NA	NA	NA	0.75	394	<0.20	NA	<0.16	NA	NA	NA	<1.0	1.5	2.1	NA	NA	NA	5,060	<0.20	NA	0.41 J	NA	<1.0	NA	NA	2,160	NA	NA	NA
MW-9	2/12/2020	1.10	377,000	NA	NA	0.78J	369	<0.10	NA	<0.10	118,000	NA	NA	<1.0	2.3	1.0	NA	NA	26,100	5,430	<0.20	NA	<1.0	12,400	<1.0	NA	24,900	2,380	NA	NA	NA
	2/12/2020 ²	1.10	377,000	NA	NA	0.74J	338	<0.10	NA	<0.10	113,000	NA	NA	<1.0	2.5	1.1	NA	NA	25,600	5,170	<0.20	NA	<1.0	12,100	<1.0	NA	24,100	2,310	NA	NA	NA
MW-11D	2/13/2020	8.59	413,000	NA	NA	1.5	24.1	<0.10	NA	<0.10	45,100	NA	NA	1.7	<1.0	2.2	NA	NA	30,300	14.7	<0.20	NA	5.5	145,000	0.74J	NA	65,400	604	NA	NA	NA

 Notes:

 Concentrations reported in micrograms per liter (µg/L), except turbidity which is reported in Nephelometric Turbidity Units (NTUs).

 2L Standard = North Carolina Department of Environmental Quality (DEQ) 15A NCAC 02L.0202 Groundwater Standards (April 2013).

 IMAC = Interim Maximum Allowable Concentration

 Bold denotes concentration above or equal to the 2L Standard or IMAC and background levels

 ND = Not Detected; NA = Not Analyzed; NS = Not Specified

 J = Detected above method detection limit but below laboratory reporting limit.

 1) Denotes sample labeled as "Well #1" in the lab report associated with the Limited Phase II ESA prepared by Falcon.

 2) Denotes sample labeled as "Well #1" in the lab report associated with the October 3, 2014 letter prepared by Falcon.

 3) Denotes sample labeled as "Well 1" in the lab report associated with the October 3, 2014 letter prepared by Falcon.

 4) Denotes filtered sample.

 5) An unfiltered sample.

 6) An unfiltered sample.

 6) An unfiltered sample.

 7) Menotes:

 Metals by EPA Method 6010C, 6020A, or 6020B

 Hexavalent Chromium by EPA Method 7196A / SM3500

 Mercury by 7470A/245.1

	LEGEND												
	SITE PROPERTY BOUNDARY												
	BOLIN CREEK												
	TOPOGRAPHIC CONTOUR ELEVATION (FT MSL)												
\$	MONITORING WELL LOCATION (FALCON ENGINEERING)												
¢	TEMPORARY MONITORING WELL LOCATION (FALCON ENGINEERING)												
٠	SOIL BORING LOCATION (FALCON ENGINEERING)												
A	SURFACE WATER SAMPLE LOCATION (FALCON ENGINEERING)												
+	ABANDONED MONITORING WELL LOCATION												
-\$-	ABANDONED TEMPORARY MONITORING WELL LOCATION (H&H)												
.	MONITORING WELL LOCATION (H&H)												
 SOIL BORING LOCATION (H&H) BACKGROUND SOIL BORING LOCATION (H&H) 													
۲	BACKGROUND SOIL BORING LOCATION (H&H)												
A	SURFACE WATER SAMPLE LOCATION (H&H)												
1	STORMWATER CULVERT												
	BOLIN CREEK TRAIL												
	EXISTING SILT FENCE												
A	CROSS-SECTION TRANSECT LINE												
NOTE:													
EXISTING MONITORING W 2016 SAMPLING LOCATIO DECEMBER 8, 9, & 20, 2010	ELLS & OCTOBER/ NOVEMBER NS SURVEYED BY CE GROUP ON 6.												
0 SC/	PPROXIMATE 100 200 ALE IN FEET												
£													
CROSS-SECTION TR	RANSECT LOCATION MAP												
828 MAKTIN LUTHE	K KING JK. BOULEVARD												

828 MARTIN LUTHER KING JR. BOULEVARD CHAPEL HILL, NORTH CAROLINA

hart hickman	2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geology
DATE: 4-22-20	REVISION NO. 0
JOB NO. TCH-009	FIGURE NO. 3

MONITORING WELL SCREENED MONITORING WELL SCREENED GROUND SURFACE IN PERCHED GROUNDWATER IN UNCONFINED AQUIFER FILL MATERIALS CCPs CCPs LOW PERMEABILITY ZONE SMALL VOLUME OF SEEPAGE FROM PERCHED WATER LEVEL IN PERCHED GROUNDWATER TO UNCONFINED AQUIFER GROUNDWATER MONITORING WELL WATÊR LEVÊL IN UNCONFINED AQUIFER MONITORING WELL PWR BEDROCK

376

-INFILTRATING PRECIPITATION

BETWEEN PERCHED GROUNDWATER AND UNCONFINED AQUIFER PROJECT TOWN OF CHAPEL HILL 828 MARTIN LUTHER KING JR. BOULEVARD CHAPEL HILL, NORTH CAROLINA hart hickman smarter environmental solutions 2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-007(p) 704-586-0373(f) License # C-1269 / #C-245 Geology DATE: 6-3-20 JOB NO. TCH-009 FIGURE NO. 5

Appendix B

Summary of Background Screening Values Calculations

Appendix B Calculation of Background Screening Values (BSVs)

In order to determine whether metals detections are related to source materials or represent naturally-occurring background levels, site-specific Background Screening Values (BSVs) were established for the site. This appendix documents the methodology used for the BSV calculations. The ProUCL software version 5.1 (ProUCL) published by the United States Environmental Protection Agency (EPA) was used to calculate statistics on the background metals sets, as described further below. A table summarizing the calculation results and the ProUCL output sheets are included in this appendix.

Soil BSVs

During historical assessment activities, a total of 16 background soil samples were collected at locations upgradient of the site and outside the area of fill material. Prior reports documented calculation of 95% upper confidence limits (UCLs) for soil, which represent the upper boundary of the mean of background concentrations. UCLs are appropriate for background metals evaluations when comparing mean concentrations in the source area to mean background concentrations. However, the risk assessment for the subject site is based on maximum source area concentrations rather mean concentrations. For maximum point source concentration comparisons, EPA guidance indicates that use of the 95% Upper Tolerance Limit (UTL) with 95% coverage is more appropriate (EPA, 2015). This UTL represents the value below which 95% of the population values are expected to fall with 95% confidence.

The calculated BSVs for soil represent the 95% UTLs for the background soil data set, which were calculated using the following steps:

- A 95% UTL was calculated for multiple potential data distributions, including normal, gamma, lognormal, and nonparametric.
- A Goodness of Fit (GoF) test was run on each dataset to determine which distribution fit the background dataset.
- A 95% UTL was selected based on which distribution best fit the dataset:
 - For datasets that potentially fit both the normal and gamma distributions, the 95%
 UTL for the distribution with the highest coefficient of correlation (R) was used.

- For datasets that only fit either the normal or gamma distribution, the 95% UTL for the distribution which the dataset fit (normal or gamma) was used.
- For datasets that did not fit normal or gamma distributions, but fit the lognormal distribution, the lognormal 95% UTL was used.
- For datasets which did not fit any distribution, the nonparametric 95% UTL was used.

Non-detects were incorporated into the calculations using the Kaplan-Meier (KM) method. For thallium, Pro-UCL was unable to calculate either a 95% UTL or a mean concentration because thallium was detected in only one of the background samples. As referenced below, EPA guidance also references use of two times the mean background concentration as an appropriate method of calculating BSVs. For thallium, a value of two times the mean concentration was calculated using half of the reporting limit as the concentration for non-detect values. Note that this value is less than the maximum concentration detected in site background samples and considered conservative.

Sediment and Surface Water Background Screening Values

During historical assessment activities, a total of four background sediment samples and five background surface water samples were collected at locations upstream of the site and outside the area of fill material. The number of samples is insufficient to calculate a 95% UTL. EPA guidance alternately recommends use of twice the site-specific background mean concentrations as BSVs (EPA, 2018a and 2018b). These values were calculated for the subject site. In some cases, two times the mean concentrations derived values that were higher than the maximum concentrations detected in the background samples. In order to provide for additional conservatism, the BSVs used for sediment and surface water represent the lower of the maximum background concentration or twice the site-specific background mean concentration.

For the purposes of calculating the site-specific background mean concentrations, duplicate sample results were averaged with their parent sample results prior to calculating the background mean concentrations. Additionally, for datasets with non-detect values, the ProUCL software was utilized to calculate the background mean concentrations following the KM method.

Table B-1 (page 1 of 1) Summary of Background Screening Values (BSVs) for Soil 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job No. TCH-009

Sample ID	aluminum	antimony	arsenic	aarium	millum	ooron	admium	calcium	rexavalent chromium	rivalent chromium	otal chromium	cobalt	oopper	LO L	ead	magnesium	manganese	mercury	molybdenum	nickel	ootassium	selenium	silver	sodium	strontium	thallium	/anadium	zinc
Site Background Data	10			-			Ŭ	Ū	-	E E		Ŭ	Ŭ				-	-	-	_					0,	-	ć	
MW-5 (0-1)	NA	< 0.30	2.1	76	0.99	NA	< 0.30	NA	0.43 J	17.57	18	27	49	NA	4.0	NA	710	< 0.023	NA	5.0	NA	< 0.59	NA	NA	25	< 0.59	190	47
MW-5 (6-7)	NA	<0.27	1.4	61	0.60	NA	<0.27	NA	0.81	38.19	39	19	18	NA	0.55	NA	940	< 0.020	NA	20	NA	< 0.53	NA	NA	29	2.3	67	75
BG-1 (0-1)	NA	<0.28	1.9	36	0.39	NA	<0.28	NA	0.87	17.13	18	6.3	16	NA	25	NA	310	0.033	NA	5.4	NA	1.6	NA	NA	15	< 0.57	34	43
BG-1 (2-3)	NA	<0.29	2.3	45	0.48	NA	<0.29	NA	< 0.12	19	19	7.3	18	NA	43	NA	440	0.280	NA	6.2	NA	1.6	NA	NA	15	< 0.57	35	49
BG-2 (0-1)	NA	<0.28	1.9	45	0.50	NA	<0.28	NA	0.84	16.16	17	7.4	18	NA	32	NA	410	0.045	NA	4.9	NA	1.1	NA	NA	14	< 0.56	35	44
BG-2 (2-3)	NA	< 0.27	1.9	52	0.53	NA	<0.27	NA	0.70	23.3	24	7.5	20	NA	26	NA	450	0.038	NA	7.9	NA	1.7	NA	NA	19	< 0.55	37	45
BG-3 (0-1)	NA	< 0.30	1.7	44	0.43	NA	<0.30	NA	0.21 J	23.3	16	7.5	15	NA	25	NA	410	0.024	NA	5.1	NA	1.4	NA	NA	46	<0.60	37	40
BG-3 (2-3)	NA	< 0.27	2.2	56	0.54	NA	<0.27	NA	0.88	21.12	22	7.5	18	NA	29	NA	410	0.040	NA	5.2	NA	1.2	NA	NA	19	< 0.53	40	46
BG-4 (0-1)	NA	<0.29	1.7	50	0.50	NA	<0.29	NA	< 0.13	19	19	9.5	16	NA	22	NA	450 BH	0.026	NA	6.0	NA	<0.59	NA	NA	16 A	< 0.59	53	50
BG-4 (2-3)	NA	< 0.33	2.0	53	0.52	NA	0.38	NA	0.50 J	22.5	23	11	23	NA	21	NA	460 BH	0.054	NA	8.5	NA	<0.65	NA	NA	19	< 0.65	51	230
BG-6 (0-1)	NA	NA	2.05 O1	64.4	0.625	NA	0.177 J	NA	5.34	39.4	44.7	14.4	26.4	NA	NA	NA	448 J6	0.022	NA	12.8	NA	0.562 J	NA	NA	17	NA	NA	NA
BG-6 (2-3)	NA	NA	2.29	66.3	0.507 J	NA	0.139 J	NA	<1.19	22.9	22.9	14.7	32.3	NA	NA	NA	467	0.032	NA	7.78	NA	0.828	NA	NA	16.8	NA	NA	NA
BG-7 (0-1)	NA	NA	1.97	52.7	0.410 J	NA	0.136 J	NA	<1.16	70.2	70.2	18.9	36.4	NA	NA	NA	813	0.025	NA	12.8	NA	0.543 J	NA	NA	22.6	NA	NA	NA
BG-7 (2-3)	NA	NA	3.08	77.9	0.430 J	NA	0.108 J	NA	<1.16	27	27	16.3	32.5	NA	NA	NA	548	0.023	NA	6.2	NA	0.502 J	NA	NA	24.3	NA	NA	NA
BG-8 (0-1)	NA	NA	1.8	52.4	0.370 J	NA	0.0951 J	NA	<1.14	24.5	24.5	21.8	62.8	NA	NA	NA	759	0.0072	NA	9.04	NA	0.485 J	NA	NA	24.4	NA	NA	NA
BG-8 (2-3)	NA	NA	1.66	47.6	0.293 J	NA	0.0918 J	NA	<1.14	21.7	21.7	23.5	60.2	NA	NA	NA	732	<0.0067	NA	7.86	NA	0.306 J	NA	NA	25.1	NA	NA	NA
North Carolina Background Bango ⁽¹⁾	7000 - >100 000	<1.0-8.8	1-18	50-1 000	ND-1.0	ND-100	1 0-10	100-280 000*	NS	NS	7-300	ND-50	2 0-20	100 - >100 000*	ND-50	50-50 000*	<2 0-7000*	0.03-0.52	<3-15*	ND	50-37 000*	<0.1-0.8	ND-5.0	<500-50 000*	ND-300	NS	15-300	11-59
Site Specific Background Range	NA	ND	14-3.08	36 - 77 9	0 203 - 0 00	NA NA	<0.27 - 0.38	NA	<0.12 - 5.34	16 16 - 70 2	16 - 70 2	63-27	15 - 62.8	NA	0.55 - 43	NA	310 - 940	<0.00=0.02	NΔ	49-20	NA	<0.53 - 1.7	NΔ	NA	14 - 46	<0.53 - 2.3	34 - 190	40 - 230
2x Mean Background	NA	ND	3 994	109.92	1 014	NA	0.28	NA	1 696	52.86	53.26	27.46	57.7	NA	45 52	NA	1094.6	0.0842	NA	16 336	NA	1 708	NA	NA	43.4	NC.	115.8	133.8
Selected 95% UTL with 95% Coverage	NA	NC	3.015	87.86	0.929	NA	0.313	NA	5,725	70.2	70.2	36.31	77.3	NA	59.11	NA	1149	0.256	NA	19.49	NA	2,503	NA	NA	43.19	NC	227	230
Recommended Site-Specific BSV ^(2,3)	NA	ND	3.015	87.86	0.929	NA	0.313	NA	5.725	70.2	70.2	36.31	77.3	NA	59.11	NA	1149	0.256	NA	19.49	NA	2.503	NA	NA	43.19	0.981	227	230

North Carolina Soil Background Range taken from Elements in North American Soils, 2nd Edition by James Dragun and Khaled Chekiri
 Recommended Site-Specific Background Screening Value (BSV) based on 95% UTL with 95% coverage for all constituents except thallium.
 Thallium did not have enough detects to run ProUCL statistics. Site-specific BSV was calculated as 2x the mean using 1/2 of the reporting limits as the values for non-detects. NA = Not Analyzed; ND = Not Detected: -= Not Calculated: UTL = Upper Tolerance Limit
 Detected above method detection limit but below laboratory reporting limit; therefore, result is an estimated concentration
 A nalyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
 The sample matrix interfered with the ability to make any accurate determination, spike value is low.
 BH = Method blank greater than one-half laboratory reporting limit, but sample concentration greater than 10x the method blank.
 A = Continuing Calibration Verification standard recovery (82%) is less than the lower control limit (90%). Result has possible low bias.

Table B-2 (page 1 of 1) Summary of Background Screening Values (BSVs) for Sediment 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job No. TCH-009

Sediment Sampling Point ID	Sample Date	antimony	arsenic	barium	beryllium	cadmium	hexavalent chromium	trivalent chromium	total chromium	cobalt	copper	lead	manganese	mercury	nickel	selenium	strontium	thallium	vanadium	zinc
SED_1 (Unstroom)	10/27/2016	< 0.32	1.2	12	<0.32	<0.32	0.24 J	22.76	23	3.9	4.2	4.0	180	<0.026	3.8	<0.64	6.9	<0.64	19	19
SED-1 (Opsileall)	4/5/2019	NA	1.95 O1	38.4 J6	0.249 J	<0.636	0.428 J	65.0	65.4 J3, J6	7.63	8.42	NA	449 J6	0.0078	7.1	0.409 J	8.4	NA	NA	NA
	10/27/2016	<0.33	2.1	20	0.48	<0.33	<0.40	36	36	7.8	8.0	7.1	330	<0.025	7.2	<0.65	11	<0.65	37	34
SED-2 (Upstroam)	10/27/2016 ⁽¹⁾	<0.32	2.5	17	0.45	<0.32	<0.40	49	49	6.5	9.1	6.7	290	<0.026	6.0	<0.63	12	<0.63	35	31
SED-2 (Opsileall)	4/5/2019	NA	2.74	29.6	0.305 J	<0.619	0.796 J	56.3	57.1	20.9	13.8	NA	811	0.0053 J	9.16	0.306 J	16.9	NA	NA	NA
	4/5/2019 ⁽¹⁾	NA	2.02	17.4	0.222 J	<0.617	0.546 J	69.5	70	7.29	6.79	NA	347	0.0051	9.92	0.237 J	8.8	NA	NA	NA
Backgroun	d Statistics																			
Site-Specific Background Range	•	ND	1.2-2.74	12-38.4	<0.32-0.48	<0.32-<0.636	0.24 J-0.796 J	22.76-69.5	23-70	3.9-20.9	4.2-13.8	4.0-7.1	180-811	<0.026 - 0.0078	3.8-9.92	0.237 J-<0.65	6.9-16.9	<0.63-<0.65	19-37	19-34
Site-Specific Mean ⁽²⁾		ND	1.958	23.1	0.308	ND	0.395	48.28	48.61	8.194	7.866	5.45	379.5	0.0065	6.76	0.34	9.913	ND	27.5	25.75
X Site-Specific Mean		ND	3.916	46.2	0.616	ND	0.79	96.56	97.22	16.388	15.732	10.9	759	0.013	13.52	0.68	19.826	ND	55	51.5
Recommended S	ite-Specific BSV ⁽³⁾	ND	2.74	38.4	0.48	ND	0.79	69.5	70	16.388	13.8	7.1	759	0.0078	9.92	0.409	16.9	ND	37	34

Notes:

1) Duplicate sample data, average of parent sample and duplicate used in calculations.

2) Site-specific mean for datasets with non-detects calculated using Kaplan-Meier Method via ProUCL version 5.1.

3) Recommended Site-Specific Background Screening Value (BSV) indicates 2x mean background concentration or maximum detected concentration, whichever is lower.

NA = Not Analyzed; ND = Not Detected

J = Detected above method detection limit but below laboratory reporting limit; therefore, result is an estimated concentration.

O1 = Analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

J3 = The associated batch QC was outside the established quality control range for precision.

J6 = The sample matrix interfered with the ability to make any accurate determination; spike value is low.

Table B-3 (page 1 of 1) Summary of Background Screening Values (BSVs) for Surface Water 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job No. TCH-009

Surface Water Background Sample Location	Sample Date	aluminum	antimony	arsenic	barium	beryllium	cadmium	calcium	hexavalent chromium	trivalent chromium	total chromium	cobalt	copper	iron	lead	magnesium	manganese	mercury	nickel	potassium	selenium	strontium	silver	sodium	thallium	vanadium	zinc	Hardness
BC-1 (Upstream)	2/5/2014	NA	NA	ND	24	NA	ND	NA	ND	ND	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	NA	NA	NA
SW 1 (Upstroam)	11/3/2016	NA	<5.0	<10	27	<2.0	<1.0	NA	<0.74	NA	<5.0	<5.0	<10	<0.2	<5.0	NA	<10	<0.2	<10	NA	<20	100	NA	NA	<10	<5.0	<30	NA
Sw-1 (Opstream)	4/5/2019	NA	NA	0.44	23.1	<0.10	<0.080	NA	NA	NA	0.53	0.16	1.2	NA	NA	NA	22.2	<0.20	0.29 J	NA	0.096 J	85.3	NA	NA	NA	NA	NA	54,000
SW/ 2 (Upstream)	11/3/2016	NA	<5.0	<10	27	<2.0	<1.0	NA	<0.74	NA	<5.0	<5.0	<10	<0.2	<5.0	NA	11	<0.2	<10	NA	<20	100	NA	NA	<10	<5.0	<30	NA
SW-2 (Opstream)	4/5/2019	NA	NA	0.42	23.2	<0.10	<0.080	NA	NA	NA	0.45 J	0.16	1.1	NA	NA	NA	21.2	<0.20	0.33 J	NA	0.11 J	85.5	NA	NA	NA	NA	NA	53,600
Background Stat Site Specific Background Ran Site Specific Mean ⁽¹⁾ 2X Site Specific Mean	i <u>stics</u> ge	NA NA NA	ND ND ND	<10 - 0.44 0.43 0.86	23.1 - 27 24.86 49.72	ND ND ND	ND ND ND	NA NA NA	ND ND ND	ND ND ND	<5.0 - 0.53 0.49 0.98	<5.0 - 0.16 1.33 ⁽³⁾ 2.66	<10 - 1.2 1.15 2.3	ND ND ND	ND ND ND	NA NA NA	<10 - 22.2 16.1 32.2	ND ND ND	<10 - 0.33 J 0.31 0.62	NA NA NA	<20 - 0.11 J 0.103 0.206	85.3 - 100 92.7 185.4	ND ND ND	NA NA NA	ND ND ND	ND ND ND	ND ND ND	53,600 - 54,000 53,800 107,600
Recommended Site-Spe	ecific BSV ⁽²⁾	NA	ND	0.44	27	ND	ND	NA	ND	ND	0.53	0.16	1.2	ND	ND	NA	22.2	ND	0.33	NA	0.11	100	ND	NA	ND	ND	ND	54,000

Notes: 1) Site specific mean for datasets with non-detects calculated using Kaplan-Meier Method via ProUCL version 5.1 2) Recommended Site-Specific Background Screening Value (BSV) indicates 2x mean background concentration or maximum detected concentration, whichever is lower. 3) The Kaplan-Meier mean could not be calculated for Cobalt, as there was only one unique detection. Therefore, the site-specific mean was calculated using 1/2 of the reporting limits as the values for non-detects. NA = Not Analyzed; ND = Not Detected; NC = Not Calculated J = Detected above method detection limit but below laboratory reporting limit; therefore, result is an estimated concentration

User Selected Options	Background Statistics for					
		or Data Sets	with Non-Detects			
Date/Time of Computation	ProUCL 5.18/17/2021 4:	10:55 PM				
From File	ProUCL Background Inputs.xls					
Full Precision	OFF					
Confidence Coefficient	95%					
Coverage	95%					
Different or Future K Observations	1					
Number of Bootstrap Operations	2000					
antimony						
		General	Statistics			
Total	Number of Observations	10	Number of Missing Observations	6		
Numbe	r of Distinct Observations	5				
	Number of Detects	0	Number of Non-Detects	10		
N	umber of Distinct Detects	0	Number of Distinct Non-Detects	5		
	Minimum Detect	N/A	Minimum Non-Detect	0.27		
	Maximum Detect	N/A	Maximum Non-Detect	0.33		
	Variance Detected	N/A	Percent Non-Detects	100%		
	Mean Detected	N/A	SD Detected	N/A		
Mean	of Detected Logged Data	N/A	SD of Detected Logged Data	N/A		
Warning: All obse	ervations are Non-Detects	s (NDs), the	refore all statistics and estimates should also be NDs!			
Specifically, sample	e mean, UCLs, UPLs, and	other statis	stics are also NDs lying below the largest detection limit!			
The Project Team may de	ecide to use alternative sit	te specific v	alues to estimate environmental parameters (e.g., EPC, BTV)).		
	The data set for	[.] variable ar	timony was not processed!			
	The data set for	[,] variable ar	timony was not processed!			
	The data set for	[.] variable ar	timony was not processed!			
arsenic	The data set for	[.] variable ar	itimony was not processed!			
arsenic	The data set for	[.] variable ar	timony was not processed!			
arsenic General Statistics	The data set for	variable ar	timony was not processed!			
arsenic General Statistics Total	The data set for	r variable ar	timony was not processed! Number of Distinct Observations	13		
arsenic General Statistics Total	The data set for Number of Observations Minimum	16 1.4	ntimony was not processed! Number of Distinct Observations First Quartile	13 1.775		
arsenic General Statistics Total	The data set for Number of Observations Minimum Second Largest	16 1.4 2.3	timony was not processed! Number of Distinct Observations First Quartile Median	13 1.775 1.935		
arsenic General Statistics Total	The data set for Number of Observations Minimum Second Largest Maximum	16 1.4 2.3 3.08	timony was not processed! Number of Distinct Observations First Quartile Median Third Quartile	13 1.775 1.935 2.125		
arsenic General Statistics Total	The data set for Number of Observations Minimum Second Largest Maximum Mean	16 1.4 2.3 3.08 1.997	timony was not processed! Number of Distinct Observations First Quartile Median Third Quartile SD	13 1.775 1.935 2.125 0.376		
arsenic General Statistics Total	The data set for Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation	16 1.4 2.3 3.08 1.997 0.188	timony was not processed! Number of Distinct Observations First Quartile Median Third Quartile SD Skewness	13 1.775 1.935 2.125 0.376 1.463		
arsenic General Statistics Total	The data set for Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data	16 1.4 2.3 3.08 1.997 0.188 0.676	timony was not processed! Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data	13 1.775 1.935 2.125 0.376 1.463 0.176		
arsenic General Statistics Total	The data set for Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data	16 1.4 2.3 3.08 1.997 0.188 0.676	Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data	13 1.775 1.935 2.125 0.376 1.463 0.176		
arsenic General Statistics Total	The data set for Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data Critical Values for rance Factor K (For UTL)	16 1.4 2.3 3.08 1.997 0.188 0.676 or Backgrou 2.524	Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data nd Threshold Values (BTVs)	13 1.775 1.935 2.125 0.376 1.463 0.176 2.443		
arsenic General Statistics Total Total Tote	The data set for Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data Critical Values for rance Factor K (For UTL)	16 1.4 2.3 3.08 1.997 0.188 0.676 Dr Backgrou 2.524	Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data nd Threshold Values (BTVs) d2max (for USL)	13 1.775 1.935 2.125 0.376 1.463 0.176 2.443		
arsenic General Statistics Total Total Total Tole	The data set for Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data Critical Values for rance Factor K (For UTL)	variable ar 16 1.4 2.3 3.08 1.997 0.188 0.676 or Backgrou 2.524 Normal C	Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data nd Threshold Values (BTVs) d2max (for USL)	13 1.775 1.935 2.125 0.376 1.463 0.176 2.443		
arsenic General Statistics Total Total Tole	The data set for Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data Critical Values for rance Factor K (For UTL) chapiro Wilk Test Statistic	variable ar 16 1.4 2.3 3.08 1.997 0.188 0.676 or Backgrou 2.524 Normal C 0.887	timony was not processed! Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data nd Threshold Values (BTVs) d2max (for USL) GOF Test Shapiro Wilk GOF Test	13 1.775 1.935 2.125 0.376 1.463 0.176 2.443		
arsenic General Statistics Total Total Total	The data set for Number of Observations Minimum Second Largest Maximum Coefficient of Variation Mean of logged Data Critical Values for rance Factor K (For UTL) hapiro Wilk Test Statistic hapiro Wilk Critical Value	variable ar 16 1.4 2.3 3.08 1.997 0.188 0.676 or Backgrou 2.524 Normal C 0.887 0.887	Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data SD of logged Data Median Comparison Stewness SD of logged Data SD of logged Data	13 1.775 1.935 2.125 0.376 1.463 0.176 2.443		
arsenic General Statistics Total	The data set for Number of Observations Minimum Second Largest Maximum Coefficient of Variation Mean of logged Data Critical Values for rance Factor K (For UTL) chapiro Wilk Test Statistic hapiro Wilk Critical Value Lilliefors Test Statistic	variable ar 16 1.4 2.3 3.08 1.997 0.188 0.676 or Backgrou 2.524 Normal C 0.887 0.887 0.887 0.147	Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data SD of logged Data ACF Test Core Test Data appear Normal at 5% Significance Level Lilliefors GOF Test	13 1.775 1.935 2.125 0.376 1.463 0.176 2.443		
arsenic General Statistics Total	The data set for Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data Critical Values for rance Factor K (For UTL) Chapiro Wilk Test Statistic hapiro Wilk Critical Value Lilliefors Test Statistic % Lilliefors Critical Value	variable ar 16 1.4 2.3 3.08 1.997 0.188 0.676 or Backgrou 2.524 Normal C 0.887 0.887 0.147 0.213	timony was not processed! Number of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data Skewness SD of logged Data And Threshold Values (BTVs) CaOF Test Cata appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level	13 1.775 1.935 2.125 0.376 1.463 0.176 2.443		

			1
Background St	atistics Ass	suming Normal Distribution	
95% LITL with 95% Coverage	2 946	90% Percentile (z)	2 479
95% UPL (t)	2 676	95% Percentile (z)	2 615
95% US	2 915	99% Percentile (z)	2 871
	2.010		2.071
	Gamma	GOF Test	
A-D Test Statistic	0 399	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	5% A-D Critical Value 0.736 Detected data appear Gamma Distributed at 5% Significance Lev		
K-S Test Statistic	0 124	Kolmonorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.215	Detected data appear Gamma Distributed at 5% Significance Level	
Detected data appear	Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	33.27	k star (bias corrected MLE)	27.08
Theta hat (MLE)	0.06	Theta star (bias corrected MLE)	0.0737
nu hat (MLE)	1065	nu star (bias corrected)	866.4
MI F Mean (bias corrected)	1 997	MLF Sd (bias corrected)	0.384
Background St	atistics Ass	uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx, Gamma UPI	2 69	90% Percentile	2 502
95% Hawkins Wixley (HW) Approx Gamma UPI	2 693	95% Percentile	2 667
95% WH Approx Gamma UTI with 95% Coverage	3 015	99% Percentile	2 996
95% HW Approx Gamma UTL with 95% Coverage	3 027		2.000
95% WH USL	2.977	95% HW USL	2,988
	2.077		2.000
	Lognorma	GOF Test	
Shapiro Wilk Test Statistic	0.948	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.887	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.125	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.213	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal	at 5% Significance Level	
F F			
Backoround Sta	tistics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	3.069	90% Percentile (z)	2.465
95% UPL (t)	2.705	95% Percentile (z)	2.628
95% USL	3.026	99% Percentile (z)	2.964
Nonparametric	Distribution	Free Background Statistics	
Data appea	ar Normal at	5% Significance Level	
Nonparametric Upp	er Limits for	r Background Threshold Values	
Order of Statistic, r	16	95% UTL with 95% Coverage	3.08
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	3.08	95% BCA Bootstrap UTL with 95% Coverage	3.08
95% UPL	3.08	90% Percentile	2.295
90% Chebyshev UPL	3.159	95% Percentile	2.495
95% Chebyshev UPL	3.686	99% Percentile	2.963
95% USL	3.08		

Therefore, one may use USL to estimate a BTV of	only when th	e data set represents a background data set free of outliers				
and consists of observa	tions collect	ed from clean unimpacted locations.				
The use of USL tends to provide a balan	ce between	false positives and false negatives provided the data				
represents a background data set and wh	nen many on	site observations need to be compared with the BTV.				
rium						
eneral Statistics		T				
Total Number of Observations	16	Number of Distinct Observations	15			
Minimum	36	First Quartile	46.95			
Second Largest	76	Median	52.5			
Maximum	77.9	I hird Quartile	61.8			
Mean	54.96	SD	11.56			
Coefficient of Variation	0.21	Skewness	0.65			
Mean of logged Data	3.986	SD of logged Data	0.20			
Critical Values fr	- Pookarou	nd Thrashold Values (PTVa)				
	2 524	d2max (for LISL)	2 44			
	2.024		2.77			
	Normal G	GOF Test				
Shapiro Wilk Test Statistic	0.942	Shapiro Wilk GOF Test				
5% Shapiro Wilk Critical Value	0.887	Data appear Normal at 5% Significance Level				
Lilliefors Test Statistic	0.192	Lilliefors GOF Test				
5% Lilliefors Critical Value	0.213	Data appear Normal at 5% Significance Level				
Data appea	ar Normal at	5% Significance Level				
Background St	tatistics Ass	uming Normal Distribution				
95% UTL with 95% Coverage	84.14	90% Percentile (z)	69.77			
95% UPL (t)	75.85	95% Percentile (z)	73.9			
95% USL	83.21	99% Percentile (z)	81.85			
	Gamma (GOF Test				
A-D Test Statistic	0.321	Anderson-Darling Gamma GOF Test				
5% A-D Critical Value	0.736	Detected data appear Gamma Distributed at 5% Significance	ce Leve			
K-S Test Statistic	0.17	Kolmogorov-Smirnov Gamma GOF Test				
5% K-S Critical Value	0.215	Detected data appear Gamma Distributed at 5% Significance	ce Leve			
Detected data appear	Gamma Dis	stributed at 5% Significance Level				
	Gamma	Statistics				
k hat (MLE)	25.01	k star (bias corrected MLE)	20.30			
Theta hat (MLE)	2 197	Theta star (bias corrected MLE)	2 69			
nu hat (MLE)	800.4	nu star (bias corrected)	651 7			
MLE Mean (bias corrected)	54.96	MLE Sd (bias corrected)	12.18			
Background St	atistics Ass	uming Gamma Distribution				
95% Wilson Hilferty (WH) Approx. Gamma UPL	77.19	90% Percentile	71.0			
	77 40	0E% Deveentile	76.4			
95% Hawkins Wixley (HW) Approx. Gamma UPL	//.4Z	95% Percentile	70.4			
95% HW Approx. Gamma UTL with 95% Coverage	88.48					
--	---------------	---	-------	--	--	--
95% WH USL	86.61	95% HW USL	87.18			
Lognormal GOF Test						
Shapiro Wilk Test Statistic	0.968	Shapiro Wilk Lognormal GOF Test				
5% Shapiro Wilk Critical Value	0.887	Data appear Lognormal at 5% Significance Level				
Lilliefors Test Statistic	0.156	Lilliefors Lognormal GOF Test				
5% Lilliefors Critical Value	0.213	Data appear Lognormal at 5% Significance Level				
Data appear	Lognormal	at 5% Significance Level				
Background Sta	itistics assu	Iming Lognormal Distribution				
95% UTL with 95% Coverage	90.65	90% Percentile (z)	70.16			
95% UPL (t)	78.19	95% Percentile (z)	75.62			
95% USL	89.16	99% Percentile (z)	87.03			
Nonparametric	Distribution	Free Background Statistics				
Data appea	ar Normal a	t 5% Significance Level				
Nonparametric Upp	er Limits fo	r Background Threshold Values				
Order of Statistic, r	16	95% UTL with 95% Coverage	77.9			
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56			
		Approximate Sample Size needed to achieve specified CC	59			
95% Percentile Bootstrap UTL with 95% Coverage	77.9	95% BCA Bootstrap UTL with 95% Coverage	77.9			
95% UPL	77.9	90% Percentile	71.15			
90% Chebyshev UPL	90.71	95% Percentile	76.48			
95% Chebyshev UPL	106.9	99% Percentile	77.62			
95% USL	77.9					
Note: The use of USL tends to yield a conservation	ve estimate	of BTV, especially when the sample size starts exceeding 20.				
Therefore, one may use USL to estimate a BTV	only when the	he data set represents a background data set free of outliers				
and consists of observa	tions collec	ted from clean unimpacted locations.				
The use of USL tends to provide a balan	ce between	false positives and false negatives provided the data				
represents a background data set and w	nen many or	nsite observations need to be compared with the BTV.				
beryllium						
General Statistics						
Total Number of Observations	16	Number of Distinct Observations	14			
Minimum	0.293	First Quartile	0.425			
Second Largest	0.625	Median	0.5			
Maximum	0.99	Third Quartile	0.533			
Mean	0.507	SD	0.154			
Coefficient of Variation	0.305	Skewness	2.049			
Mean of logged Data	-0.715	SD of logged Data	0.268			
Critical Values for	or Backgrou	und Threshold Values (BTVs)				
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443			
, , , , , , , , , , , , , , , , , , ,		· · · ·				
	Normal	GOF Test				
Shapiro Wilk Test Statistic	0.813	Shapiro Wilk GOF Test				

5% Shapiro Wilk Critical Value	0.887	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.228	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.213	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5	5% Significance Level	
Background St	atistics Ass	suming Normal Distribution	
95% UTL with 95% Coverage	0.897	90% Percentile (z)	0.705
95% UPL (t)	0.786	95% Percentile (z)	0.761
95% USL	0.885	99% Percentile (z)	0.867
	Gamma	GOF Test	
A-D Test Statistic	0.558	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.738	Detected data appear Gamma Distributed at 5% Significand	ce Level
K-S Test Statistic	0.185	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.215	Detected data appear Gamma Distributed at 5% Significand	ce Level
Detected data appear	Gamma Di	stributed at 5% Significance Level	
		Otabiation	
k bet (MLE)			11 / 5
	14.04	K star (bias corrected MLE)	11.40
I neta nat (MLE)	0.0361	I heta star (blas corrected MLE)	0.0443
nu nat (MLE)	449.4	nu star (bias corrected)	366.5
MLE Mean (bias corrected)	0.507	MLE Sd (bias corrected)	0.15
De closer et de			
			0 700
95% Wilson Hilferty (WH) Approx. Gamma OPL	0.787	90% Percentile	0.706
95% Hawkins Wixley (HW) Approx. Gamma UPL	0.788	95% Percentile	0.776
95% WH Approx. Gamma UTL with 95% Coverage	0.929	99% Percentile	0.919
95% HW Approx. Gamma UTL with 95% Coverage	0.936		0.010
95% WH USL	0.912	95% HW USL	0.918
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.933	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.887	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.169	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.213	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal	at 5% Significance Level	
Background Sta	tistics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	0.962	90% Percentile (z)	0.69
95% UPL (t)	0.794	95% Percentile (z)	0.76
95% USL	0.942	99% Percentile (z)	0.913
Nonparametric	Distribution	Free Background Statistics	
Data appear Gam	nma Distrib	uted at 5% Significance Level	
·			
Nonparametric Upp	er Limits fo	r Background Threshold Values	
Order of Statistic, r	16	95% UTL with 95% Coverage	0.99
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
•		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	0.99	95% BCA Bootstrap UTL with 95% Coverage	0.99

95% UPL	0.99	90% Percentile	0.613
90% Chebyshev UPL	0.985	95% Percentile	0.716
95% Chebyshev UPL	1.201	99% Percentile	0.935
95% USL	0.99		
Note: The use of USL tends to yield a conservati	ve estimate	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV	only when th	e data set represents a background data set free of outliers	
and consists of observa	tions collect	ed from clean unimpacted locations.	
The use of USL tends to provide a balan	ice between	false positives and false negatives provided the data	
represents a background data set and w	nen many or	site observations need to be compared with the BTV.	
cadmium			
	General	Statistics	
Total Number of Observations	16	Number of Missing Observations	0
Number of Distinct Observations	11		
Number of Detects	7	Number of Non-Detects	9
Number of Distinct Detects	7	Number of Distinct Non-Detects	4
Minimum Detect	0.0918	Minimum Non-Detect	0.27
Maximum Detect	0.38	Maximum Non-Detect	0.3
Variance Detected	0.0102	Percent Non-Detects	56.25%
Mean Detected	0.161	SD Detected	0.101
Mean of Detected Logged Data	-1.948	SD of Detected Logged Data	0.491
Critical Values for	or Backgrou	nd Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443
Norm	al GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.712	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.803	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.3	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.304	Detected Data appear Normal at 5% Significance Lev	el
Detected Data appear	Approximat	e Normal at 5% Significance Level	
Kaplan Meier (KM) Back	ground Sta	tistics Assuming Normal Distribution	
KM Mean	0.14	KM SD	0.0682
95% UTL95% Coverage	0.313	95% KM UPL (t)	0.264
90% KM Percentile (z)	0.228	95% KM Percentile (z)	0.253
99% KM Percentile (z)	0.299	95% KM USL	0.307
DL/2 Substitution Back	ground Stat	istics Assuming Normal Distribution	
Mean	0.15	SD	0.0648
95% UTL95% Coverage	0.314	95% UPL (t)	0.267
90% Percentile (z)	0.233	95% Percentile (z)	0.257
99% Percentile (z)	0.301	95% USL	0.309
DL/2 is not a recommended meth	od. DL/2 pro	ovided for comparisons and historical reasons	
Gamma COE	Tests on Dr	started Observations Only	
	0 6/6	Andereon_Darling GOE Test	
	0.040	Detected data appear Camma Distributed at 5% Significance	
5% A-D Critical Value	0.71	Delected data appear Gamma Distributed at 5% Significand	e Level

K-S T	est Statistic	0.267	Kolmogorov-Smirnov GOF	
5% K-S C	critical Value	0.313	Detected data appear Gamma Distributed at 5% Significar	ice Level
Detected	data appear	Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics or	Detected Data Only	
	k hat (MLE)	4.282	k star (bias corrected MLE)	2.542
The	ta hat (MLE)	0.0376	Theta star (bias corrected MLE)	0.0633
n	u hat (MLE)	59.94	nu star (bias corrected)	35.59
MLE Mean (bia	s corrected)	0.161		
MLE Sd (bia	s corrected)	0.101	95% Percentile of Chisquare (2kstar)	11.2
G	iamma ROS	Statistics us	sing Imputed Non-Detects	
GROS may not be used	when data so	et has > 50%	6 NDs with many tied observations at multiple DLs	
GROS may not be used when kstar o	of detects is s	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situati	ons, GROS r	method may	yield incorrect values of UCLs and BTVs	
Т	his is especi	ally true whe	n the sample size is small.	
For gamma distributed detected o	data, BTVs a	nd UCLs ma	y be computed using gamma distribution on KM estimates	
	Minimum	0.0789	Mean	0.143
	Maximum	0.38	Median	0.131
	SD	0.0718	CV	0.503
	k hat (MLE)	6.178	k star (bias corrected MLE)	5.062
The	ta hat (MLE)	0.0231	Theta star (bias corrected MLE)	0.0282
n	u hat (MLE)	197.7	nu star (bias corrected)	162
MLE Mean (bia	s corrected)	0.143	MLE Sd (bias corrected)	0.0634
95% Percentile of Chisqu	iare (2kstar)	18.48	90% Percentile	0.228
959	% Percentile	0.26	99% Percentile	0.33
The following stati	istics are co	mputed usin	g Gamma ROS Statistics on Imputed Data	
Upper Limits	using Wilson	Hilferty (W	H) and Hawkins Wixley (HW) Methods	
	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	0.335	0.339	95% Approx. Gamma UPL 0.266	0.266
95% Gamma USL	0.327	0.33		
Es	timates of G	amma Para	meters using KM Estimates	
	Mean (KM)	0.14	SD (KM)	0.0682
Va	ariance (KM)	0.00465	SE of Mean (KM)	0.0207
	k hat (KM)	4.238	k star (KM)	3.485
	nu hat (KM)	135.6	nu star (KM)	111.5
the	eta hat (KM)	0.0331	theta star (KM)	0.0403
80% gamma per	centile (KM)	0.197	90% gamma percentile (KM)	0.241
95% gamma per	centile (KM)	0.283	99% gamma percentile (KM)	0.371
The following sta	ntistics are co	omputed usi	ng gamma distribution and KM estimates	
Upper Limits	using Wilson	Hilferty (W	H) and Hawkins Wixley (HW) Methods	
	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	0.313	0.314	95% Approx. Gamma UPL 0.252	0.25
95% KM Gamma Percentile	0.239	0.237	95% Gamma USL 0.306	0.307
Lo	gnormal GO	F Test on D	etected Observations Only	
Shapiro Wilk T	est Statistic	0.851	Shapiro Wilk GOF Test	
5% Shapiro Wilk C	critical Value	0.803	Detected Data appear Lognormal at 5% Significance I	evel

Lilliefors Test Statistic	0.235	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.304	Detected Data appear Lognormal at 5% Significance Le	evel
Detected Data ap	pear Logno	rmal at 5% Significance Level	
Background Lognormal ROS Statistics	Assuming	Lognormal Distribution Using Imputed Non-Detects	
Mean in Original Scale	0.143	Mean in Log Scale	-2.02
SD in Original Scale	0.0693	SD in Log Scale	0.358
95% UTL95% Coverage	0.327	95% BCA UTL95% Coverage	0.38
95% Bootstrap (%) UTL95% Coverage	0.38	95% UPL (t)	0.253
90% Percentile (z)	0.21	95% Percentile (z)	0.239
99% Percentile (z)	0.305	95% USL	0.318
Statistics using KM estimates	on Logged	Data and Assuming Lognormal Distribution	
KM Mean of Logged Data	-2.04	95% KM UTL (Lognormal)95% Coverage	0.32
KM SD of Logged Data	0.357	95% KM UPL (Lognormal)	0.248
95% KM Percentile Lognormal (z)	0.234	95% KM USL (Lognormal)	0.311
Background DL/2 S	Statistics As	suming Lognormal Distribution	
Mean in Original Scale	0.15	Mean in Log Scale	-1.952
SD in Original Scale	0.0648	SD in Log Scale	0.312
95% UTL95% Coverage	0.312	95% UPL (t)	0.25
90% Percentile (z)	0.212	95% Percentile (z)	0.237
99% Percentile (z)	0.293	95% USL	0.304
DL/2 is not a Recommended Meth	od. DL/2 pr	ovided for comparisons and historical reasons.	
	•	· · · · · · · · · · · · · · · · · · ·	
Nonparametric	Distribution	Free Background Statistics	
Data appear to follow a [Discernible	Distribution at 5% Significance Level	
		v	
Nonparametric Upper Limits for B	rVs(no disti	nction made between detects and nondetects)	
Order of Statistic, r	16	95% UTL with95% Coverage	0.38
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
Approximate Sample Size needed to achieve specified CC	59	95% UPL	0.38
95% USI	0.38	95% KM Chebyshev UPI	0 447
	0.00		0.117
Note: The use of USL tends to yield a conservativ	ve estimate	of BTV especially when the sample size starts exceeding 20	
Therefore, one may use USL to estimate a BTV	only when th	he data set represents a background data set free of outliers	
and consists of observa	tions collect	red from clean unimpacted locations	
The use of USL tends to provide a balan	ce between	false positives and false pegatives provided the data	
represents a background data set and wh	nen many or	is the observations need to be compared with the BTV	
hexavalent chromium			
	General	Statistics	
Total Number of Observations	16	Number of Missing Observations	0
Number of Distinct Observations	14		
Number of Detects	9	Number of Non-Detects	7
Number of Distinct Detects	9	Number of Distinct Non-Detects	5
Minimum Detect	0 21	Minimum Non-Detect	0 12
Maximum Detect	5 34	Maximum Non-Detect	1 19
Variance Detected	2 493	Percent Non-Detects	43 75%
valiance Delected	2.730		-5.7570

Mean Detected	1.176	SD Detected	1.579
Mean of Detected Logged Data	-0.27	SD of Detected Logged Data	0.867
Critical Values for	or Backgrou	nd Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443
Norm	al GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.531	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.463	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5	% Significance Level	
Kaplan Meier (KM) Back	coround Sta	tistics Assuming Normal Distribution	
KM Mean	0.848	KM SD	1 195
95% UTI 95% Coverage	3 864	95% KM LIPL (t)	3 007
	2 379	95% KM Percentile (z)	2 814
90% KM Percentile (z)	3 628	95% KM USI	3 768
	0.020		0.700
DI /2 Substitution Pook	around Stati	iotics Assuming Normal Distribution	
DE/2 Substitution Back			1 225
	3 0/1	95% LIDI. (†)	3.063
	2.341	95% Percentile (7)	2.005
	2.42		2.000
DI /2 is not a recommanded math	3.099	95% USL	5.045
Commo COE	Toste on De	staated Obsaniations Only	
	1 120	Andorron Darling GOE Toot	
	0.738	Data Not Camma Distributed at 5% Significance Leve	
5 % A-D Childal Value	0.730	Kolmogorov Smirnov COE	51
	0.394	Data Not Comma Distributed at 5% Significance Love	1
5% K-5 Childar Value		Data Not Gamma Distributed at 5% Significance Leve	9
	na Distribute	a at 5% Significance Level	
	.		
	Statistics or		0.04
K hat (MLE)	1.299	k star (bias corrected MLE)	0.94
I neta hat (MLE)	0.905	I neta star (blas corrected MLE)	1.25
nu hat (MLE)	23.38	nu star (bias corrected)	16.92
MLE Mean (bias corrected)	1.176		
MLE Sd (bias corrected)	1.212	95% Percentile of Chisquare (2kstar)	5.757
Gamma ROS	Statistics us	sing Imputed Non-Detects	
GRUS may not be used when data se	et nas > 50%	NUS WITH MANY TIED ODSERVATIONS AT MULTIPLE DLS	
GRUS may not be used when kstar of detects is s	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS r	method may	yield incorrect values of UCLs and BTVs	
This is especia	ally true whe	n the sample size is small.	
For gamma distributed detected data, BTVs a	nd UCLs ma	y be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.791
Maximum	5.34	Median	0.6
SD	1.263	CV	1.598
k hat (MLE)	0.541	k star (bias corrected MLE)	0.482

Thet	a hat (MLE)	1.46	Theta star (bias corrected MLE)	1.642
n	u hat (MLE)	17.33	nu star (bias corrected)	15.41
MLE Mean (bia	s corrected)	0.791	MLE Sd (bias corrected)	1.139
95% Percentile of Chisqu	iare (2kstar)	3.75	90% Percentile	2.155
959	% Percentile	3.078	99% Percentile	5.354
The following stati	stics are con	nputed using	g Gamma ROS Statistics on Imputed Data	
Upper Limits	using Wilson	Hilferty (WI	H) and Hawkins Wixley (HW) Methods	
	WH	HW	WH OF THE	HW
95% Approx. Gamma UTL with 95% Coverage	5.5	6.852	95% Approx. Gamma UPL 3.222	3.638
95% Gamma USL	5.202	6.412		
F	timetee of Or			
ES	Moon (KM)			1 105
	vienna (KM)	0.848	SD (KM)	1.195
Va		0.502	SE OF Mean (KM)	0.322
	K nat (KIVI)	0.503		0.45
al.		1 696	nu star (KM)	1 000
000/ comme com	contilo (KM)	1.000		1.000
	centile (KW)	1.303		Z.34Z
95% gamma per		3.379	99% gamma percentile (KM)	5.950
The following etc	tiation are as	mouted us	ng gamma diatribution and KM actimates	
	using Wilcon		ny gamma distribution and KW estimates	
				нм
95% Approx Gamma LITL with 95% Coverage	3 926	/ 122	95% Approx Gamma LIPI 2 562	2 577
95% KM Gamma Percentile	2 305	2 200	95% Gamma USL 3 753	3.92
	2.000	2.255		0.02
Lo	anormal GO	F Test on D	etected Observations Only	
Shapiro Wilk T	est Statistic	0.852	Shapiro Wilk GOF Test	
5% Shapiro Wilk C	ritical Value	0.829	Detected Data appear Lognormal at 5% Significance L	evel
Lilliefors T	est Statistic	0.324	Lilliefors GOF Test	
5% Lilliefors C	ritical Value	0.274	Data Not Lognormal at 5% Significance Level	
Detected Da	ata appear A	pproximate	Lognormal at 5% Significance Level	
			<u> </u>	
Background Lognormal RC	DS Statistics	Assuming L	Lognormal Distribution Using Imputed Non-Detects	
Mean in Or	riginal Scale	0.836	Mean in Log Scale	-0.641
SD in O	riginal Scale	1.23	SD in Log Scale	0.893
95% UTL95	% Coverage	5.021	95% BCA UTL95% Coverage	5.34
95% Bootstrap (%) UTL95	% Coverage	5.34	95% UPL (t)	2.647
90% P	ercentile (z)	1.655	95% Percentile (z)	2.29
99% P	ercentile (z)	4.208	95% USL	4.672
Statistics using K	A estimates of	on Logged [Data and Assuming Lognormal Distribution	
KM Mean of L	ogged Data	-0.678	95% KM UTL (Lognormal)95% Coverage	5.725
KM SD of L	ogged Data	0.96	95% KM UPL (Lognormal)	2.877
95% KM Percentile Lo	ognormal (z)	2.462	95% KM USL (Lognormal)	5.298
Backg	round DL/2 S	Statistics As	suming Lognormal Distribution	
Mean in Or	riginal Scale	0.85	Mean in Log Scale	-0.669
SD in O	riginal Scale	1.225	SD in Log Scale	1.045
		7 159	95% UPL (t)	3.384

90% Percentile (z)	1.954	95% Percentile (z)	2.857			
99% Percentile (z)	5.823	95% USL	6.58			
DL/2 is not a Recommended Meth	od. DL/2 pr	ovided for comparisons and historical reasons.				
Nonparametric	Distribution	Free Background Statistics				
Data appear to follow a	Discernible	Distribution at 5% Significance Level				
Nonparametric Upper Limits for B	TVs(no disti	nction made between detects and nondetects)				
Order of Statistic, r	16	95% UTL with95% Coverage	5.34			
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56			
Approximate Sample Size needed to achieve specified CC	59	95% UPL	5.34			
95% USL	5.34	95% KM Chebyshev UPL	6.218			
Note: The use of USL tends to vield a conservat	ve estimate	of RTV, especially when the sample size starts exceeding 20				
Therefore, one may use USL to estimate a BTV		be data set represents a background data set free of outliers				
and consists of observe	tions collect	ted from clean unimpacted locations				
The use of USL tends to provide a balar		false positives and false pegatives provided the data				
represents a background data set and w		raise positives and raise negatives provided the data				
		Isite observations need to be compared with the BTV.				
trivelent ehremium						
Canaral Statistics						
Total Number of Observations	16	Number of Distinct Observations	1/			
Ninimum	16 16	First Quartile	14			
Second Largest	20.26	Madian	19			
Second Largest	70.2		22.7			
Maximum	70.2		20.10			
	20.43	SD	13.43			
Moon of logged Date	0.506	Skewiless	2.037			
	5.194	SD of logged Data	0.377			
Critical Values f	or Bookarou	and Threshold Values (BTVs)				
	2 524		2 1 1 3			
	2.524	dzinax (ioi USL)	2.443			
	Normal	COE Test				
Shapiro Wilk Test Statistic		Shapiro Wilk GOE Test				
5% Shaniro Wilk Critical Value	0.000	Data Not Normal at 5% Significance Level				
	0.007					
5% Lilliefors Critical Value	0.307	Data Not Normal at 5% Significance Level				
Data Not	Normal at	S Significance Level				
Rackaround 9	tatistice Act	suming Normal Distribution				
95% LITL with 95% Coverage	60 22		43.64			
	50.52	05% Dercentile (2)	48 52			
	59 24		57.67			
	55.24		07.07			
	Gamma	GOF Test				
A-D Test Statistic	1.306	Anderson-Darling Gamma GOF Test				
5% A-D Critical Value	0.741	Data Not Gamma Distributed at 5% Significance Leve	əl			
K-S Test Statistic	0.272	Kolmogorov-Smirnov Gamma GOF Test				
5% K-S Critical Value	0.216	Data Not Gamma Distributed at 5% Significance Leve	əl			

Data Not Gamn	na Distribut	ed at 5% Significance Level	
	Gamma	Statistics	
k bot (MLE)	6 207		E 001
	4 120	Thete star (bias corrected MLE)	5.052
	204.4	nu star (bias corrected)	167 /
MLE Mean (bias corrected)	204.4	MLE Sd (bias corrected)	11 56
MEE Weart (blas corrected)	20.45		11.00
Background St	atistics Ass	suming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	48.8	90% Percentile	41.9
95% Hawkins Wixley (HW) Approx. Gamma UPL	48.63	95% Percentile	47.86
95% WH Approx. Gamma UTL with 95% Coverage	61.37	99% Percentile	60.42
95% HW Approx. Gamma UTL with 95% Coverage	61.72		
95% WH USL	59.86	95% HW USL	60.12
	Lognorma	I COE Toet	
Shapiro Wilk Test Statistic	0.831	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.887	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.245	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.213	Data Not Lognormal at 5% Significance Level	
Data Not L	ognormal a	t 5% Significance Level	
		· · · · · · · · · · · · · · · · · · ·	
Background Sta	tistics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	63.2	90% Percentile (z)	39.55
95% UPL (t)	48.22	95% Percentile (z)	45.36
95% USL	61.3	99% Percentile (z)	58.66
Nonparametric	Distribution	Free Background Statistics	
Data do not fe	ollow a Disc	cernible Distribution (0.05)	
Nonparametric Upp	er Limits fo	r Background Threshold Values	
Order of Statistic, r	16	95% UTL with 95% Coverage	70.2
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	70.2	95% BCA Bootstrap UTL with 95% Coverage	70.2
95% UPL	70.2	90% Percentile	38.78
90% Chebyshev UPL	67.95	95% Percentile	47.07
95% Chebyshev UPL	86.76	99% Percentile	65.57
95% USL	70.2		
Note: The use of USL tends to yield a conservation	ve estimate	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV	only when th	ne data set represents a background data set free of outliers	
and consists of observa	tions collect	ted from clean unimpacted locations.	
The use of USL tends to provide a balan	ce between	talse positives and talse negatives provided the data	
represents a background data set and wh	nen many or	nsite observations need to be compared with the BTV.	
total chromium			
General Statistics			
Total Number of Observations	16	Number of Distinct Observations	14
	10		14

Minimum	16	First Quartile	18.75			
Second Largest	44.7	Median	22.45			
Maximum	70.2	Third Quartile	25.13			
Mean	26.63	SD	13.98			
Coefficient of Variation	0.525	Skewness	2.394			
Mean of logged Data	3.194	SD of logged Data	0.397			
Critical Values for	or Backgrou	nd Threshold Values (BTVs)				
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443			
	Normal (GOF Test				
Shapiro Wilk Test Statistic	0.689	Shapiro Wilk GOF Test				
5% Shapiro Wilk Critical Value	0.887	Data Not Normal at 5% Significance Level				
Lilliefors Test Statistic	0.31	Lilliefors GOF Test				
5% Lilliefors Critical Value	0.213	Data Not Normal at 5% Significance Level				
Data Not	Normal at 5	% Significance Level				
Background S	tatistics Ass	suming Normal Distribution				
95% UTL with 95% Coverage	61.92	90% Percentile (z)	44.55			
95% UPL (t)	51.89	95% Percentile (z)	49.63			
95% USL	60.79	99% Percentile (z)	59.16			
·						
	Gamma	GOF Test				
A-D Test Statistic	1.323	Anderson-Darling Gamma GOF Test				
5% A-D Critical Value	0.741	Data Not Gamma Distributed at 5% Significance Leve	el			
K-S Test Statistic	0.273	Kolmogorov-Smirnov Gamma GOF Test				
5% K-S Critical Value	0.216	Data Not Gamma Distributed at 5% Significance Leve	el			
Data Not Gamn	na Distribute	ed at 5% Significance Level				
	Gamma	Statistics				
k hat (MLE)	5.828	k star (bias corrected MLE)	4.777			
Theta hat (MLE)	4.568	Theta star (bias corrected MLE)	5.573			
nu hat (MLE)	186.5	nu star (bias corrected)	152.9			
MLE Mean (bias corrected)	26.63	MLE Sd (bias corrected)	12.18			
Background St	atistics Ass	uming Gamma Distribution				
95% Wilson Hilferty (WH) Approx. Gamma UPL	50.36	90% Percentile	42.94			
95% Hawkins Wixley (HW) Approx. Gamma UPL	50.22	95% Percentile	49.3			
95% WH Approx. Gamma UTL with 95% Coverage	63.88	99% Percentile	62.77			
95% HW Approx. Gamma UTL with 95% Coverage	64.37					
95% WH USL	62.25	95% HW USL	62.64			
		· [
	Lognorma	GOF Test				
Shapiro Wilk Test Statistic	0.833	Shapiro Wilk Lognormal GOF Test				
5% Shapiro Wilk Critical Value	0.887	Data Not Lognormal at 5% Significance Level				
Lilliefors Test Statistic	0.245	Lilliefors Lognormal GOF Test				
5% Lilliefors Critical Value	0.213	Data Not Lognormal at 5% Significance Level				
Data Not L	ognormal at	5% Significance Level				
	tietice seeu	Background Statistics assuming Lognormal Distribution				

95% UTL with 95% Coverage	66.4	90% Percentile (z)	40.55
95% UPL (t)	49.95	95% Percentile (z)	46.84
95% USL	64.31	99% Percentile (z)	61.39
Nonparametric I	Distribution	Free Background Statistics	
Data do not fo	ollow a Disc	ernible Distribution (0.05)	
Nonparametric Upp	er Limits fo	r Background Threshold Values	
Order of Statistic, r	16	95% UTL with 95% Coverage	70.2
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	70.2	95% BCA Bootstrap UTL with 95% Coverage	/0.2
95% UPL	/0.2	90% Percentile	41.85
90% Chebyshev UPL	69.87	95% Percentile	51.08
95% Chebyshev UPL	89.46	99% Percentile	66.38
95% USL	70.2		
Therefore, one may use USL to estimate a PTV/	e estimate	or Bitv, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV C	oniy when u	te data set represents a background data set free of outliers	
The use of USI tende to provide a below		feles registives and feles regestives provided the dete	
The use of USL tends to provide a balance	ce between	faise positives and faise negatives provided the data	
represents a background data set and wh	en many or	isite observations need to be compared with the BTV.	
ophalt			
General Statistics			
Total Number of Observations	16	Number of Distinct Observations	14
Minimum	6.3	First Quartile	7.5
Second Largest	23.5	Median	12.7
Maximum	27	Third Quartile	18.93
Mean	13.73	SD	6.721
Coefficient of Variation	0.49	Skewness	0.591
Mean of logged Data	2.506	SD of logged Data	0.494
Critical Values fo	r Backgrou	Ind Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.891	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.887	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.198	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.213	Data appear Normal at 5% Significance Level	
Data appea	r Normal a	t 5% Significance Level	
Background St	atistics As	suming Normal Distribution	
95% UTL with 95% Coverage	30.69	90% Percentile (z)	22.34
95% UPL (t)	25.87	95% Percentile (z)	24.78
95% USL	30.15	99% Percentile (z)	29.36
		1	
	Gamma	GOF Test	

A D Toot Statiatia	0.60	Anderson Darling Commo COE Test	
A-D Test Statistic	0.09	Anderson-Daning Gamma GOF Test	
5% A-D Critical Value 0.742 Detected data appear Gamma Distributed at 5% Significar		ce Level	
K-S Test Statistic	0.218	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.216	Data Not Gamma Distributed at 5% Significance Lev	el
Detected data follow App	or. Gamma	Distribution at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	4.558	k star (bias corrected MLE)	3.745
Theta hat (MLE)	3.011	Theta star (bias corrected MLE)	3.665
nu hat (MLE)	145.8	nu star (bias corrected)	119.8
MLE Mean (bias corrected)	13.73	MLE Sd (bias corrected)	7.092
Background St	atistics As	suming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	27.93	90% Percentile	23.23
95% Hawkins Wixley (HW) Approx. Gamma UPL	28.34	95% Percentile	27.08
95% WH Approx. Gamma UTL with 95% Coverage	36.31	99% Percentile	35.32
95% HW Approx. Gamma UTL with 95% Coverage	37.53		
95% WH USL	35.29	95% HW USL	36.4
	Lognorma	al GOF Test	
Shapiro Wilk Test Statistic	0.9	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.887	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.215	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.213	Data Not Lognormal at 5% Significance Level	
Data appear Approx	kimate Log	normal at 5% Significance Level	
Background Sta	tistics assu	uming Lognormal Distribution	
95% UTL with 95% Coverage	42.66	90% Percentile (z)	23.08
95% UPL (t)	29.93	95% Percentile (z)	27.62
95% USL	40.99	99% Percentile (z)	38.69
Nonparametric	Distributior	n Free Background Statistics	
Data appea	ar Normal a	t 5% Significance Level	
Nonparametric Upp	er Limits fo	or Background Threshold Values	
Order of Statistic, r	16	95% UTL with 95% Coverage	27
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	27	95% BCA Bootstrap UTL with 95% Coverage	27
95% UPL	27	90% Percentile	22.65
90% Chebyshev UPL	34.51	95% Percentile	24.38
95% Chebyshev UPL	43.92	99% Percentile	26.48
95% USL	27		
		1	
Note: The use of USL tends to yield a conservation	/e estimate	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV of	only when t	he data set represents a background data set free of outliers	
and consists of observa	tions collec	- ted from clean unimpacted locations.	
The use of USL tends to provide a balan	ce betweer	n false positives and false negatives provided the data	
represents a background data set and wh	ien many o	nsite observations need to be compared with the BTV.	
	, -	·	

copper			
General Statistics			
Total Number of Observations	16	Number of Distinct Observations	12
Minimum	15	First Quartile	18
Second Largest	60.2	Median	21.5
Maximum	62.8	Third Quartile	33.48
Mean	28.85	SD	15.78
Coefficient of Variation	0.547	Skewness	1.274
Mean of logged Data	3.244	SD of logged Data	0.482
Critical Values fo	or Backgrou	nd Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443
	Normal (GOF Test	
Shapiro Wilk Test Statistic	0.801	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.887	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.213	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.213	Data appear Normal at 5% Significance Level	
Data appear Appr	oximate No	rmal at 5% Significance Level	
Background S	tatistics Ass	suming Normal Distribution	
95% UTL with 95% Coverage	68.68	90% Percentile (z)	49.07
95% UPL (t)	57.36	95% Percentile (z)	54.81
95% USL	67.41	99% Percentile (z)	65.56
	Gamma	GOF Test	
A-D Test Statistic	0.943	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.742	Data Not Gamma Distributed at 5% Significance Lev	el
K-S Test Statistic	0.212	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.216	Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected data follow App	or. Gamma i	Distribution at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	4.383	k star (bias corrected MLE)	3.603
Theta hat (MLE)	6.582	Theta star (bias corrected MLE)	8.007
nu hat (MLE)	140.3	nu star (bias corrected)	115.3
MLE Mean (bias corrected)	28.85	MLE Sd (bias corrected)	15.2
Background St	atistics Ass	uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx Gamma UPI	59 22	90% Percentile	49.23
95% Hawkins Wixley (HW) Approx Gamma UP	59.64	95% Percentile	57.52
95% WH Approx Gamma UTI with 95% Coverage	77.3	99% Percentile	75.31
95% HW Approx. Gamma UTI with 95% Coverage	79.13		
95% WH USL	75.1	95% HW USL	76.72
	1.0000		
	0.007		
5% Snapiro Wilk Critical Value	0.887	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.206	Lilliefors Lognormal GOF Test	

400 Data appear Lognormal at 5% Significance Level

5% Lilliefors Critical Value	0.213	Data appear Lognormal at 5% Significance Level	
Data appear Approx	imate Logr	normal at 5% Significance Level	
Background Stat	tistics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	86.59	90% Percentile (z)	47.55
95% UPL (t)	61.27	95% Percentile (z)	56.66
95% USL	83.28	99% Percentile (z)	78.72
Nonparametric I	Distribution	Free Background Statistics	
Data appear Appro	oximate No	rmal at 5% Significance Level	
		-	
Nonparametric Uppe	er Limits fo	r Background Threshold Values	
Order of Statistic, r	16	95% UTL with 95% Coverage	62.8
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	62.8	95% BCA Bootstrap UTL with 95% Coverage	62.8
95% UPL	62.8	90% Percentile	54.6
90% Chebyshev UPL	77.65	95% Percentile	60.85
95% Chebyshev UPL	99.75	99% Percentile	62.41
95% USI	62.8		
	02.0		
Note: The use of USL tends to yield a conservativ	e estimate	of BTV especially when the sample size starts exceeding 20	
Therefore one may use USI to estimate a BTV of	nly when th	be data set represents a background data set, free of outliers	
and consists of observat	tions collect	ted from clean unimpacted locations	
The use of USL tends to provide a balance	ce between	false positives and false pegatives provided the data	
represents a background data set and wh	en many or	neite observations need to be compared with the BTV	
lead			
General Statistics			
Total Number of Observations	10	Number of Distinct Observations	9
		Number of Missing Observations	6
Minimum	0.55	First Quartile	21.25
Second Largest	32	Median	25
Maximum	/3	Third Quartile	28 25
Maan	22.76		12 /0
Coofficient of Veriation	0.540	Skowpoor	0.592
Mean of logged Data	0.549	Shewiless SD of logged Data	1 229
Mean of logged Data	2.721		1.520
Critical Values fo	r Bookarou	and Threshold Values (PTVa)	
	2 011		2 176
	2.911		2.170
	Normal		
Objective MRII. Televice et al.			
	0.912		
5% Snapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level	
	0.244		
5% Lilliefors Critical Value	0.262	Data appear Ivormal at 5% Significance Level	
Data appea	ir inormal at	ເວ% ວເງກາກcance Levei	
Background St	atistics Ass	suming Normal Distribution	

95% UTL with 95% Coverage	59.11	90% Percentile (z)	38.76
95% UPL (t)	46.76	95% Percentile (z)	43.29
95% USL	49.93	99% Percentile (z)	51.8
1			
	Gamma	GOF Test	
A-D Test Statistic	1.256	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.741	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.377	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.272	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gamm	na Distribut	ed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	1.383	k star (bias corrected MLE)	1.034
Theta hat (MLE)	16.46	Theta star (bias corrected MLE)	22
nu hat (MLE)	27.65	nu star (bias corrected)	20.69
MLE Mean (bias corrected)	22.76	MLE Sd (bias corrected)	22.37
Background Sta	atistics Ass	uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	74.91	90% Percentile	51.96
95% Hawkins Wixley (HW) Approx. Gamma UPL	86.38	95% Percentile	67.36
95% WH Approx. Gamma UTL with 95% Coverage	126.4	99% Percentile	103
95% HW Approx. Gamma UTL with 95% Coverage	160.3		
95% WH USL	86.44	95% HW USL	102.2
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.676	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.396	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.262	Data Not Lognormal at 5% Significance Level	
Data Not Lo	ognormal at	t 5% Significance Level	
Background Stat	tistics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	726.1	90% Percentile (z)	83.39
95% UPL (t)	195.4	95% Percentile (z)	135.1
95% USL	273.6	99% Percentile (z)	334
Nonparametric I	Distribution	Free Background Statistics	
Data appea	r Normal a	t 5% Significance Level	
Nonparametric Upp	er Limits fo	r Background Threshold Values	
Order of Statistic, r	10	95% UTL with 95% Coverage	43
Approx, f used to compute achieved CC	0.526	Approximate Actual Confidence Coefficient achieved by UTL	0.401
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	43	95% BCA Bootstrap UTL with 95% Coverage	43
95% UPL	43	90% Percentile	33.1
90% Chebyshev UPL	62.05	95% Percentile	38.05
95% Chebyshev UPL	79.84	99% Percentile	42.01
95% USL	43		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.

Therefore, one may use USL to estimate a BTV	only when th	ne data set represents a background data set free of outliers	
and consists of observa	tions collect	ted from clean unimpacted locations.	
I he use of USL tends to provide a balan	ice between	talse positives and false negatives provided the data	
represents a background data set and wi	nen many or	nsite observations need to be compared with the BTV.	
manyanese			
General Statistics			
Total Number of Observations	16	Number of Distinct Observations	13
Minimum	310	First Quartile	432.5
Second Largest	813	Median	455
Maximum	940	Third Quartile	715 5
Mean	547.3	SD	182.1
Coefficient of Variation	0.333	Skewness	0.921
Mean of logged Data	6.257	SD of logged Data	0.313
Critical Values for	or Backgrou	ind Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443
, , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,	
	Normal (GOF Test	
Shapiro Wilk Test Statistic	0.854	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.887	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.295	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.213	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5	5% Significance Level	
Background S	tatistics Ase	suming Normal Distribution	
95% UTL with 95% Coverage	1007	90% Percentile (z)	780.7
95% UPL (t)	876.4	95% Percentile (z)	846.9
95% USL	992.3	99% Percentile (z)	971
	Gamma	GOF Test	
A-D Test Statistic	1.03	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.739	Data Not Gamma Distributed at 5% Significance Lev	el
K-S Test Statistic	0.281	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.215	Data Not Gamma Distributed at 5% Significance Lev	el
Data Not Gamr	na Distribut	ed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	10.67	k star (bias corrected MLE)	8.708
Theta hat (MLE)	51.31	Theta star (bias corrected MLE)	62.85
nu hat (MLE)	341.3	nu star (bias corrected)	278.7
MLE Mean (bias corrected)	547.3	MLE Sd (bias corrected)	185.5
Background St	tatistics Ass	uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	899.2	90% Percentile	794.4
95% Hawkins Wixley (HW) Approx. Gamma UPL	903.3	95% Percentile	883.7
95% WH Approx. Gamma UTL with 95% Coverage	1083	99% Percentile	1068
95% HW Approx. Gamma UTL with 95% Coverage	1097		

95% WH USL

1061

95% HW USL 1074

	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.896	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.887	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.264	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.213	Data Not Lognormal at 5% Significance Level	
Data appear Approx	kimate Logr	normal at 5% Significance Level	
Background Sta	tistics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	1149	90% Percentile (z)	779
95% UPL (t)	918	95% Percentile (z)	872.6
95% USL	1120	99% Percentile (z)	1080
Nonparametric	Distribution	Free Background Statistics	
Data appear Approx	cimate Logr	normal at 5% Significance Level	
	•	•	
Nonparametric Upp	er Limits fo	r Background Threshold Values	
Order of Statistic, r	16	95% UTL with 95% Coverage	940
Approx. f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56
FF - 7		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	940	95% BCA Bootstrap UTL with 95% Coverage	940
95% UPI	940	90% Percentile	786
90% Chebyshev UPI	1110	95% Percentile	844.8
95% Chebyshev UPL	1366	99% Percentile	921
95% USI	940		021
Note: The use of USL tends to yield a conservativ	e estimate	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV	only when th	ne data set represents a background data set free of outliers	
and consists of observa	tions collect	ed from clean unimpacted locations.	
The use of USL tends to provide a balan	ce between	false positives and false negatives provided the data	
represents a background data set and wh	en many or	nsite observations need to be compared with the BTV.	
······································			
mercury			
	General	Statistics	
Total Number of Observations	16	Number of Missing Observations	0
Number of Distinct Observations	15		-
Number of Detects	13	Number of Non-Detects	3
Number of Distinct Detects	13	Number of Distinct Non-Detects	3
Minimum Detect	0 0072	Minimum Non-Detect	0,0067
Maximum Detect	0.0072	Maximum Non-Detect	0.0007
Variance Detected	0.20	Percent Non-Detects	18 75%
Moon Detected	0.00492		0.75%
Mean of Detected Locard Data	-3 102	SD of Detected Logged Date	0.0701
	-3.402	SD 01 Delected Logged Data	0.807
Critical Values &	r Backareu	Ind Threshold Values (RTVs)	
	2 504		2 / / 2
	2.024	uzinax (IOFUSL)	2.440
k la una		t en Detecte Only	
Shapiro Wilk Test Statistic	0.471	Shapiro Wilk GOF Test	

5% Shapiro Wilk Critical Value	0.866	Data Not Normal at 5% Significance Level			
Lilliefors Test Statistic	0.4	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.234	Data Not Normal at 5% Significance Level			
Data Not	Normal at 5	% Significance Level			
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution					
KM Mean	0.0421	KM SD	0.0629		
95% UTL95% Coverage	0.201	95% KM UPL (t)	0.156		
90% KM Percentile (z)	0.123	95% KM Percentile (z)	0.146		
99% KM Percentile (z)	0.188	95% KM USL	0.196		
DL/2 Substitution Back	ground Stati	stics Assuming Normal Distribution			
Mean	0.0421	SD	0.065		
95% UTL95% Coverage	0.206	95% UPL (t)	0.16		
90% Percentile (z)	0.125	95% Percentile (z)	0.149		
99% Percentile (z)	0.193	95% USL	0.201		
DL/2 is not a recommended metho	od. DL/2 pro	ovided for comparisons and historical reasons			
	-	· · · · · · · · · · · · · · · · · · ·			
Gamma GOF	Tests on De	etected Observations Only			
A-D Test Statistic	1.525	Anderson-Darling GOF Test			
5% A-D Critical Value	0.752	Data Not Gamma Distributed at 5% Significance Lev	el		
K-S Test Statistic	0.279	Kolmogorov-Smirnov GOF			
5% K-S Critical Value	0.241	Data Not Gamma Distributed at 5% Significance Lev	el		
Data Not Gamn	na Distribute	ed at 5% Significance Level			
Gamma	Statistics on	Detected Data Only			
k hat (MLE)	1.377	k star (bias corrected MLE)	1.111		
Theta hat (MLE)	0.0363	Theta star (bias corrected MLE)	0.045		
nu hat (MLE)	35.81	nu star (bias corrected)	28.88		
MLE Mean (bias corrected)	0.0499				
MLE Sd (bias corrected)	0.0474	95% Percentile of Chisquare (2kstar)	6.414		
Gamma ROS	Statistics us	sing Imputed Non-Detects			
GROS may not be used when data se	et has > 50%	NDs with many tied observations at multiple DLs			
GROS may not be used when kstar of detects is s	mall such a	s <1.0, especially when the sample size is small (e.g., <15-20)			
For such situations, GROS n	nethod may	yield incorrect values of UCLs and BTVs			
This is especia	ally true whe	n the sample size is small.			
For gamma distributed detected data, BTVs a	nd UCLs ma	y be computed using gamma distribution on KM estimates			
Minimum	0.0072	Mean	0.0425		
Maximum	0.28	Median	0.0255		
SD	0.0648	CV	1.526		
k hat (MLE)	1.207	k star (bias corrected MLE)	1.023		
Theta hat (MLE)	0.0352	Theta star (bias corrected MLE)	0.0415		
nu hat (MLE)	38.64	nu star (bias corrected)	32.73		
MLE Mean (bias corrected)	0.0425	MLE Sd (bias corrected)	0.042		
95% Percentile of Chisquare (2kstar)	6.079	90% Percentile	0.0972		
95% Percentile	0.126	99% Percentile	0.193		
The following statistics are cor	nputed usin	g Gamma ROS Statistics on Imputed Data			
Upper Limits using Wilson	Hilferty (W	- H) and Hawkins Wixley (HW) Methods			
· · · · · · · · · · · · · · · · · · ·	HW	WH	HW		

95% Approx. Gamma UTL with 95% Coverage	0.195	0.2	95% Approx. Gamma UPL 0.128	0.126
95% Gamma USL	0.187	0.19		
Est	timates of Ga	amma Para	meters using KM Estimates	
	Mean (KM)	0.0421	SD (KM)	0.0629
Va	riance (KM)	0.00396	SE of Mean (KM)	0.0164
	k hat (KM)	0.448	k star (KM)	0.405
	nu hat (KM)	14.33	nu star (KM)	12.97
the	eta hat (KM)	0.094	theta star (KM)	0.104
80% gamma per	centile (KM)	0.068	90% gamma percentile (KM)	0.119
95% gamma per	centile (KM)	0.174	99% gamma percentile (KM)	0.313
The following sta	itistics are co	omputed usi	ing gamma distribution and KM estimates	
Upper Limits u	using Wilson	Hilferty (W	H) and Hawkins Wixley (HW) Methods	
	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	0.193	0.2	95% Approx. Gamma UPL 0.126	0.125
95% KM Gamma Percentile	0.113	0.112	95% Gamma USL 0.185	0.19
	gnormal GO	F lest on D		
	est Statistic	0.844		
5% Shapiro Wilk C	ritical value	0.866	Lilliefere COE Test	
	est Statistic	0.227	Lillefors GOF Test	aval
5% Lilielors C			Detected Data appear Lognormal at 5% Significance I	evei
	ata appear A	pproximate		
Background Lognormal BC	OS Statistics	Assumina	ognormal Distribution Using Imputed Non-Detects	
Mean in Or	riginal Scale	0.0419	Mean in Log Scale	-3 691
SD in Or	riginal Scale	0.065	SD in Log Scale	0.958
95% UTL95	% Coverage	0.28	95% BCA UTL95% Coverage	0.28
95% Bootstrap (%) UTL959	% Coverage	0.28	95% UPL (t)	0.141
90% P	ercentile (z)	0.0852	95% Percentile (z)	0.121
99% P	ercentile (z)	0.232	2 95% USL	
	.,			
Statistics using KM	A estimates	on Logged I	Data and Assuming Lognormal Distribution	
KM Mean of L	ogged Data	-3.68	95% KM UTL (Lognormal)95% Coverage	0.256
KM SD of L	ogged Data	0.918	95% KM UPL (Lognormal)	0.133
95% KM Percentile Lo	ognormal (z)	0.114	95% KM USL (Lognormal)	0.238
Backg	round DL/2 S	Statistics As	suming Lognormal Distribution	
Mean in Or	riginal Scale	0.0421	Mean in Log Scale	-3.687
SD in Or	riginal Scale	0.065	SD in Log Scale	0.979
95% UTL959	% Coverage	0.296	95% UPL (t)	0.147
90% P	ercentile (z)	0.0878	95% Percentile (z)	0.125
99% P	ercentile (z)	0.244	95% USL	0.274
DL/2 is not a Recomm	ended Meth	od. DL/2 pro	ovided for comparisons and historical reasons.	
Nor	nparametric	Distribution	Free Background Statistics	
Data appear	r to follow a l	Discernible	Distribution at 5% Significance Level	
Nonparametric Upper	Limits for B	ſVs(no disti	nction made between detects and nondetects)	

Order of Statistic, r	16	95% UTL with95% Coverage	0.28		
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56		
Approximate Sample Size needed to achieve specified CC	59	95% UPL	0.28		
95% USL	0.28	95% KM Chebyshev UPL	0.325		
Note: The use of USL tends to yield a conservati	ve estimate	of BTV, especially when the sample size starts exceeding 20.			
Therefore, one may use USL to estimate a BTV	Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers				
and consists of observa	ations collect	ed from clean unimpacted locations.			
The use of USL tends to provide a balan	nce between	false positives and false negatives provided the data			
represents a background data set and w	hen many or	site observations need to be compared with the BTV.			
nickel					
General Statistics					
Total Number of Observations	16	Number of Distinct Observations	14		
Minimum	4.9	First Quartile	5.35		
Second Largest	12.8	Median	6.99		
Maximum	20	Third Quartile	8.635		
Mean	8.168	SD	4.026		
Coefficient of Variation	0.493	Skewness	1.97		
Mean of logged Data	2.014	SD of logged Data	0.404		
Critical Values for	or Backgrou	nd Threshold Values (BTVs)			
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443		
	Normal C	GOF Test			
Shapiro Wilk Test Statistic	0.767	Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value	0.887	Data Not Normal at 5% Significance Level			
Lilliefors Test Statistic	0.227	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.213	Data Not Normal at 5% Significance Level			
Data Not	Normal at 5	5% Significance Level			
Background S	tatistics Ass	suming Normal Distribution			
95% UTL with 95% Coverage	18.33	90% Percentile (z)	13.33		
95% UPL (t)	15.44	95% Percentile (z)	14.79		
95% USL	18	99% Percentile (z)	17.53		
	0				
	Gamma				
A-D Test Statistic	0.845	Anderson-Daning Gamma GOF Test	-l		
5% A-D Chucal Value	0.741	Kolmogorov Smirnov Commo COE Toot	ei		
5% K S Critical Value	0.192	Rolmogorov-Smirnov Gamma GOF Test			
5% K-5 Childal Value	0.210	Detected data appear Gamma Distributed at 5% Significant			
	pr. Gamma				
	Gomme	Statistics			
	5 0/0	Later /bios corrected MLE	1 976		
K Hall (MLE) Theta bat (MLE)	1 272	Theta star (bias corrected MLE)	1 675		
nu bat (MLE)	190 /		156		
		fill char things i thinks the	1.0.		
MLF Mean (hias corrected)	8 168	MI F Sd (bias corrected)	3 699		

Background St	Background Statistics Assuming Gamma Distribution				
95% Wilson Hilferty (WH) Approx. Gamma UPL	15.39	90% Percentile	13.12		
95% Hawkins Wixley (HW) Approx. Gamma UPL	15.41	95% Percentile	15.05		
95% WH Approx. Gamma UTL with 95% Coverage	19.49	99% Percentile	19.12		
95% HW Approx. Gamma UTL with 95% Coverage	19.74				
95% WH USL	18.99	95% HW USL	19.22		
	Lognorma	I GOF Test			
Shapiro Wilk Test Statistic	0.884	Shapiro Wilk Lognormal GOF Test			
5% Shapiro Wilk Critical Value	0.887	Data Not Lognormal at 5% Significance Level			
Lilliefors Test Statistic	0.18	Lilliefors Lognormal GOF Test			
5% Lilliefors Critical Value	0.213	Data appear Lognormal at 5% Significance Level			
Data appear Approx	ximate Logr	normal at 5% Significance Level			
Background Sta	tistics assu	ming Lognormal Distribution			
95% UTL with 95% Coverage	20.77	90% Percentile (z)	12.57		
95% UPL (t)	15.55	95% Percentile (z)	14.56		
95% USL	20.11	99% Percentile (z)	19.18		
Nonparametric	Distribution	Free Background Statistics			
Data appear Approxima	te Gamma I	Distribution at 5% Significance Level			
Nonparametric Upp	er Limits fo	r Background Threshold Values			
Order of Statistic, r	16	95% UTL with 95% Coverage	20		
Approx. f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56		
		Approximate Sample Size needed to achieve specified CC	59		
95% Percentile Bootstrap UTL with 95% Coverage	20	95% BCA Bootstrap UTL with 95% Coverage	20		
95% UPL	20	90% Percentile	12.8		
90% Chebyshey UPL	20.62	95% Percentile	14.6		
95% Chebyshev UPL	26.26	99% Percentile	18.92		
95% USL	20				
	-				
Note: The use of USL tends to vield a conservativ	ve estimate	of BTV, especially when the sample size starts exceeding 20.			
Therefore, one may use USL to estimate a BTV	only when th	he data set represents a background data set free of outliers			
and consists of observa	tions collect	ed from clean unimpacted locations.			
The use of USL tends to provide a balan	ce between	false positives and false negatives provided the data			
represents a background data set and whether the set and whether t	nen many or	nsite observations need to be compared with the BTV.			
		· · · · · · · · · · · · · · · · · · ·			
selenium					
	General	Statistics			
Total Number of Observations	16	Number of Missing Observations	0		
Number of Distinct Observations	14				
Number of Detects	12	Number of Non-Detects	4		
Number of Distinct Detects	11	Number of Distinct Non-Detects	3		
Minimum Detect	0.306	Minimum Non-Detect	0.53		
Maximum Detect	1.7	Maximum Non-Detect	0.65		
Variance Detected	0.258	Percent Non-Detects	25%		
Mean Detected	0.986	SD Detected	0.508		
Mean of Detected Loaded Data	-0.157	SD of Detected Logoed Data	0.582		

	- Dookarou	nd Thrashold Values (PT) (s)	
	2 524		2 1 1 3
	2.324		2.443
Norm	al GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.895	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Normal at 5% Significance Lev	el
Lilliefors Test Statistic	0.214	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.243	Detected Data appear Normal at 5% Significance Lev	el
Detected Data a	ppear Norm	nal at 5% Significance Level	
Kaplan Meier (KM) Back	ground Stat	tistics Assuming Normal Distribution	
KM Mean	0.854	KM SD	0.481
95% UTL95% Coverage	2.068	95% KM UPL (t)	1.724
90% KM Percentile (z)	1.471	95% KM Percentile (z)	1.646
99% KM Percentile (z)	1.973	95% KM USL	2.03
DL/2 Substitution Back	ground Stati	stics Assuming Normal Distribution	0.524
	0.813	SD 05% LIDL (1)	1 770
	2.10	95% UPL (I) 05% Percentile (7)	1.778
	2 055	95% Feicentile (2)	2 117
DL/2 is not a recommended meth	od. DL/2 pro	wided for comparisons and historical reasons	2.117
Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	0.53	Anderson-Darling GOF Test	
5% A-D Critical Value	0.737	Detected data appear Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.205	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.247	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data appear	Gamma Dis	stributed at 5% Significance Level	
	0 , ,, ,,		
	Statistics on	Detected Data Only	
K nat (MLE)	3.662	k star (bias corrected MLE)	2.802
neta nat (MLE)	0.209	nu star (bias corrected MLE)	67.25
MI E Mean (bias corrected)	07.00		07.25
MLE Mean (bias corrected)	0.589	95% Percentile of Chisquare (2kstar)	12
	0.000		12
Gamma ROS	Statistics us	sing Imputed Non-Detects	
GROS may not be used when data se	et has > 50%	NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is s	mall such as	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS n	nethod may	yield incorrect values of UCLs and BTVs	
This is especia	ally true whe	n the sample size is small.	
For gamma distributed detected data, BTVs a	nd UCLs ma	y be computed using gamma distribution on KM estimates	
Minimum	0.306	Mean	0.859
Maximum	1.7	Median	0.594
SD	0.493	CV	0.574
k hat (MLE)	3.391	k star (bias corrected MLE)	2.797
Theta hat (MLE)	0.253	Theta star (bias corrected MLE)	0.307

nu hat (MLE)

108.5

nu star (bias corrected)

89.5

MLE Mean (bias corrected)		0.859	MLE Sd (bias corrected	l) 0.514
95% Percentile of Chisqu	are (2kstar)	11.98	90% Percenti	e 1.548
95%	6 Percentile	1.84	99% Percentil	e 2.476
The following statis	stics are cor	nputed usin	ng Gamma ROS Statistics on Imputed Data	
Upper Limits u	ising Wilson	Hilferty (W	H) and Hawkins Wixley (HW) Methods	
	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	2.562	2.667	95% Approx. Gamma UPL 1.909	1.943
95% Gamma USL	2.482	2.577		
Fet	imates of G	amma Para	meters using KM Estimates	
	Mean (KM)	0 854	SD (KN	0 481
Va	riance (KM)	0.231	SE of Mean (KN	0.127
	k hat (KM)	3.156	k star (KN) 2.606
	nu hat (KM)	101	nu star (KN) 83.39
the	ta hat (KM)	0.271	theta star (KN	l) 0.328
80% gamma pero	centile (KM)	1.24	90% gamma percentile (KM	l) 1.564
95% gamma perc	centile (KM)	1.869	99% gamma percentile (KM	l) 2.534
	1		1	-1
The following sta	tistics are co	omputed us	ing gamma distribution and KM estimates	
Upper Limits u	ising Wilson	Hilferty (W	H) and Hawkins Wixley (HW) Methods	
	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	2.503	2.604	95% Approx. Gamma UPL 1.871	1.903
95% KM Gamma Percentile	1.745	1.766	95% Gamma USL 2.426	2.516
		E Test on D	Detected Observations Only	
Log Shanira Wilk T	gnormal GO		Shapiro Wilk GOE Tost	
Shapiro Wilk Critical Value 0.900 Shapiro Wilk GOF Test				
Lilliefors Test Statistic 0 181		Lilliefors GOF Test		
5% Lilliefors Critical Value		0.243	Detected Data appear Lognormal at 5% Significance	Level
Detec	ted Data ap	pear Logno	rmal at 5% Significance Level	
	-			
Background Lognormal RC	S Statistics	Assuming	Lognormal Distribution Using Imputed Non-Detects	
Mean in Or	iginal Scale	0.859	Mean in Log Sca	e -0.305
SD in Or	iginal Scale	0.492	SD in Log Sca	e 0.569
95% UTL95%	6 Coverage	3.101	95% BCA UTL95% Coverag	e 1.7
95% Bootstrap (%) UTL95%	6 Coverage	1.7	95% UPL (t) 2.062
90% Pe	ercentile (z)	1.529	95% Percentile (:	:) 1.88
99% Pe	ercentile (z)	2.771	95% US	L 2.962
Otestistiss and a log	l ootimeter	on Longe d'	Date and Assuming Longer Platitudes	
Statistics using KN	a estimates			0 3 052
	ogged Data	0.517	95% KM LIDL (Lognorma 95% KM LIDL (Lognorma	0 000
95% KM Percentile Lo	anormal (7)	1 853	95% KM USL (Lognorma) 2.002
	3.101 (Z)	1.000		2.010
Backar	ound DL/2 S	Statistics As	ssuming Lognormal Distribution	
Mean in Or	iginal Scale	0.813	Mean in Log Sca	e -0.424
SD in Or	iginal Scale	0.534	SD in Log Sca	e 0.691
95% UTL95%	6 Coverage	3.74	95% UPL (t) 2.28
90% Pe	ercentile (z)	1.586	95% Percentile (2.038
99% Pe	ercentile (z)	3.263	95% US	L 3.538

110	
2 provided for comparisons	-

DL/2 is not a Recommended Metho	od. DL/2 pro	ovided for comparisons and historical reasons.								
Nonparametric I	Distribution	Free Background Statistics								
Data appear to follow a D	Discernible I	Distribution at 5% Significance Level								
Nonparametric Upper Limits for BT	Vs(no disti	nction made between detects and nondetects)								
Order of Statistic, r	16	95% UTL with95% Coverage	1.7							
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56							
Approximate Sample Size needed to achieve specified CC	re specified CC 59 95% UPL 1.7									
95% USL 1.7 95% KM Chebyshev UPL 3.016										
Note: The use of USL tends to yield a conservativ	ve estimate	of BTV, especially when the sample size starts exceeding 20.								
Therefore, one may use USL to estimate a BTV of	only when th	e data set represents a background data set free of outliers								
and consists of observat	tions collect	ed from clean unimpacted locations.								
The use of USL tends to provide a balance	ce between	false positives and false negatives provided the data								
represents a background data set and wh	ien many on	site observations need to be compared with the BTV.								
strontium										
General Statistics										
Total Number of Observations	16	Number of Distinct Observations	13							
Minimum	14	First Quartile	16.6							
Second Largest	29	Median	19							
Maximum	46	Third Quartile	24.55							
Mean	21.7	SD	7.877							
Coefficient of Variation	0.363	Skewness	2.078							
Mean of logged Data	3.029	SD of logged Data	0.307							
Critical Values for	or Backgrou	nd Threshold Values (BTVs)								
Tolerance Factor K (For UTL)	2.524	d2max (for USL)	2.443							
1		<u> </u>								
	Normal C	GOF Test								
Shapiro Wilk Test Statistic	0.791	Shapiro Wilk GOF Test								
5% Shapiro Wilk Critical Value	0.887	Data Not Normal at 5% Significance Level								
Lilliefors Test Statistic	0.208	Lilliefors GOF Test								
5% Lilliefors Critical Value	0.213	Data appear Normal at 5% Significance Level								
Data appear Appr	oximate No	rmal at 5% Significance Level								
		-								
Background St	atistics Ass	uming Normal Distribution								
95% UTL with 95% Coverage	41.58	90% Percentile (z)	31.79							
95% UPL (t)	35.93	95% Percentile (z)	34.66							
95% USL	40.94	99% Percentile (z)	40.02							
1		II								
	Gamma	GOF Test								
A-D Test Statistic	0.604	Anderson-Darling Gamma GOF Test								
5% A-D Critical Value	0.739	Detected data appear Gamma Distributed at 5% Significance	e Level							
K-S Test Statistic	0.186	Kolmogorov-Smirnov Gamma GOF Test								
5% K-S Critical Value	0.215	Detected data appear Gamma Distributed at 5% Significance	e Level							
Detected data appear	Gamma Dis	stributed at 5% Significance Level								

Г

Gamma Statistics											
k hat (MLE)	10.41	k star (bias corrected MLE)	8.501								
Theta hat (MLE)	2.084	Theta star (bias corrected MLE)	2.553								
nu hat (MLE)	333.2	nu star (bias corrected)	272								
MLE Mean (bias corrected)	21.7	MLE Sd (bias corrected)	7.443								
Background St	tatistics Ass	uming Gamma Distribution									
95% Wilson Hilferty (WH) Approx. Gamma UPL	35.79	90% Percentile	31.62								
95% Hawkins Wixley (HW) Approx. Gamma UPL	35.82	95% Percentile	35.21								
95% WH Approx. Gamma UTL with 95% Coverage	43.19	99% Percentile	42.64								
95% HW Approx. Gamma UTL with 95% Coverage	43.54										
95% WH USL	42.31	95% HW USL	42.61								
Lognormal GOF Test											
Shapiro Wilk Test Statistic 0.91 Shapiro Wilk Lognormal GOF Test											
5% Shapiro Wilk Critical Value	0.887	Data appear Lognormal at 5% Significance Level									
Lilliefors Test Statistic	0.17	Lilliefors Lognormal GOF Test									
5% Lilliefors Critical Value	0.213	Data appear Lognormal at 5% Significance Level									
Data appear	Lognormal	at 5% Significance Level									
Background Sta	tistics assu	ming Lognormal Distribution									
95% UTL with 95% Coverage	44.88	90% Percentile (z)	30.64								
95% UPL (t)	36	95% Percentile (z)	34.25								
95% USL	43.78	99% Percentile (z)	42.23								
		· /									
Nonparametric	Distribution	Free Background Statistics									
Data appear Appr	roximate No	rmal at 5% Significance Level									
Nonparametric Upp	er Limits fo	r Background Threshold Values									
Order of Statistic, r	16	95% UTL with 95% Coverage	46								
Approx, f used to compute achieved CC	0.842	Approximate Actual Confidence Coefficient achieved by UTL	0.56								
		Approximate Sample Size needed to achieve specified CC	59								
95% Percentile Bootstrap UTL with 95% Coverage	46	95% BCA Bootstrap UTL with 95% Coverage	46								
95% UPL	46	90% Percentile	27.05								
90% Chebyshev UPL	46.06	95% Percentile	33.25								
95% Chebyshev UPL	57.09	99% Percentile	43.45								
95% USL	46										
Note: The use of USL tends to yield a conservation	ve estimate	of BTV, especially when the sample size starts exceeding 20.									
Therefore, one may use USL to estimate a BTV	only when th	he data set represents a background data set free of outliers									
and consists of observa	tions collect	ed from clean unimpacted locations.									
The use of USL tends to provide a balan	ice between	false positives and false negatives provided the data									
represents a background data set and whether the set and whether the set and whether the set and se	nen many or	nsite observations need to be compared with the BTV.									
thallium											
	General	Statistics									
Total Number of Observations	10	Number of Missing Observations	6								
Number of Distinct Observations	8										
Number of Detects	1	Number of Non-Detects	9								

Number of Distinct Detects	1	Number of Distinct Non-Detects	7					
Minimum Detect	2.3	Minimum Non-Detect	0.53					
Maximum Detect	2.3	Maximum Non-Detect	0.65					
Variance Detected	N/A	Percent Non-Detects	90%					
Mean Detected	2.3	SD Detected	N/A					
Mean of Detected Logged Data	0.833	SD of Detected Logged Data	N/A					
Warning: Only one distinct data value was detected	d! ProUCL	(or any other software) should not be used on such a data set	t!					
It is suggested to use alternative site specific values detern	nined by the	Project Team to estimate environmental parameters (e.g., E	PC, BTV).					
The data set fo	or variable th	nallium was not processed!						
vanadium								
General Statistics	10							
I otal Number of Observations	10	Number of Distinct Observations	8					
		Number of Missing Observations	6					
Minimum	34	First Quartile	35.5					
Second Largest	6/	Median	38.5					
Maximum	190	I hird Quartile	52.5					
Mean	57.9	SD	47.63					
	0.823	Skewness	2.884					
Mean of logged Data	3.89	SD of logged Data	0.527					
Critical Values fr	or Backgrou	nd Threshold Values (BTV/s)						
	2 911	d2max (for LISL)	2 176					
	2.511		2.170					
	Normal (GOF Test						
Shapiro Wilk Test Statistic	0.548	Shapiro Wilk GOF Test						
5% Shapiro Wilk Critical Value	0.842	Data Not Normal at 5% Significance Level						
Lilliefors Test Statistic	0.341	Lilliefors GOF Test						
5% Lilliefors Critical Value	0.262	Data Not Normal at 5% Significance Level						
Data Not	Normal at 5	5% Significance Level						
Background S	tatistics Ass	suming Normal Distribution						
95% UTL with 95% Coverage	196.6	90% Percentile (z)	118.9					
95% UPL (t)	149.5	95% Percentile (z)	136.2					
95% USL	161.5	99% Percentile (z)	168.7					
		· · · · · ·						
	Gamma	GOF Test						
A-D Test Statistic	1.459	Anderson-Darling Gamma GOF Test						
5% A-D Critical Value	0.732	Data Not Gamma Distributed at 5% Significance Leve	el					
K-S Test Statistic	0.285	Kolmogorov-Smirnov Gamma GOF Test						
5% K-S Critical Value	0.268	Data Not Gamma Distributed at 5% Significance Leve	el					
Data Not Gamma Distributed at 5% Significance Level								
	0	Chanlastica						
	Gamma		0.050					
k nat (MLE)	3.123	K star (bias corrected MLE)	2.253					
Theta hat (MLE)	18.54	i heta star (bias corrected MLE)	25.7					

nu hat (MLE)	62.46	nu star (bias corrected)	45.06
MLE Mean (bias corrected)	57.9	MLE Sd (bias corrected)	38.58
		· · ·	
Background Si	tatistics Ass	uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	139.3	90% Percentile	109.5
95% Hawkins Wixley (HW) Approx Gamma UPI	138 1	95% Percentile	132.3
95% WH Approx Gamma LITL with 95% Coverage	209.5	99% Percentile	182.5
95% HW Approx. Camma LITL with 95% Coverage	200.0		102.0
	155.5		155
95% WH USL	100.0	95% HW USL	155
	Lognormo		
Shaniya Wilk Taat Statiatia	0.71	Shanira Wilk Lagnarmal COE Test	
	0.71		
5% Snapiro Wilk Critical Value	0.842	Data Not Lognormal at 5% Sighificance Level	
Lilliefors Test Statistic	0.249	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level	
Data appear Appro	ximate Logr	normal at 5% Significance Level	
Background Sta	itistics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	227	90% Percentile (z)	96.14
95% UPL (t)	134.8	95% Percentile (z)	116.4
95% USL	154.1	99% Percentile (z)	166.8
		· · · · · ·	
Nonparametric	Distribution	Free Background Statistics	
Data appear Appro	ximate Logr	normal at 5% Significance Level	
Nonparametric Upp	er Limits fo	r Background Threshold Values	
Order of Statistic, r	10	95% UTL with 95% Coverage	190
Approx, f used to compute achieved CC	0.526	Approximate Actual Confidence Coefficient achieved by UTL	0.401
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	190	95% BCA Bootstrap UTL with 95% Coverage	190
95% UPL	190	90% Percentile	79.3
90% Chebyshev UPL	207.8	95% Percentile	134.7
95% Chebyshey UPL	275.7	99% Percentile	178.9
95% USI	190		
	100		
Note: The use of USL tends to vield a conservati	ve estimate	of BTV, especially when the sample size starts exceeding 20	
Therefore, one may use USL to estimate a BTV		be data set represents a background data set free of outliers	
and consists of absorve		red from clean unimported locations	
The use of USL tends to provide a below		false positives and false pagatives previded the data	
reprocente o bookersund date oot and uit	hon more		
represents a packground data set and wi	ien many or	ISINE ODSERVATIONS NEED TO DE COMPARED WITH THE BIV.	
General Statistics			
Total Number of Observations	10	Number of Distinct Observations	10
		Number of Missing Observations	6
Minimum	40	First Quartile	44.25
Second Largest	75	Median	46.5
Maximum	230	Third Quartile	49.75
Mean	66.9	SD	58.12
		1	

Coefficient of Variation	0.869	Skewness	3.01								
Mean of logged Data	4.028	SD of logged Data	0.524								
		Į									
Critical Values for	or Backgrou	ind Threshold Values (BTVs)									
Tolerance Factor K (For UTL)	2.911	d2max (for USL)	2.176								
	Normal	GOF Test									
Shapiro Wilk Test Statistic	0.485	Shapiro Wilk GOF Test									
5% Shapiro Wilk Critical Value	0.842	Data Not Normal at 5% Significance Level									
Lilliefors Test Statistic	0.414	Lilliefors GOF Test									
5% Lilliefors Critical Value	0.262	Data Not Normal at 5% Significance Level									
Data Not Normal at 5% Significance Level											
Background S	tatistics As	suming Normal Distribution									
95% UTL with 95% Coverage	236.1	90% Percentile (z)	141.4								
95% UPL (t)	178.6	95% Percentile (z)	162.5								
95% USL	193.4	99% Percentile (z)	202.1								
	Gamma	GOF Test									
A-D Test Statistic	2.033	Anderson-Darling Gamma GOF Test									
5% A-D Critical Value	0.732	Data Not Gamma Distributed at 5% Significance Leve	el								
K-S Test Statistic	0.412	Kolmogorov-Smirnov Gamma GOF Test									
5% K-S Critical Value	0.268	Data Not Gamma Distributed at 5% Significance Leve	el								
Data Not Gam	na Distribut	ed at 5% Significance Level									
	Gamma	Statistics									
k hat (MLE)	3.009	k star (bias corrected MLE)	2.173								
Theta hat (MLE)	22.23	Theta star (bias corrected MLE)	30.79								
nu hat (MLE)	60.18	nu star (bias corrected)	43.46								
MLE Mean (bias corrected)	66.9	MLE Sd (bias corrected)	45.38								
Background St	atistics Ass	suming Gamma Distribution									
95% Wilson Hilferty (WH) Approx. Gamma UPL	162.6	90% Percentile	127.6								
95% Hawkins Wixley (HW) Approx. Gamma UPL	160.4	95% Percentile	154.6								
95% WH Approx. Gamma UTL with 95% Coverage	245.8	99% Percentile	214.2								
95% HW Approx. Gamma UTL with 95% Coverage	248.1										
95% WH USL	181.7	95% HW USL	180.2								
	Lognorma	I GOF Test									
Shapiro Wilk Test Statistic	0.608	Shapiro Wilk Lognormal GOF Test									
5% Shapiro Wilk Critical Value	0.842	Data Not Lognormal at 5% Significance Level									
Lilliefors Test Statistic	0.388	Lilliefors Lognormal GOF Test									
5% Lilliefors Critical Value	0.262	Data Not Lognormal at 5% Significance Level									
Data Not L	ognormal a	t 5% Significance Level									
	41-41										
Background Sta			100.0								
95% UIL with 95% Coverage	258	90% Percentile (z)	109.9								
95% UPL (t)	153./	95% Percentile (z)	132.9								
95% USL	175.6	99% Percentile (z)	189.9								

Nonparametric	Distribution	Free Background Statistics	
Data do not fo	ollow a Disc	cernible Distribution (0.05)	
Nonparametric Upp	er Limits fo	r Background Threshold Values	
Order of Statistic, r	10	95% UTL with 95% Coverage	230
Approx, f used to compute achieved CC	0.526	Approximate Actual Confidence Coefficient achieved by UTL	0.401
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	230	95% BCA Bootstrap UTL with 95% Coverage	230
95% UPL	230	90% Percentile	90.5
90% Chebyshev UPL	249.8	95% Percentile	160.3
95% Chebyshev UPL	332.6	99% Percentile	216.1
95% USL	230		
Note: The use of USL tends to yield a conservation	ve estimate	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV of	only when the	he data set represents a background data set free of outliers	
and consists of observa	tions collec	ted from clean unimpacted locations.	
The use of USL tends to provide a balan	ce between	false positives and false negatives provided the data	
represents a background data set and wh	ien many or	nsite observations need to be compared with the BTV.	

	Goodness-of	f-Fit Test S	tatistics for	Data Sets wit	th Non-Dete	ects			
User Selected Options	;								
Date/Time of Computation	ProUCL 5.18	roUCL 5.18/17/2021 4:14:53 PM							
From File	ProUCL Back	oUCL Background Inputs.xls							
Full Precision	OFF								
Confidence Coefficient	0.95								
antimony									
		Num Obs	Num Miss	Num Valid	Detects	NDs	% NDs		
R	aw Statistics	16	6	10	0	10	100.00%		
Warning: All obse	ervations are I	Non-Detect	s (NDs), the	refore all sta	tistics and e	estimates sl	hould also be	NDs!	
Specifically, sample	e mean, UCLs	, UPLs, and	d other stati	stics are also	NDs lying	below the la	argest detect	ion limit!	
The Project Team may de	cide to use al	Iternative si	ite specific v	alues to esti	mate enviro	onmental pa	rameters (e.	g., EPC, BT	V).
	The	data set fo	r variable ar	ntimony was	not process	ed!			
arsenic									
Raw S	tatistics								
Numb	ber of Valid Ob	servations	16						
Number	r of Distinct Ob	servations	13						
		Minimum	1.4						
		Maximum	3.08						
	Mean of	f Raw Data	1.997						
Standar	rd Deviation of	f Raw Data	0.376						
		Khat	33.27						
		Theta hat	0.06						
		Kstar	27.08						
		Theta star	0.0737						
Mean o	of Log Transfo	ormed Data	0.676						
Standard Deviation of	of Log Transfo	ormed Data	0.176						
Normal GOF	Test Results	i							
	Correlation Co	pefficient R	0.929						
S	hapiro Wilk Te	est Statistic	0.887						
Shapiro	Wilk Critical (0	0.05) Value	0.887						
Approxima	ate Shapiro W	ilk P Value	0.039						
	Lilliefors Te	est Statistic	0.147						
Lillie	efors Critical (0	0.05) Value	0.213						
Data appear Normal at (0.05) Signit	ficance Level								
Gamma GOF	F Test Results	3							
	Correlation Co	pefficient R	0.948						

		417		
A-D Test Statistic	0.399			
A-D Critical (0.05) Value	0.736			
K-S Test Statistic	0.124			
K-S Critical(0.05) Value	0.215			
Data appear Gamma Distributed at (0.05) Significance Level	1			
Lognormal GOF Test Results				
Correlation Coefficient R	0.963			
Shapiro Wilk Test Statistic	0.948			
Shapiro Wilk Critical (0.05) Value	0.887			
Approximate Shapiro Wilk P Value	0.368			
Lilliefors Test Statistic	0.125			
Lilliefors Critical (0.05) Value	0.213			
Data appear Lognormal at (0.05) Significance Level				
barium				
Raw Statistics				
Number of Valid Observations	16			-
Number of Distinct Observations	15			+

Lognormal GOF Test Results				
Correlation Coefficient R	0.963			
Shapiro Wilk Test Statistic	0.948			
Shapiro Wilk Critical (0.05) Value	0.887			
Approximate Shapiro Wilk P Value	0.368			
Lilliefors Test Statistic	0.125			
Lilliefors Critical (0.05) Value	0.213			
Data appear Lognormal at (0.05) Significance Level				
barium				
Raw Statistics				
Number of Valid Observations	16			
Number of Distinct Observations	15			
Minimum	36			
Maximum	77.9			
Mean of Raw Data	54.96			
Standard Deviation of Raw Data	11.56			
Khat	25.01			
Theta hat	2.197			
Kstar	20.36			
Theta star	2.699			
Mean of Log Transformed Data	3.986			
Standard Deviation of Log Transformed Data	0.206			
Normal GOF Test Results				
Correlation Coefficient R	0.971			
Shapiro Wilk Test Statistic	0.942			
Shapiro Wilk Critical (0.05) Value	0.887			
Approximate Shapiro Wilk P Value	0.378			
Lilliefors Test Statistic	0.192			
Lilliefors Critical (0.05) Value	0.213			
Data appear Normal at (0.05) Significance Level				
Gamma GOF Test Results				
Correlation Coefficient R	0.981			
A-D Test Statistic	0.321			
A-D Critical (0.05) Value	0.736			
K-S Test Statistic	0.17			
K-S Critical(0.05) Value	0.215			
Data appear Gamma Distributed at (0.05) Significance Leve	I			

Lognormal GOF Test Results				
Correlation Coefficient R	0.984			
Shapiro Wilk Test Statistic	0.968			
Shapiro Wilk Critical (0.05) Value	0.887			
Approximate Shapiro Wilk P Value	0.779			
Lilliefors Test Statistic	0.156			
Lilliefors Critical (0.05) Value	0.213			
Data appear Lognormal at (0.05) Significance Level				
beryllium				
Raw Statistics				
Number of Valid Observations	16			
Number of Distinct Observations	14			
Minimum	0.293			
Maximum	0.99			
Mean of Raw Data	0.507			
Standard Deviation of Raw Data	0.154			
Khat	14.04			
Theta hat	0.0361			
Kstar	11.45			
Theta star	0.0443			
Mean of Log Transformed Data	-0.715			
Standard Deviation of Log Transformed Data	0.268			
Normal GOF Test Results				
Correlation Coefficient R	0.886			
Shapiro Wilk Test Statistic	0.813			
Shapiro Wilk Critical (0.05) Value	0.887			
Approximate Shapiro Wilk P Value	0.00264			
Lilliefors Test Statistic	0.228			
Lilliefors Critical (0.05) Value	0.213			
Data not Normal at (0.05) Significance Level				
Gamma GOF Test Results				
Correlation Coefficient R	0.92			
A-D Test Statistic	0.558			
A-D Critical (0.05) Value	0.738			
K-S Test Statistic	0.185			
K-S Critical(0.05) Value	0.215			
Data appear Gamma Distributed at (0.05) Significance Leve				

0.953

0.933

Lognormal GOF Test Results

Correlation Coefficient R

Shapiro Wilk Test Statistic

Shapiro Wilk Critical	(0.05) Value	0.887						
Approximate Shapiro	Wilk P Value	0.206						
Lilliefors 7	Fest Statistic	0.169						
Lilliefors Critical	(0.05) Value	0.213						
Data appear Lognormal at (0.05) Significance L	evel.						-	
cadmium								
							-	
	Num Obs	Num Miss	Num Valid	Detects	NDs	% NDs	-	
Raw Statistics	16	0	16	7	9	56.25%		
							-	
	Number	Minimum	Maximum	Mean	Median	SD		
Statistics (Non-Detects Only)	9	0.27	0.3	0.283	0.28	0.0122	-	
Statistics (Non-Detects Only)	7	0.0918	0.38	0.161	0.136	0.101	-	
Statistics (All: NDs treated as DL value)	16	0.0918	0.38	0.23	0.27	0.09		
Statistics (All: NDs treated as DL/2 value)	16	0.0918	0.38	0.15	0.14	0.0648		
Statistics (Normal ROS Imputed Data)	16	0.0772	0.38	0.147	0.136	0.0725		
Statistics (Gamma ROS Imputed Data)	16	0.0789	0.38	0.143	0.131	0.0718		
Statistics (Lognormal ROS Imputed Data)	16	0.0918	0.38	0.143	0.131	0.0693		
, , ,							-	
	K hat	K Star	Theta hat	Log Mean	Log Stdv	Log CV	<u> </u>	
Statistics (Non-Detects Only)	4 282	2 542	0.0376	-1.948	0 491	-0.252		
Statistics (NDs = DL)	5 628	4 614	0.0408	-1 562	0.47	-0.301		
Statistics (NDs = DL/2)	9 164	7 487	0.0164	-1 952	0.312	-0.16		
Statistics (Gamma BOS Estimates)	6 178	5.062	0.0231	-2.03	0.392	-0 193		
Statistics (Lognormal BOS Estimates)				-2.02	0.358	-0 177		
				2.02	0.000	0.177		
	Normal GOF	Test Result	ts					
		100111000						
	No NDs	NDs = DI	NDs = DI /2	Normal ROS				
Correlation Coefficient R	0.832	0.936	0 729	0.849				
	0.002	0.000	0.720	0.010				
	Test value	Crit (0.05)		onclusion wi	th Alpha(0.0	5)	+	
Shaniro-Wilk (Detects Only)	0 712	0.803	Data Not No	ormal		5)	+	
Shapiro Wilk (NDs = DL)	0.712	0.803	Data Not No	ormal			<u> </u>	
Shapiro Wilk (NDs = DL)	0.000	0.007	Data Not No	ormal				
Shapiro Wilk (Normal BOS Estimates)	0.300	0.007	Data Not No	ormal				
	0.742	0.007	Data Not No				<u> </u>	
	0.0	0.304	Data Not N					
Lilliefors (NDs = DL/2)	0.237	0.213	Data Not No	ormal			<u> </u>	
Lilliefors (Normal BOS Estimates)	0.370	0.213	Data Not No	ormal			<u></u>	
	0.215	0.215		Jilla				
		Toot Booul	**				<u></u>	
		Test Resul	15				<u></u>	
				Commo DO			<u> </u>	
			NDS = DL/2					
	0.919	0.901	0.791	0.893			<u> </u>	
		0 1 (0 07)	-			-	<u> </u>	
	I est value	Crit. (0.05)	C	conclusion wi	th Alpha(0.0	5)		
Anderson-Darling (Detects Only)	0.646	0.71	-				<u> </u>	
Kolmogorov-Smirnov (Detects Only)	0.267	0.313	Detected Da	ata Appear G	iamma Distr	ibuted		

Anderson-Darling (NDs = DL)	1.302	0.741					
Kolmogorov-Smirnov (NDs = DL)	0.328	0.216	Data Not Ga	amma Distrib	uted		
Anderson-Darling (NDs = DL/2)	1.888	0.739					
Kolmogorov-Smirnov (NDs = DL/2)	0.332	0.215	Data Not Ga	amma Distrib	uted		
Anderson-Darling (Gamma ROS Estimates)	0.81	0.741					
Kolmogorov-Smirnov (Gamma ROS Est.)	0.165	0.216	Detected Da	ata appear A	pproximate (Gamma Distr	
Lo	gnormal GC	F Test Resu	ults				
	No NDs	NDs = DL	NDs = DL/2	Log ROS			
Correlation Coefficient R	0.918	0.916	0.846	0.905			
	Test value	Crit. (0.05)	C	onclusion wi	th Alpha(0.0	5)	
Shapiro-Wilk (Detects Only)	0.851	0.803	Data Appea	r Lognormal			
Shapiro-Wilk (NDs = DL)	0.827	0.887	Data Not Lo	gnormal			
Shapiro-Wilk (NDs = DL/2)	0.748	0.887	Data Not Lo	gnormal			
Shapiro-Wilk (Lognormal ROS Estimates)	0.832	0.887	Data Not Lo	- gnormal			
Lilliefors (Detects Only)	0.235	0.304	Data Appea	r Lognormal			
Lilliefors (NDs = DL)	0.33	0.213	Data Not Lo	anormal			
Lilliefors (NDs = DL/2)	0.305	0.213	Data Not Lo	anormal			
Lilliefors (Lognormal BOS Estimates)	0 162	0.213	Data Appea	r I ognormal			
	002	0.2.10	Data / ippou	ogoa			
Note: Substitution methods such as DL or DL/2	are not reco	mmended					
		ininenaea.					
hovovolont obromium							
	Num Oha	Num Mine	Num Valid	Detecto	NDa		
Deve Otatistica	Num Obs			Detects	NDS	% NDS	
	16	0	16	9	/	43.75%	
		·			NA 11	0.0	
	Number	Minimum	Maximum	Mean	Median	SD	
Statistics (Non-Detects Only)	/	0.12	1.19	0.863	1.14	0.504	
Statistics (Non-Detects Only)	9	0.21	5.34	1.176	0.81	1.579	
Statistics (All: NDs treated as DL value)	16	0.12	5.34	1.039	0.855	1.207	
Statistics (All: NDs treated as DL/2 value)	16	0.06	5.34	0.85	0.58	1.225	
Statistics (Normal ROS Imputed Data)	16	-1.631	5.34	0.589	0.6	1.524	
Statistics (Gamma ROS Imputed Data)	16	0.01	5.34	0.791	0.6	1.263	
Statistics (Lognormal ROS Imputed Data)	16	0.13	5.34	0.836	0.6	1.23	
	K hat	K Star	Theta hat	Log Mean	Log Stdv	Log CV	
Statistics (Non-Detects Only)	1.299	0.94	0.905	-0.27	0.867	-3.21	
Statistics (NDs = DL)	1.38	1.163	0.753	-0.366	0.941	-2.571	
Statistics (NDs = DL/2)	1.124	0.955	0.756	-0.669	1.045	-1.561	
Statistics (Gamma ROS Estimates)	0.541	0.482	1.46	-1.394	2.029	-1.456	
Statistics (Lognormal ROS Estimates)				-0.641	0.893	-1.394	
	I	1	1		l		
1	Normal GOF	Test Result	S				
	No NDs	NDs = DL	NDs = DL/2	Normal ROS			
Correlation Coefficient R	0.705	0.73	0.659	0.853	<u> </u>		

	Test value	Crit. (0.05)	Conclusion with Alpha(0.05)				
Shapiro-Wilk (Detects Only)	0.531	0.829	Data Not No	ormal			
Shapiro-Wilk (NDs = DL)	0.564	0.887	Data Not Normal				
Shapiro-Wilk (NDs = DL/2)	0.467	0.887	Data Not Normal				
Shapiro-Wilk (Normal ROS Estimates)	0.759	0.887	Data Not Normal				
Lilliefors (Detects Only)	0.463	0.274	Data Not No	ormal			
Lilliefors (NDs = DL)	0.388	0.213	Data Not No	ormal			
Lilliefors (NDs = DL/2)	0.428	0.213	Data Not No	ormal			
Lilliefors (Normal ROS Estimates)	0.308	0.213	Data Not No	ormal			
	No NDs	NDs = DL	NDs = DL/2	Gamma ROS			
Correlation Coefficient R	0.864	0.856	0.822	0.884			
	Test value	Crit. (0.05)	C	onclusion wi	th Alpha(0.0	5)	
Anderson-Darling (Detects Only)	1.129	0.738				,	
Kolmogorov-Smirnov (Detects Only)	0.394	0.285	Data Not G	amma Distrib			
Anderson-Darling (NDs = DL)	0.894	0.757					
Kolmogorov-Smirnov (NDs = DL)	0 265	0.219	Data Not G	amma Distrih	outed		
Anderson-Darling (NDs = DL/2)	1 404	0.761	Duita Hor a				
Kolmogorov-Smirnov (NDs = DL/2)	0.299	0.221	Data Not Gamma Distributed				
Anderson-Darling (Gamma BOS Estimates)	1.083	0.221					
Kolmogorov Smirnov (Gamma ROS Estimates)	0.234	0.793	Data Not Commo Distributed				
Kolinogorov-Smirnov (Gamiria KOS Est.)	0.234	0.227	Data Not G		Juleu		
	anormal CC		ulto				
Ed	gnormal GC		lits				
Correlation Coefficient D							
	0.904	0.938	0.904	0.942			
	Testuchus		<u> </u>	· · · · · · · · · · · · · · · · · · ·		E)	
		Cnt. (0.05)				5)	
Shapiro-Wilk (Detects Only)	0.852	0.829					
Shapiro-Wilk (NDs = DL)	0.893	0.887					
Shapiro-Wilk (NDs = DL/2)	0.839	0.887					
Shapiro-Wilk (Lognormal ROS Estimates)	0.902	0.887	Data Appear Lognormal				
Lilliefors (Detects Only)	0.324	0.274	Data Not Lognormal				
Lilliefors (NDs = DL)	0.221	0.213	Data Not Lognormal				
Lilliefors (NDs = DL/2)	0.246	0.213	Data Not Lognormal				
Lilliefors (Lognormal ROS Estimates)	0.22	0.213	Data Not Lo	gnormal			
Note: Substitution methods such as DL or DL/2	are not reco	ommended.	i	1	1		
trivalent chromium							
Raw Statistics							
Number of Valid Observations 16							
Number of Distinct Observations 14		14					
Minimum 16.16		16.16					
Maximum 70.2		70.2					
Mean	of Raw Data	26.43					

Standard Deviation of Raw Data	13.43				
Khat	6.387				
Theta hat	4.139				
Kstar	5.231				
Theta star	5.053				
Mean of Log Transformed Data	3.194				
Standard Deviation of Log Transformed Data	0.377				
Normal GOF Test Results					
Correlation Coefficient R	0.804				
Shapiro Wilk Test Statistic	0.668				
Shapiro Wilk Critical (0.05) Value	0.887				
Approximate Shapiro Wilk P Value	3.1044E-5				
Lilliefors Test Statistic	0.307				
Lilliefors Critical (0.05) Value	0.213				
Data not Normal at (0.05) Significance Level					
Gamma GOF Test Results					
Correlation Coefficient R	0.883				
A-D Test Statistic	1.306				
A-D Critical (0.05) Value	0.741				
K-S Test Statistic	0.272				
K-S Critical(0.05) Value	0.216				
Data not Gamma Distributed at (0.05) Significance Level					
Lognormal GOF Test Results					
Correlation Coefficient R	0.905				
Shapiro Wilk Test Statistic	0.831				
Shapiro Wilk Critical (0.05) Value	0.887				
Approximate Shapiro Wilk P Value	0.00584				
Lilliefors Test Statistic	0.245				
Lilliefors Critical (0.05) Value	0.213				
Data not Lognormal at (0.05) Significance Level					
Non-parametric GOF Test Results					
Data do not follow a discernible distribution at (0.05) Level	of Significan	4			
total chromium					
Raw Statistics					
Number of Valid Observations	16				
Number of Distinct Observations	14				
Minimum	16				
Maximum	70.2				
Mean of Raw Data	26.63				
Standard Deviation of Raw Data	13.98				
Khat	5.828				
--	---------------	--	--	---	--
Theta hat	4.568				
Kstar	4.777				
Theta star	5.573				
Mean of Log Transformed Data	3.194				
Standard Deviation of Log Transformed Data	0.397				
Normal GOF Test Results					
Correlation Coefficient R	0.819				
Shapiro Wilk Test Statistic	0.689				
Shapiro Wilk Critical (0.05) Value	0.887				
Approximate Shapiro Wilk P Value	5.8616E-5				
Lilliefors Test Statistic	0.31				
Lilliefors Critical (0.05) Value	0.213				
Data not Normal at (0.05) Significance Level					
Gamma GOF Test Results					
Correlation Coefficient R	0.901				
A-D Test Statistic	1.323				
A-D Critical (0.05) Value	0.741				
K-S Test Statistic	0.273				
K-S Critical(0.05) Value	0.216				
Data not Gamma Distributed at (0.05) Significance Level					
Lognormal GOF Test Results					
	1				
Correlation Coefficient R	0.909				
Shapiro Wilk Test Statistic	0.833				
Shapiro Wilk Critical (0.05) Value	0.887				
Approximate Shapiro Wilk P Value	0.00674				
	0.245				
Lilliefors Critical (0.05) Value	0.213				
Data not Lognormal at (0.05) Significance Level					
Non-second construction				ļ	
Date de pat fallour e discorrible distribution et (0.05) Level					
	or Significan				
ashali					
Pour Statiation				-	
Number of Valid Observations	16				
Number of Valid Observations	10				
Minimum	63			+	
Movimum	27				
IvidXIIIUII Mean of Pow Data	12 72				
Standard Deviation of Pow Data	6 701				
	1 550				
Knat	4.000				

Theta hat	3.011						
Kstar	3.745						
Theta star	3.665						
Mean of Log Transformed Data	2.506						
Standard Deviation of Log Transformed Data	0.494						
	1						
Normal GOF Test Results							
Correlation Coefficient R	0.952						
Shapiro Wilk Test Statistic	0.891						
Shapiro Wilk Critical (0.05) Value	0.887						
Approximate Shapiro Wilk P Value	0.0725						
Lilliefors Test Statistic	0.198						
Lilliefors Critical (0.05) Value	0.213						
Data appear Normal at (0.05) Significance Level							
Gamma GOF Test Results							
Correlation Coefficient R	0.974						
A-D Test Statistic	0.69						
A-D Critical (0.05) Value	0.742						
K-S Test Statistic	0.218						
K-S Critical(0.05) Value	0.216						
Data appear Gamma Distributed at (0.05) Significance Leve							
Lognormal GOF Test Results							
Correlation Coefficient R	0.959						
Shapiro Wilk Test Statistic	0.9						
Shapiro Wilk Critical (0.05) Value	0.887						
Approximate Shapiro Wilk P Value	0.108						
Lilliefors Test Statistic	0.215						
Lilliefors Critical (0.05) Value	0.213						
Data appear Approximate_Lognormal at (0.05) Significance	Level						
copper							
Raw Statistics							
Number of Valid Observations	16						
Number of Distinct Observations	12						
Minimum	15						
Maximum	62.8						
Mean of Raw Data	28.85						
Standard Deviation of Raw Data	15.78						
Khat	4.383						
Theta hat	6.582						
Kstar	3.603						
Theta star	8.007						
Mean of Log Transformed Data	3.244						
Standard Deviation of Log Transformed Data	0.482						
		1	1	1	1	1	1

				1	1
Normal GOF Test Results					
Correlation Coefficient R	0.9				
Shapiro Wilk Test Statistic	0.801				
Shapiro Wilk Critical (0.05) Value	0.887				
Approximate Shapiro Wilk P Value	0.00266				
Lilliefors Test Statistic	0.213				
Lilliefors Critical (0.05) Value	0.213				
Data appear Approximate Normal at (0.05) Significance Lev	el				
Gamma GOF Test Results					
Correlation Coefficient R	0.957				
A-D Test Statistic	0.943				
A-D Critical (0.05) Value	0.742				
K-S Test Statistic	0.212				
K-S Critical(0.05) Value	0.216				
Data follow Appr. Gamma Distribution at (0.05) Significance	Level				
Lognormal GOF Test Results					
Correlation Coefficient R	0.945				
Shapiro Wilk Test Statistic	0.876				
Shapiro Wilk Critical (0.05) Value	0.887				
Approximate Shapiro Wilk P Value	0.0423				
Lilliefors Test Statistic	0.206				
Lilliefors Critical (0.05) Value	0.213				
Data appear Approximate_Lognormal at (0.05) Significance	Level				
lead					
Raw Statistics					
Number of Valid Observations	10				
Number of Missing Observations	6				
Number of Distinct Observations	9				
Minimum	0.55				
Maximum	43				
Mean of Raw Data	22.76				
Standard Deviation of Raw Data	12.49				
Khat	1.383				
Theta hat	16.46				
Kstar	1.034				
Theta star	22				
Mean of Log Transformed Data	2.721				
Standard Deviation of Log Transformed Data	1.328				
Normal GOF Test Results					
Correlation Coefficient R	0.95				

Shapiro Wilk Test Statistic	0.912						
Shapiro Wilk Critical (0.05) Value	0.842						
Approximate Shapiro Wilk P Value	0.242						
Lilliefors Test Statistic	0.244						
Lilliefors Critical (0.05) Value	0.262						
Data appear Normal at (0.05) Significance Level							
Gamma GOF Test Results							
Correlation Coefficient R	0.86						
A-D Test Statistic	1.256						
A-D Critical (0.05) Value	0.741						
K-S Test Statistic	0.377						
K-S Critical(0.05) Value	0.272						
Data not Gamma Distributed at (0.05) Significance Level							
Lognormal GOF Test Results							
Correlation Coefficient R	0.809						
Shapiro Wilk Test Statistic	0.676						
Shapiro Wilk Critical (0.05) Value	0.842						
Approximate Shapiro Wilk P Value	4.1142E-4						
	0.396						
Lilliefors Critical (0.05) Value	0.262						
Data not Lognormal at (0.05) Significance Level							
Paw Statistics							
Number of Valid Observations	16						
Number of Valid Observations	13						
Minimum	310						
Maximum	940						
Mean of Baw Data	547.3						
Standard Deviation of Raw Data	182.1						
Khat	10.67						
	51 31						
Kstar	8.708						
Theta star	62.85						
Mean of Log Transformed Data	6.257						
Standard Deviation of Log Transformed Data	0.313						
¥							
Normal GOF Test Results							
Correlation Coefficient R	0.925						
Shapiro Wilk Test Statistic	0.854						
Shapiro Wilk Critical (0.05) Value	0.887						
Approximate Shapiro Wilk P Value	0.0161						
Lilliefors Test Statistic	0.295						
Lilliefors Critical (0.05) Value	0.213						
	l	L	1	1	l	1	1

Data not Normal at (0.05) Significance Level							
Gamma GOF Test Result	s						
Correlation C	Coefficient R	0.953					
A-D T	est Statistic	1.03					
A-D Critical	(0.05) Value	0.739					
K-S T	est Statistic	0.281					
K-S Critical(0.05) Value	0.215					
Data not Gamma Distributed at (0.05) Significar	nce Level						
Lognormal GOF Test Resu	ilts						
Correlation C	Coefficient R	0.948					
Shapiro Wilk T	est Statistic	0.896					
Shapiro Wilk Critical	(0.05) Value	0.887					
Approximate Shapiro V	Vilk P Value	0.075					
	est Statistic	0.264					
	(0.05) Value	0.213					
Data appear Approximate_Lognormal at (0.05) 3	Significance	Levei					
maraun							
	Num Obs	Num Miss	Num Valid	Detects	NDe	% NDc	
Raw Statistics	16	0	16	13	3	18 75%	
	10	0	10	15	5	10.7570	
	Number	Minimum	Maximum	Mean	Median	SD	
Statistics (Non-Detects Only)	3	0.0067	0.023	0.0166	0.02	0.00868	
Statistics (Non-Detects Only)	13	0.0072	0.28	0.0499	0.032	0.0701	
Statistics (All: NDs treated as DL value)	16	0.0067	0.28	0.0437	0.0255	0.0642	
Statistics (All: NDs treated as DL/2 value)	16	0.00335	0.28	0.0421	0.0255	0.065	
Statistics (Normal ROS Imputed Data)	16	-0.0704	0.28	0.0312	0.0255	0.0749	
Statistics (Gamma ROS Imputed Data)	16	0.0072	0.28	0.0425	0.0255	0.0648	
Statistics (Lognormal ROS Imputed Data)	16	0.00522	0.28	0.0419	0.0255	0.065	
	K hat	K Star	Theta hat	Log Mean	Log Stdv	Log CV	
Statistics (Non-Detects Only)	1.377	1.111	0.0363	-3.402	0.807	-0.237	
Statistics (NDs = DL)	1.314	1.11	0.0332	-3.557	0.833	-0.234	
Statistics (NDs = DL/2)	1.098	0.934	0.0384	-3.687	0.979	-0.265	
Statistics (Gamma ROS Estimates)	1.207	1.023	0.0352	-3.628	0.87	-0.24	
Statistics (Lognormal ROS Estimates)				-3.691	0.958	-0.26	
			1			1	
٩	Normal GOF	Test Result	S				
	No NDs	NDs = DL	NDs = DL/2	Normal ROS			
Correlation Coefficient R	0.661	0.647	0.666	0.806			
	Test value	Crit. (0.05)	C	conclusion wi	th Alpha(0.0	5)	
Shapiro-Wilk (Detects Only)	0.471	0.866	Data Not No	ormal			
Shapiro-Wilk (NDs = DL)	0.451	0.887	Data Not No	ormal			

Shapiro-Wilk (NDs = DI /2)	0.475	0.887	Data Not No	vrmal				
Shapiro-Wilk (Normal BOS Estimates)	0.475	0.887	Data Not No	ormal				
	0.4	0.007	Data Not No	ormal				
	0.7	0.234	Data Not No	rmal				
Lilliefors (NDs = DL/2)	0.374	0.213	Data Not No	armal				
Lilliefors (Normal POS Estimatos)	0.305	0.213	Data Not No	armol				
	0.318	0.213		lillai				
G	iamma GOF	Test Resul	ts					
			1					
	No NDs	NDs = DL	NDs = DL/2	Gamma ROS				
Correlation Coefficient R	0.829	0.817	0.84	0.832				
		I	1					
	Test value	Crit. (0.05)	C	onclusion wit	th Alpha(0.0	05)		
Anderson-Darling (Detects Only)	1.525	0.752						
Kolmogorov-Smirnov (Detects Only)	0.279	0.241	Data Not Ga	amma Distrib	uted			
Anderson-Darling (NDs = DL)	1.554	0.758						
Kolmogorov-Smirnov (NDs = DL)	0.247	0.22	Data Not Ga	amma Distrib	uted			
Anderson-Darling (NDs = DL/2)	1.06	0.762						
Kolmogorov-Smirnov (NDs = DL/2)	0.223	0.221	Data Not Ga	amma Distrib	uted			
Anderson-Darling (Gamma ROS Estimates)	1.267	0.76						
Kolmogorov-Smirnov (Gamma ROS Est.)	0.231	0.22	Data Not Ga	amma Distrib	uted			
Lognormal GOF Test Results								
	No NDs	NDs = DL	NDs = DL/2	Log ROS				
Correlation Coefficient R	0.897	0.915	0.952	0.948				
	Test value	Crit. (0.05)	Conclusion with Alpha(0.05)					
Shapiro-Wilk (Detects Only)	0.844	0.866	Data Not Lo	gnormal				
Shapiro-Wilk (NDs = DL)	0.864	0.887	Data Not Lo	gnormal				
Shapiro-Wilk (NDs = DL/2)	0.93	0.887	Data Appea	r Lognormal				
Shapiro-Wilk (Lognormal ROS Estimates)	0.912	0.887	Data Appea	r Lognormal				
Lilliefors (Detects Only)	0.227	0.234	Data Appea	r Lognormal				
Lilliefors (NDs = DL)	0.21	0.213	Data Appea	r Lognormal				
Lilliefors (NDs = DL/2)	0.197	0.213	Data Appea	r Lognormal				
Lilliefors (Lognormal ROS Estimates)	0.198	0.213	Data Appea	r Lognormal				
		1						
Note: Substitution methods such as DL or DL/2	are not reco	mmended.						
nickel								
Raw Statistics								
Number of Valid O	bservations	16					1	
Number of Distinct O	bservations	14					1	
	Minimum	4.9						
	Maximum	20					1	
Mean d	of Raw Data	8.168					1	
Standard Deviation of	of Raw Data	4.026					1	
	Khat	5.949					1	
	Theta hat	1.373					-	1

	1/ at a u	4.070					
	Kstar	4.876					
	I heta star	1.675					
Mean of Log Transfor	med Data	2.014					
Standard Deviation of Log Transfor	med Data	0.404					
Normal GOF Test Results							
Correlation Coe	efficient R	0.87					
Shapiro Wilk Tes	st Statistic	0.767					
Shapiro Wilk Critical (0.	05) Value	0.887					
Approximate Shapiro Wil	k P Value	6.9828E-4					
Lilliefors Tes	st Statistic	0.227					
Lilliefors Critical (0.	05) Value	0.213					
Data not Normal at (0.05) Significance Level							
Gamma GOF Test Results							
Correlation Coe	efficient R	0.938					
A-D Tes	st Statistic	0.845					
A-D Critical (0.	05) Value	0.741					
K-S Tes	st Statistic	0.192					
K-S Critical(0.05) Value		0.216					
Data follow Appr. Gamma Distribution at (0.05) Significance		Level					
Lognormal GOF Test Results							
Correlation Coe	efficient R	0.942					
Shapiro Wilk Test Statistic		0.884					
Shapiro Wilk Critical (0.	05) Value	0.887					
Approximate Shapiro Wil	k P Value	0.0484					
Lilliefors Tes	st Statistic	0.18					
Lilliefors Critical (0.	05) Value	0.213					
Data appear Approximate_Lognormal at (0.05) Sig	gnificance	Level					
selenium							
Ν	Num Obs	Num Miss	Num Valid	Detects	NDs	% NDs	
Raw Statistics	16	0	16	12	4	25.00%	
	Number	Minimum	Maximum	Mean	Median	SD	
Statistics (Non-Detects Only)	4	0.53	0.65	0.59	0.59	0.049	
Statistics (Non-Detects Only)	12	0.306	1.7	0.986	0.964	0.508	
Statistics (All: NDs treated as DL value)	16	0.306	1.7	0.887	0.62	0.47	
Statistics (All: NDs treated as DL/2 value)	16	0.265	1.7	0.813	0.553	0.534	
Statistics (Normal ROS Imputed Data)	16	0.306	1.7	0.859	0.617	0.495	
Statistics (Gamma ROS Imputed Data)	16	0.306	1.7	0.859	0.594	0.493	
Statistics (Lognormal ROS Imputed Data)	16	0.306	1.7	0.859	0.578	0.492	
			<u> </u>				
	K hat	K Star	Theta hat	Log Mean	Log Stdv	Log CV	
Statistics (Non-Detects Only)	3.662	2.802	0.269	-0.157	0.582	-3.698	

Statistics (NDs = DL)	3.999	3.291	0.222	-0.251	0.527	-2.102		
Statistics (NDs = DL/2)	2.462	2.042	0.33	-0.424	0.691	-1.629		
Statistics (Gamma ROS Estimates)	3.391	2.797	0.253	-0.307	0.574	-1.874		
Statistics (Lognormal ROS Estimates)				-0.305	0.569	-1.868		
1	Normal GOF	Test Result	S					
	No NDs	NDs = DL	NDs = DL/2	Normal ROS				
Correlation Coefficient R	0.958	0.931	0.933	0.939				
	Test value	Crit. (0.05)	C	onclusion wi	th Alpha(0.0	5)		
Shapiro-Wilk (Detects Only)	0.895	0.859	Data Appea	r Normal				
Shapiro-Wilk (NDs = DL)	0.852	0.887	Data Not No	ormal				
Shapiro-Wilk (NDs = DL/2)	0.848	0.887	Data Not No	ormal				
Shapiro-Wilk (Normal ROS Estimates)	0.862	0.887	Data Not No	ormal				
Lilliefors (Detects Only)	0.214	0.243	Data Appea	r Normal				
Lilliefors (NDs = DL)	0.255	0.213	Data Not No	ormal				
Lilliefors (NDs = DL/2)	0.243	0.213	Data Not No	ormal				
Lilliefors (Normal ROS Estimates)	0.226	0.213	Data Not No	ormal				
	I	1	l					
0	amma GOF	Test Resul	ts					
	No NDs	NDs = DL	NDs = DL/2	Gamma ROS				
Correlation Coefficient R	0.941	0.952	0.948	0.953				
		I						
	Test value	Crit. (0.05)	C	onclusion wi	th Alpha(0.0	5)		
Anderson-Darling (Detects Only)	0.53	0.737						
Kolmogorov-Smirnov (Detects Only)	0.205	0.247	Detected Da	ata Appear G				
Anderson-Darling (NDs = DL)	0.833	0.742						
Kolmogorov-Smirnov (NDs = DL)	0.225	0.216	Data Not Ga	amma Distrib	outed			
Anderson-Darling (NDs = DL/2)	0.755	0.748						
Kolmogorov-Smirnov (NDs = DL/2)	0.19	0.217	Detected Da	ata appear A	pproximate (Gamma Distr		
Anderson-Darling (Gamma ROS Estimates)	0.759	0.743						
Kolmogorov-Smirnov (Gamma ROS Est.)	0.206	0.216	Detected Da	ata appear A	pproximate (Gamma Distr		
	I	1	1					
Lo	gnormal GC	F Test Resu	ults					
	No NDs	NDs = DL	NDs = DL/2	Log ROS				
Correlation Coefficient R	0.961	0.959	0.955	0.959				
	Test value	Crit. (0.05)	C	onclusion wi	th Alpha(0.0	5)		
Shapiro-Wilk (Detects Only)	0.906	0.859	Data Appea	r Lognormal				
Shapiro-Wilk (NDs = DL)	0.909	0.887	Data Appea	r Lognormal				
Shapiro-Wilk (NDs = DL/2)	0.887	0.887	Data Not Lo	gnormal				
Shapiro-Wilk (Lognormal ROS Estimates)	0.901	0.887	Data Appea	r Lognormal				
Lilliefors (Detects Only)	0.181	0.243	Data Appea	r Lognormal				
Lilliefors (NDs = DL)	0.201	0.213	Data Appea	r Lognormal			1	
Lilliefors (NDs = DL/2)	0.157	0.213	Data Appea	r Lognormal				
Lilliefors (Lognormal ROS Estimates)	0.211	0.213	Data Appea	r Lognormal				
· · · · · · · · · · · · · · · · · · ·		1	1					
								1

431	

Note: Substitution methods such as DL or DL/2 are not recommended.									
strontium									
Raw Statistics									
Number of Valid Observation	s 16								
Number of Distinct Observation	s 13								
Minimu	n 14								
Maximu	n 46								
Mean of Raw Dat	a 21.7								
Standard Deviation of Raw Dat	a 7.877								
Kha	at 10.41								
Theta ha	at 2.084								
Ksta	ar 8.501								
Theta sta	ar 2.553								
Mean of Log Transformed Dat	a 3.029								
Standard Deviation of Log Transformed Dat	a 0.307								
Normal GOF Test Results									
	_								
Correlation Coefficient	R 0.879								
Shapiro Wilk Test Statist	c 0.791								
Shapiro Wilk Critical (0.05) Valu	e 0.887								
Approximate Shapiro Wilk P Valu	e 0.00141								
Lilliefors Test Statist	c 0.208								
Lilliefors Critical (0.05) Valu	e 0.213								
Data appear Approximate Normal at (0.05) Significance Lo	evel								
Correlation Coofficient	0.026								
	R 0.920								
A-D Test Statist	C 0.604								
A-D Citical (0.05) Valu	e 0.739								
	0.180								
K-S Citical(0.05) Valu	e 0.215								
Data appear Gamma Distributed at (0.05) Significance Le	/ei								
Correlation Coofficient	0.051								
Shapira Wilk Tost Statist	0.951								
Shapiro Wilk Critical (0.05) Value	0.91								
	0.007								
	c 0.112								
Lilliefore Critical (0.05) Value	0.17 0.213								
Data appear ognormal at (0.05) Significance evel	0.215								
thallium									
Num Obe		Num Valid	Detects	NDe	% NDe				
Null OS.			2010010	1100	,				

Raw Statistics 16	6	10	1	9	90.00%		
						ļ	
Warning: Only one distinct data value was detect	ed! ProUCL	(or any othe	r software) should not	be used on s	uch a data s	et!
It is suggested to use alternative site specific values deter	mined by the	Project Te	am to estir	nate enviror	nmental param	neters (e.g., l	EPC, BTV).
The data set f	or variable t	hallium was	not proces	ssed!			
vanadium							
Raw Statistics	1						
Number of Valid Observations	10						
Number of Missing Observations	6						
Number of Distinct Observations	8						
Minimum	34						
Maximum Maximum	190						
Mean of Raw Data	57.9						
	47.00						
	18 54						
Ketar	2 253						
Theta star	2.200						
Mean of Log Transformed Data	3.89						
Standard Deviation of Log Transformed Data	0.527						
Normal GOF Test Results							
Correlation Coefficient R	0.721						
Shapiro Wilk Test Statistic	0.548						
Shapiro Wilk Critical (0.05) Value	0.842						
Approximate Shapiro Wilk P Value	1.7634E-5						
Lilliefors Test Statistic	0.341						
Lilliefors Critical (0.05) Value	0.262						
Data not Normal at (0.05) Significance Level							
Gamma GOF Test Results							
Correlation Coefficient R	0.847						
A-D Test Statistic	1.459						
A-D Critical (0.05) Value	0.732						
K-S Test Statistic	0.285						
K-S Critical(0.05) Value	0.268						
Data not Gamma Distributed at (0.05) Significance Level							
Correlation Coofficient D	0 833						
Shaniro Wilk Test Statistic	0.032						
Shapiro Wilk Critical (0.05) Value	0.71						
	0.042	1	1				1

	1		1	1	1	
Approximate Shapiro Wilk P Value	0.00103					
Lilliefors Test Statistic	0.249					
Lilliefors Critical (0.05) Value	0.262					
Data appear Approximate_Lognormal at (0.05) Significance	Level					
zinc						
Raw Statistics						
Number of Valid Observations	10					
Number of Missing Observations	6					
Number of Distinct Observations	10					
Minimum	40					
Maximum	230					
Mean of Raw Data	66.9					
Standard Deviation of Raw Data	58.12					
Khat	3.009					
Theta hat	22.23					
Kstar	2.173					
Theta star	30.79					
Mean of Log Transformed Data	4.028					
Standard Deviation of Log Transformed Data	0.524					
Normal GOF Test Results						
Correlation Coefficient R	0.674					
Shapiro Wilk Test Statistic	0.485					
Shapiro Wilk Critical (0.05) Value	0.842					
Approximate Shapiro Wilk P Value	4.0927E-6					
Lilliefors Test Statistic	0.414					
Lilliefors Critical (0.05) Value	0.262					
Data not Normal at (0.05) Significance Level						
Gamma GOF Test Results						
Correlation Coefficient R	0.809					
A-D Test Statistic	2.033					
A-D Critical (0.05) Value	0.732					
K-S Test Statistic	0.412					
K-S Critical(0.05) Value	0.268					
Data not Gamma Distributed at (0.05) Significance Level						
Lognormal GOF Test Results						
Correlation Coefficient R	0.762					
Shapiro Wilk Test Statistic	0.608					
Shapiro Wilk Critical (0.05) Value	0.842					
Approximate Shapiro Wilk P Value	7.2387E-5					
Lilliefors Test Statistic	0.388					
Lilliefors Critical (0.05) Value	0.262					
Data not Lognormal at (0.05) Significance Level	1					
		1	1	1	1	

Non-parametric GOF Test Results			
Data do not follow a discernible distribution at (0.05) Level of Significant			

0	utlier Tests for Sel	ected Variable	s excluding r	ondetects		
User Selected Options						
Date/Time of Computation ProUCL 5.19/2	2/2021 1:32:32 PM					
From File Pi	OUCL Background	Inputs.xls				
Full Precision O	FF					
No Outlier Test for antimony						
Dixon's Outlier Test for arsenic						
Total N = 16						
Number NDs = 0						
Number Detects = 16						
10% critical value: 0.454						
5% critical value: 0.507						
1% critical value: 0.595						
Note: NDs excluded from Outlier Test						
1. Data Value 2.09 is a Datastial Outline (Users T	-:!\\2					
Test Statistic: 0.572						
For 10% significance level 3 08 is an outlier						
For 5% significance level, 3.08 is an outlier.						
For 1% significance level, 3.08 is not an outlier.						
2. Data Value 1.4 is a Potential Outlier (Lower Tail)?					
· · · · · ·						
Test Statistic: 0.337						
For 10% significance level, 1.4 is not an outlier.						
For 5% significance level, 1.4 is not an outlier.						
For 1% significance level, 1.4 is not an outlier.						
Dixon's Outlier Test for barium						
Total N = 16						
Number NDs = 0						
Number Detects = 16						
10% critical value: 0.454						
5% critical value: 0.507						
1% critical value: 0.595						
1. Data Value 77.9 is a Potential Outliar /Unner T	ail)2					
	an <i>)</i> :					
Test Statistic: 0.353						

For 10% significance level, 77.9 is not an outlier.				
For 5% significance level, 77.9 is not an outlier.				
For 1% significance level, 77.9 is not an outlier.				
2. Data Value 36 is a Potential Outlier (Lower Tail)?				
Test Statistic: 0.297				
For 10% significance level, 36 is not an outlier.				
For 5% significance level, 36 is not an outlier.				
For 1% significance level, 36 is not an outlier.				
Dixon's Outlier Test for beryllium				
Total N = 16				
Number NDs = 0				
Number Detects = 16				
10% critical value: 0.454				
5% critical value: 0.507				
1% critical value: 0.595				
Note: NDs excluded from Outlier Test				
1. Data Value 0.99 is a Potential Outlier (Upper Tail)?				
Test Statistic: 0.650				
For 10% significance level, 0.99 is an outlier.				
For 5% significance level, 0.99 is an outlier.				
For 1% significance level, 0.99 is an outlier.				
2. Data Value 0.293 is a Potential Outlier (Lower Tail)?				
Test Statistic: 0.316				
For 10% significance level, 0.293 is not an outlier.				
For 5% significance level, 0.293 is not an outlier.				
For 1% significance level, 0.293 is not an outlier.				
Dixon's Outlier Test for cadmium				
Total N = 16				
Number NDs = 9				
Number Detects = 7				
10% critical value: 0.434				
5% critical value: 0.507				

1% critical value: 0.637

Note: NDs excluded from Outlier Test

1. Data Value 0.38 is a Potential Outlier (Upper Tail)?				
Test Statistic: 0.704				
For 10% significance level, 0.38 is an outlier.				
For 5% significance level, 0.38 is an outlier.				
For 1% significance level, 0.38 is an outlier.				
2. Data Value 0.0918 is a Potential Outlier (Lower Tail)?				
Test Statistic: 0.011				
For 10% significance level, 0.0918 is not an outlier.				
For 5% significance level, 0.0918 is not an outlier.				
For 1% significance level, 0.0918 is not an outlier.				
Dixon's Outlier Test for hexavalent chromium				
Total N = 16				
Number NDs = 7				
Number Detects = 9				
10% critical value: 0.441				
5% critical value: 0.512				
1% critical value: 0.635				
Note: NDs excluded from Outlier Test				
1. Data Value 5.34 is a Potential Outlier (Upper Tail)?				
Test Statistic: 0.908				
For 10% significance level, 5.34 is an outlier.				
For 5% significance level, 5.34 is an outlier.				
For 1% significance level, 5.34 is an outlier.				
2. Data Value 0.21 is a Potential Outlier (Lower Tail)?				
Test Statistic: 0.328				
For 10% significance level, 0.21 is not an outlier.				
For 5% significance level, 0.21 is not an outlier.				
For 1% significance level, 0.21 is not an outlier.				
Dixon's Outlier Test for trivalent chromium				
Total N = 16				
Number NDs = 0				
Number Detects = 16				
10% critical value: 0.454				
········				

5% critical value: 0.507						
1% critical value: 0.595						
Note: NDs excluded from Outlier Test						
1. Data Value 70.2 is a Potential Outlier (Upper Tail)?						
Test Statistic: 0.608						
For 10% significance level, 70.2 is an outlier.						
For 5% significance level, 70.2 is an outlier.						
For 1% significance level, 70.2 is an outlier.						
2. Data Value 16.16 is a Potential Outlier (Lower Tail)?						
Test Statistic: 0.064						
For 10% significance level, 16.16 is not an outlier.						
For 5% significance level, 16.16 is not an outlier.						
For 1% significance level, 16.16 is not an outlier.						
Dixon's Outlier Test for total chromium						
Total N = 16						
Number NDs = 0						
Number Detects = 16						
10% critical value: 0.454						
5% critical value: 0.507						
1% critical value: 0.595						
Note: NDs excluded from Outlier Test						
1. Data Value 70.2 is a Potential Outlier (Upper Tail)?						
Test Statistic: 0.598						
5 40% / ///						
For 10% significance level, 70.2 is an outlier.						
For 5% significance level, 70.2 is an outlier.						
For 1% significance level, 70.2 is an outlier.						
2. Data value 16 is a Potential Outlier (Lower Tall)?						
Test Statistic: 0.007						
For 10% significance level 16 is not an availant						
For 10 /0 significance level, 16 is not an outlier.	 					
For 1% significance level, to is not an outlier.	 					
Divon's Outlier Test for scholt						
	1	1	1	1	1	

	1			1	I	I	
Total N = 16							
Number NDs = 0							
Number Detects = 16							
10% critical value: 0.454							
5% critical value: 0.507							
1% critical value: 0.595							
Note: NDs excluded from Outlier Test							
1. Data Value 27 is a Potential Outlier (Upper Tail)?							
Test Statistic: 0.265							
For 10% significance level, 27 is not an outlier.							
For 5% significance level, 27 is not an outlier.							
For 1% significance level, 27 is not an outlier.							
2. Data Value 6.3 is a Potential Outlier (Lower Tail)?							
Test Statistic: 0.071							
For 10% significance level, 6.3 is not an outlier.							
For 5% significance level, 6.3 is not an outlier.							
For 1% significance level, 6.3 is not an outlier.							
Dixon's Outlier Test for copper							
Total N = 16							
Number NDs = 0							
Number Detects = 16							
10% critical value: 0.454							
5% critical value: 0.507							
1% critical value: 0.595							
Note: NDs excluded from Outlier Test							
1. Data Value 62.8 is a Potential Outlier (Upper Tail)?							
Test Statistic: 0.295							
For 10% significance level, 62.8 is not an outlier.							
For 5% significance level, 62.8 is not an outlier.							
For 1% significance level, 62.8 is not an outlier.							
2. Data Value 15 is a Potential Outlier (Lower Tail)?							
Test Statistic: 0.029							
For 10% significance level, 15 is not an outlier.							
For 5% significance level 15 is not an outlier		+	1	1		1	1

		1	1	1		-
Dixon's Outlier Test for lead						
Total N = 10						
Number NDs = 0						
Number Detects = 10						
10% critical value: 0.409						
5% critical value: 0.477						
1% critical value: 0.597						
Note: NDs excluded from Outlier Test						
						-
1. Data value 43 is a Potential Outlier (Opper Tall)?						-
Table Obstication 0.000						
					<u> </u>	
For 100/ significance level 42 is not an outling					<u> </u>	
For T0% significance level, 43 is not an outlier.					<u> </u>	
For 5% significance level, 43 is not an outlier.						
For 1% significance level, 43 is not an outlier.						
2. Data Value 0 55 is a Datastial Outline (Lower Tail)2					<u> </u>	
					<u> </u>	
Test Statistic: 0.110					<u> </u>	
For 10% significance level, 0.55 is not an outlier.						
For 5% significance level, 0.55 is not an outlier.						
For 1% significance level, 0.55 is not an outlier.						
Dixon's Outlier Test for manganese						
Total N = 16						
Number NDs = 0						
Number Detects = 16						
10% critical value: 0.454						
5% critical value: 0.507						
1% critical value: 0.595						
Note: NDs excluded from Outlier Test						
						-
1. Data value 940 is a Potential Outlier (Opper Tail)?						
Toot Statiation 0.242						
						-
For 10% significance lovel 040 is not an outline	 				<u> </u>	
For 5% significance level, 340 is not an outlier.	 				<u> </u>	
For 1% significance level, 940 is not an outliner.					<u> </u>	
					<u> </u>	
2. Data Value 310 is a Potential Outlior /Lowor Tail\2					<u> </u>	
					<u> </u>	
Test Statistic: 0.223					<u> </u>	

For 10% significance level, 310 is not an outlier.							
For 5% significance level, 310 is not an outlier.							
For 1% significance level, 310 is not an outlier.							
Dixon's Outlier Test for mercury							
,							
Total N = 16							
Number NDs = 3							
Number Detects = 13							
10% critical value: 0.467							
5% critical value: 0.521							
1% critical value: 0.615							
Note: NDs excluded from Outlier Test							
1. Data Value 0.28 is a Potential Outlier (Upper Tail)?							
Test Statistic: 0.911							
For 10% significance level, 0.28 is an outlier.							
For 5% significance level, 0.28 is an outlier.							
For 1% significance level, 0.28 is an outlier.							
2. Data Value 0.0072 is a Potential Outlier (Lower Tail)?							
Test Statistic: 0.338							
For 10% significance level, 0.0072 is not an outlier.							
For 5% significance level, 0.0072 is not an outlier.							
For 1% significance level, 0.0072 is not an outlier.							
Diversity Outsites Tack for states							
Number Dotecto = 16							
$\frac{10\%}{10\%}$							
5% critical value: 0.507							
1% critical value: 0.507							
Note: NDs excluded from Outlier Test							
1 Data Value 20 is a Potential Outlier (Unper Tail)?							
Test Statistic: 0.483							
For 10% significance level, 20 is an outlier.							
For 5% significance level, 20 is not an outlier.							
For 1% significance level, 20 is not an outlier.							
· · · · · · · · · · · · · · · · · · ·	1	1	1	1	1	1	1

2. Data Value 4.9 is a Potential Outlier (Lower Tail)?				
Test Statistic: 0.025				
For 10% significance level, 4.9 is not an outlier.				
For 5% significance level, 4.9 is not an outlier.				
For 1% significance level, 4.9 is not an outlier.				
Dixon's Outlier Test for selenium				
T . IN . 40				
Number NDS = 4				
Number Detects = 12				
10% critical value: 0.49				
5% critical value: 0.546				
1% critical value: 0.642				
Note: NDS excluded from Outlier Test				
1. Date Value 1.7 is a Datestial Outling (Users Tail)2				
Tast Statistic: 0.092				
For 10% significance level, 1.7 is not an outlier.				
For 5% significance level, 1.7 is not an outlier.				
For 1% significance level, 1.7 is not an outlier.				
2. Data Value 0.306 is a Potential Outlier (Lower Tail)?				
Test Statistic: 0.151				
For 10% significance level, 0.306 is not an outlier.				
For 5% significance level, 0.306 is not an outlier.				
For 1% significance level, 0.306 is not an outlier.				
Dixon's Outlier Test for strontium				
T - 111 - 40				
Number NDS = 0				
Number Detects = 16				
FV oritical value: 0.507				
1% critical value: 0.507				
Noto: NDc evoluted from Outlier Test				
1. Data Value 46 is a Potential Outlier (Upper Tail)?				
Test Statistic: 0.674				

For 10% significance level 46 is an outlier							
For 5% significance level 46 is an outlier							
For 1% significance level, 46 is an outlier.							
2 Data Value 14 is a Potential Outlier /Lower Tail\2							
Test Statistic: 0.000							
For 10% significance level 14 is not an outlier							
For 5% significance level 14 is not an outlier							
For 1% significance level, 14 is not an outlier							
No Outlier Test for thallium							
Dixon's Outlier Test for vanadium							
Total N = 10							
Number NDs = 0							
Number Detects = 10							
10% critical value: 0.409							
5% critical value: 0.477							
1% critical value: 0.597							
Note: NDs excluded from Outlier Test							
1. Data Value 190 is a Potential Outlier (Upper Tail)?							
Test Statistic: 0.794							
For 10% significance level, 190 is an outlier.							
For 5% significance level, 190 is an outlier.							
For 1% significance level, 190 is an outlier.							
2. Data Value 34 is a Potential Outlier (Lower Tail)?							
Test Statistic: 0.030							
For 10% significance level, 34 is not an outlier.							
For 5% significance level, 34 is not an outlier.							
For 1% significance level, 34 is not an outlier.							
Dixon's Outlier Test for zinc							
Total N = 10							
Number NDs = 0							
Number Detects = 10							
10% critical value: 0.409							
5% critical value: 0.477							
	1	1	1	1	1	1	1

1% critical value: 0.597				
Note: NDs excluded from Outlier Test				
1. Data Value 230 is a Potential Outlier (Upper Tail)?				
Test Statistic: 0.829				
For 10% significance level, 230 is an outlier.				
For 5% significance level, 230 is an outlier.				
For 1% significance level, 230 is an outlier.				
2. Data Value 40 is a Potential Outlier (Lower Tail)?				
Test Statistic: 0.086				
For 10% significance level, 40 is not an outlier.				
For 5% significance level, 40 is not an outlier.				
For 1% significance level, 40 is not an outlier.				

	Background Statistics for	or Data Sets	with Non-Detects	
User Selected Options	\$			
Date/Time of Computation	ProUCL 5.18/20/2021 9:	53:58 AM		
From File	ProUCL Background Inp	uts_b.xls		
Full Precision	OFF			
Confidence Coefficient	95%			
Coverage	95%			
Different or Future K Observations	1			
Number of Bootstrap Operations	2000			
antimony				
		General	Statistics	
Total	Number of Observations	2	Number of Missing Observations	2
Numbe	r of Distinct Observations	2		
	Number of Detects	0	Number of Non-Detects	2
N	umber of Distinct Detects	0	Number of Distinct Non-Detects	2
	Minimum Detect	N/A	Minimum Non-Detect	0.32
	Maximum Detect	N/A	Maximum Non-Detect	0.325
	Variance Detected	N/A	Percent Non-Detects	100%
	Mean Detected	N/A	SD Detected	N/A
Mean	of Detected Logged Data	N/A	SD of Detected Logged Data	N/A
	I			
	Warning: Th	is data set	only has 2 observations!	
Dat	a set is too small to comp	oute reliable	and meaningful statistics and estimates!	
	The data set for	r variable a	ntimony was not processed!	
It is sugg	ested to collect at least 8	to 10 obse	vations before using these statistical methods!	<u> </u>
If possible, com	pute and collect Data Qu	ality Object	ives (DQO) based sample size and analytical results.	
arsenic				
General Statistics				
Total	Number of Observations	4	Number of Distinct Observations	4
	Minimum	1.2	First Quartile	1.763
	Second Largest	2.3	Median	2.125
	Maximum	2.38	Third Quartile	2.32
	Mean	1.958	SD	0.538
	Coefficient of Variation	0.275	Skewness	-1.363
	Mean of logged Data	0.638	SD of logged Data	0.316
	Critical Values for	or Backgrou	nd Threshold Values (BTVs)	
Tole	erance Factor K (For UTL)	5.144	d2max (for USL)	1.462
		Normal	GOF Test	
5	Shapiro Wilk Test Statistic	0.87	Shapiro Wilk GOF Test	
5% S	Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level	
	Lilliefors Test Statistic	0 244	Lilliefors GOF Test	
1	5% Lilliefors Critical Value	0 375	Data appear Normal at 5% Significance Level	
		2.270		

Data appear Normal at 5% Significance Level							
Background St		suming Normal Distribution	0.040				
95% UTL with 95% Coverage	4.727	90% Percentile (z)	2.648				
95% UPL (t)	3.374	95% Percentile (z)	2.843				
95% USL	2.745	99% Percentile (z)	3.21				
A-D Test Statistic	0.468	Anderson-Darling Gamma GOF Test					
5% A-D Critical Value	0.400	Detected data appear Gamma Distributed at 5% Significand					
K-S Test Statistic	0.007	Kolmogorov-Smirnov Gamma GOF Test	Ce Level				
5% K-S Critical Value	0.275	Detected data appear Gamma Distributed at 5% Significant	re l evel				
Detected data appear	Gamma Di	stributed at 5% Significance Level					
	Gamma	Statistics					
k hat (MLE)	14.82	k star (bias corrected MLE)	3.871				
Theta hat (MLE)	0.132	Theta star (bias corrected MLE)	0.506				
nu hat (MLE)	118.5	nu star (bias corrected)	30.96				
MLE Mean (bias corrected)	1.958	MLE Sd (bias corrected)	0.995				
Background St	atistics Ass	uming Gamma Distribution					
95% Wilson Hilferty (WH) Approx. Gamma UPL	3.878	90% Percentile	3.291				
95% Hawkins Wixley (HW) Approx. Gamma UPL	3.973	95% Percentile	3.828				
95% WH Approx. Gamma UTL with 95% Coverage	6.703	99% Percentile	4.976				
95% HW Approx. Gamma UTL with 95% Coverage	7.191						
95% WH USL	2.892	95% HW USL	2.917				
	Lognorma	I GOF Test					
Shapiro Wilk Test Statistic	0.83	Shapiro Wilk Lognormal GOF Test					
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level					
Lilliefors Test Statistic	0.288	Lilliefors Lognormal GOF Test					
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level					
Data appear	Lognormal	at 5% Significance Level					
De aleman d'Ota							
			0.025				
95% UIL WITH 95% Coverage	9.598	SU% Percentile (Z)	2.030				
95% UPL (I)	2 002	95% Percentile (2)	3.10				
95 % USL	3.002	35% recentile (2)	3.943				
Nonparametric	Distribution	Free Background Statistics					
Data annea	ar Normal at	t 5% Significance Level					
Nonnarametric Linner Limits for Background Threshold Values							
Order of Statistic. r	4	95% UTL with 95% Coverage	2.38				
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185				
		Approximate Sample Size needed to achieve specified CC	59				
95% Percentile Bootstrap UTL with 95% Coverage	N/A	95% BCA Bootstrap UTL with 95% Coverage	N/A				
95% UPL	2.38	90% Percentile	2.356				
90% Chebvshev UPL	3.763	95% Percentile	2.368				
95% Chebyshev UPI	4.581	99% Percentile	2.378				
			2.370				

95% USL	2.38						
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.							
Therefore, one may use USL to estimate a BTV	Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers						
and consists of observa	tions collect	ed from clean unimpacted locations.					
The use of USL tends to provide a balan	The use of USL tends to provide a balance between false positives and false negatives provided the data						
represents a background data set and w	hen many or	site observations need to be compared with the BTV.					
barium							
General Statistics							
Total Number of Observations	4	Number of Distinct Observations	4				
Minimum	12	First Quartile	16.88				
Second Largest	23.5	Median	21				
Maximum	38.4	Third Quartile	27.23				
Mean	23.1	SD	11.23				
Coefficient of Variation	0.486	Skewness	0.995				
Mean of logged Data	3.052	SD of logged Data	0.485				
Critical Values for	or Backarou	nd Threshold Values (BTVs)					
Tolerance Factor K (For UTL)	5.144	d2max (for USL)	1.462				
	Normal (GOF Test					
Shapiro Wilk Test Statistic	0.952	Shapiro Wilk GOF Test					
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level					
Lilliefors Test Statistic	0.236	Lilliefors GOF Test					
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level					
Data appe	ar Normal at	t 5% Significance Level					
Background S	tatistics Ass	suming Normal Distribution					
95% UTL with 95% Coverage	80.89	90% Percentile (z)	37.5				
95% UPL (t)	52.66	95% Percentile (z)	41.58				
95% USL	39.53	99% Percentile (z)	49.23				
	Gamma	GOF Test					
A-D Test Statistic	0.212	Anderson-Darling Gamma GOF Test					
5% A-D Critical Value	0.659	Detected data appear Gamma Distributed at 5% Significance	e l evel				
K-S Test Statistic	0.18	Kolmogorov-Smirnov Gamma GOF Test					
5% K-S Critical Value	0.396	Detected data appear Gamma Distributed at 5% Significance	e Level				
Detected data appear	Gamma Di	stributed at 5% Significance Level					
	Gamma	Statistics					
k bat (MLF)	5.85	k star (bias corrected MLF)	1 629				
Theta hat (MLE)	3,949	Theta star (bias corrected MLE)	14.18				
nu hat (MLE)	46.8	nu star (bias corrected)	13 03				
MI F Mean (hias corrected)	23.1	MI F Sd (bias corrected)	18.1				
	20.1		10.1				
Background Q	tatistics Ass	uming Gamma Distribution					
95% Wilson Hilferty (WH) Approx. Commo LDL	62 20	anning Ganina Distribution	<u>47 19</u>				
95% Hawking Wixley (WM) Approx. Commo LDL	65 74		58 55				
55 /0 Hawkins Wixley (HW) Approx. Gamina UPL	05.74	90% Percentile	00.00				

95% WH Approx. Gamma UTL with 95% Coverage	134.8	99% Percentile	84.07				
95% HW Approx. Gamma UTL with 95% Coverage	151.3						
95% WH USL	41.31	95% HW USL	41.66				
I							
	Lognormal GOF Test						
Shapiro Wilk Test Statistic	0.998	Shapiro Wilk Lognormal GOF Test					
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level					
Lilliefors Test Statistic	0.164	Lilliefors Lognormal GOF Test					
5% Lilliefors Critical Value 0.375 Data appear Lognormal at 5% Significance Level							
Data appear	Lognormal	at 5% Significance Level					
Background Sta	tistics assu	ming Lognormal Distribution					
95% UTL with 95% Coverage	256.5	90% Percentile (z)	39.39				
95% UPL (t)	75.81	95% Percentile (z)	46.98				
95% USL	43.01	99% Percentile (z)	65.39				
Nonparametric	Distribution	Free Background Statistics					
Data appea	ar Normal at	t 5% Significance Level					
Nonparametric Upp	er Limits fo	r Background Threshold Values					
Order of Statistic, r	4	95% UTL with 95% Coverage	38.4				
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185				
		Approximate Sample Size needed to achieve specified CC	59				
95% Percentile Bootstrap UTL with 95% Coverage	N/A	95% BCA Bootstrap UTL with 95% Coverage	N/A				
95% UPL	38.4	90% Percentile	33.93				
90% Chebyshev UPL	60.78	95% Percentile	36.17				
95% Chebyshev UPL	77.85	99% Percentile	37.95				
95% USL	38.4						
Note: The use of USL tends to yield a conservative	ve estimate	of BTV, especially when the sample size starts exceeding 20.					
Therefore, one may use USL to estimate a BTV	only when th	ne data set represents a background data set free of outliers					
and consists of observa	tions collect	ed from clean unimpacted locations.					
The use of USL tends to provide a balan	ce between	false positives and false negatives provided the data					
represents a background data set and whether the set and whether the set and whether the set and the set and whether the set and the set a	nen many or	nsite observations need to be compared with the BTV.					
beryllium							
	General	Statistics					
Total Number of Observations	4	Number of Missing Observations	0				
Number of Distinct Observations	4						
Number of Detects	3	Number of Non-Detects	1				
Number of Distinct Detects	3	Number of Distinct Non-Detects	1				
Minimum Detect	0.249	Minimum Non-Detect	0.32				
Maximum Detect	0.465	Maximum Non-Detect	0.32				
Variance Detected	0.0146	Percent Non-Detects	25%				
Mean Detected	0.326	SD Detected	0.121				
Mean of Detected Logged Data	-1.163	SD of Detected Logged Data	0.345				
Warning: Da	ata set has	only 3 Detected Values.					
This is not enough to comp	ute meanin	gful or reliable statistics and estimates.					

Oddina Mahara	Destaura				
	5 T Backgrou	nd Threshold Values (BTVs)	1.400		
Tolerance Factor K (For UTL)	5.144	d2max (for USL)	1.462		
Norm	al GOF Tes	t on Detects Only			
Shapiro Wilk Test Statistic	0.8	Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Leve	əl		
Lilliefors Test Statistic	0.364	Lilliefors GOF Test			
5% Lilliefors Critical Value	5% Lilliefors Critical Value 0.425 Detected Data appear Normal at 5% Significance Level				
Detected Data appear Normal at 5% Significance Level					
Kaplan Meier (KM) Bacl	ground Sta	tistics Assuming Normal Distribution			
KM Mean	0.308	KM SD	0.0906		
95% UTL95% Coverage	0.775	95% KM UPL (t)	0.547		
90% KM Percentile (z)	0.425	95% KM Percentile (z)	0.457		
99% KM Percentile (z)	0.519	95% KM USL	0.441		
DL/2 Substitution Back	ground Stat	istics Assuming Normal Distribution			
Mean	0.284	SD	0.129		
95% UTL95% Coverage	0.947	95% UPL (t)	0.623		
90% Percentile (z)	0.449	95% Percentile (z)	0.496		
99% Percentile (z)	0.584	95% USL	0.473		
DL/2 is not a recommended meth	od. DL/2 pro	ovided for comparisons and historical reasons			
Gamma GOF	Tests on De	etected Observations Only			
Not End	ough Data to	Perform GOF Test			
Gamma	Statistics or	n Detected Data Only			
k hat (MLE)	12.11	k star (bias corrected MLE)	N/A		
Theta hat (MLE)	0.0269	Theta star (bias corrected MLE)	N/A		
nu hat (MLE)	72.63	nu star (bias corrected)	N/A		
MLE Mean (bias corrected)	N/A				
MLE Sd (bias corrected)	N/A	95% Percentile of Chisquare (2kstar)	N/A		
Gamma ROS	Cinting Inc.	sing Imputed Non-Detects			
	Statistics us				
GROS may not be used when data s	et has > 50%	6 NDs with many tied observations at multiple DLs			
GROS may not be used when data so GROS may not be used when kstar of detects is s	et has > 50%	6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20)			
GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS in	et has > 50% small such as nethod may	6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs			
GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS of This is especi	et has > 50% small such as nethod may ally true whe	6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs on the sample size is small.			
GROS may not be used when data so GROS may not be used when kstar of detects is a For such situations, GROS o This is especi For gamma distributed detected data, BTVs a	et has > 50% small such a method may ally true whe nd UCLs ma	6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates			
GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS of This is especi For gamma distributed detected data, BTVs a Minimum	et has > 50% small such a nethod may ally true whe nd UCLs ma 0.249	6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates	0.31		
GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS of This is especi For gamma distributed detected data, BTVs a Minimum	et has > 50% small such a method may ally true whe nd UCLs ma 0.249 0.465	6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median	0.31 0.263		
GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS of This is especi For gamma distributed detected data, BTVs a Minimum Maximum	at has > 50% mall such a method may ally true whe nd UCLs ma 0.249 0.465 0.103	6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV	0.31 0.263 0.334		
GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS of This is especies For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE)	et has > 50% small such a nethod may ally true whe nd UCLs ma 0.249 0.465 0.103 14.23	6 NDs with many tied observations at multiple DLs 5 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs an the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.31 0.263 0.334 3.725		
GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS of This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE)	Statistics is et has > 50% small such a method may ally true whe nd UCLs ma 0.249 0.465 0.103 14.23 0.0218 112.0	6 NDs with many tied observations at multiple DLs 5 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.31 0.263 0.334 3.725 0.0833		
GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS of This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	Statistics in et has > 50% small such a method may ally true whe nd UCLs ma 0.249 0.465 0.103 14.23 0.0218 113.9 0.21	6 NDs with many tied observations at multiple DLs 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20)	0.31 0.263 0.334 3.725 0.0833 29.8 0.161		
GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS in This is especie For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)	Statistics in at has > 50% small such a method may ally true whe nd UCLs ma 0.249 0.465 0.103 14.23 0.0218 113.9 0.31	6 NDs with many tied observations at multiple DLs 5 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	0.31 0.263 0.334 3.725 0.0833 29.8 0.161		
GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS of This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) 95% Percentile of Chisquare (2kstar)	Statistics is et has > 50% small such a method may ally true whe nd UCLs ma 0.249 0.465 0.103 14.23 0.0218 113.9 0.31 14.72 0.612	6 NDs with many tied observations at multiple DLs 5 NDs with many tied observations at multiple DLs 5 <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs en the sample size is small. by be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) 90% Percentile	0.31 0.263 0.334 3.725 0.0833 29.8 0.161 0.526 0.2		

The following statistics are computed using Gamma ROS Statistics on Imputed Data							
Upper Limits u	using Wilson	Hilferty (W	H) and Hawkins Wixley (HW) Methods				
	WH	HW	WH	HW			
95% Approx. Gamma UTL with 95% Coverage	1.083	1.135	95% Approx. Gamma UPL 0.621	0.628			
95% Gamma USL	0.461	0.461					
Estimates of Gamma Parameters using KM Estimates							
	Mean (KM)	0.308	SD (KM)	0.0906			
Va	riance (KM)	0.00821	SE of Mean (KM)	0.0556			
	k hat (KM)	11.59	k star (KM)	3.064			
	nu hat (KM)	92.7	nu star (KM)	24.51			
the	eta hat (KM)	0.0266	theta star (KM)	0.101			
80% gamma pero	centile (KM)	0.439	90% gamma percentile (KM)	0.545			
95% gamma pero	centile (KM)	0.643	99% gamma percentile (KM)	0.857			
The following sta	tistics are co	omputed usi	ing gamma distribution and KM estimates				
Upper Limits u	using Wilson	Hilferty (W	H) and Hawkins Wixley (HW) Methods				
	WH	HW	WH	HW			
95% Approx. Gamma UTL with 95% Coverage	0.947	0.983	95% Approx. Gamma UPL 0.571	0.575			
95% KM Gamma Percentile	0.456	0.456	95% Gamma USL 0.437	0.436			
		Toot on D	intented Observations Only				
	gnormal GO		Sharira Wilk COE Taat				
Shapiro Wilk Test Statistic		0.017	Detected Dete oppose Lagnermal at E% Significance Lavel				
5% Shapiro Wilk Critical Value		0.707	Lilliefore GOF Teet				
Lilliefors Test Statistic		0.300	Detected Data annear Lognormal at 5% Significance Level				
5% Lilliefors Critical Value 0.425 Detected Data appear Lognormal at 5% Significance Leve							
Background Lognormal RC	OS Statistics	Assumina I	Lognormal Distribution Using Imputed Non-Detects				
Mean in Or	iginal Scale	0.31	Mean in Log Scale	-1.206			
SD in Or	iginal Scale	0.103	SD in Log Scale	0.295			
95% UTL95%	% Coverage	1.364	95% BCA UTL95% Coverage	N/A			
95% Bootstrap (%) UTL95%	% Coverage	N/A	95% UPL (t)	0.65			
90% P	ercentile (z)	0.437	95% Percentile (z)	0.486			
99% P	ercentile (z)	0.594	95% USL	0.461			
Statistics using KM	A estimates of	on Logged I	Data and Assuming Lognormal Distribution				
KM Mean of L	ogged Data	-1.213	95% KM UTL (Lognormal)95% Coverage	1.129			
KM SD of L	ogged Data	0.259	95% KM UPL (Lognormal)	0.588			
95% KM Percentile Lo	gnormal (z)	0.456	95% KM USL (Lognormal)	0.434			
			·				
Backgi	round DL/2 S	Statistics As	suming Lognormal Distribution				
Mean in Or	iginal Scale	0.284	Mean in Log Scale	-1.331			
SD in Or	iginal Scale	0.129	SD in Log Scale	0.438			
95% UTL95%	% Coverage	2.511	95% UPL (t)	0.836			
90% P	ercentile (z)	0.463	95% Percentile (z)	0.543			
99% P	ercentile (z)	0.732	95% USL	0.501			
DL/2 is not a Recomm	ended Metho	od. DL/2 pro	ovided for comparisons and historical reasons.				
Nor	nparametric	Distribution	Free Background Statistics				

Data appear to follow a Discernible Distribution at 5% Significance Level					
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)					
Order of Statistic, r	4	95% UTL with95% Coverage	0.465		
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185		
Approximate Sample Size needed to achieve specified CC	59	95% UPL	0.465		
95% USL	0.465	95% KM Chebyshev UPL	0.75		
Note: The use of USL tends to yield a conservativ	ve estimate	of BTV, especially when the sample size starts exceeding 20.			
Therefore, one may use USL to estimate a BTV of	only when th	ne data set represents a background data set free of outliers			
and consists of observat	tions collect	ed from clean unimpacted locations.			
The use of USL tends to provide a balance	ce between	false positives and false negatives provided the data			
represents a background data set and wh	en many or	nsite observations need to be compared with the BTV.			
	,	· ·			
cadmium					
	General	Statistics			
Total Number of Observations		Number of Missing Observations	0		
Number of Distinct Observations	4		0		
	4	Number of New Detector	4		
Number of Detects	0	Number of Non-Detects	4		
Number of Distinct Detects	0	Number of Distinct Non-Detects	4		
Minimum Detect	N/A	Minimum Non-Detect	0.32		
Maximum Detect	N/A	Maximum Non-Detect	0.636		
Variance Detected	N/A	Percent Non-Detects	100%		
Mean Detected	N/A	SD Detected	N/A		
Mean of Detected Logged Data	N/A	SD of Detected Logged Data	N/A		
Warning: All observations are Non-Detects	s (NDs), the	refore all statistics and estimates should also be NDs!			
Specifically, sample mean, UCLs, UPLs, and	other stati	stics are also NDs lying below the largest detection limit!			
The Project Team may decide to use alternative sit	e specific v	values to estimate environmental parameters (e.g., EPC, BTV)).		
The data set for	variable ca	admium was not processed!			
hexavalent chromium					
	General	Statistics			
Total Number of Observations	4	Number of Missing Observations	0		
Number of Distinct Observations	4				
Number of Detects	3	Number of Non-Detects	1		
Number of Distinct Detects	3	Number of Distinct Non-Detects	1		
Minimum Detect	0 24	Minimum Non-Detect	0.4		
Maximum Detect	0.671	Maximum Non Detect	0.4		
Variance Detect	0.0/67	Percent Non Detect	25%		
Moon Detected	0.0407		0.216		
Moon of Detected Large 1 Detected	0.440		0.210		
iviean of Detected Logged Data	-0.892	SD of Detected Logged Data	0.515		
Warning: Da	ta set has	only 3 Detected Values.			
This is not enough to comp	ute meanin	gtul or reliable statistics and estimates.			

.462
).177
).86
).686
).654
).215
).951
).739
).699
'A A
Ä Ä Ä
Ä Ä Ä
'A 'A 'A A
A A A
'A 'A 'A 'A
'A 'A 'A 'A
Ά Ά Ά
⁷ A ⁷ A ⁷ A
'A 'A 'A 'A
'A 'A 'A 'A
/A /A /A
['] A ['] A ['] A ['] A ['] A
⁷ A ⁷ A ⁷ A ⁷ A ⁷ A ⁷ A ⁷ A ⁷ A
IA IA
/A /A
A A A A A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A A A A A A
/A /A </td
A A A A A A A A A A A A A A A A A A A

Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods					
	WH	HW		WH	HW
95% Approx. Gamma UTL with 95% Coverage	2.552	2.894	95% Approx. Gamma UPL	1.15	1.195
95% Gamma USL	0.727	0.733			
Est	timates of G	amma Parai	meters using KM Estimates		
	Mean (KM)	0.395		SD (KM)	0.177
Va	riance (KM)	0.0313	SE of M	lean (KM)	0.108
	k hat (KM)	4.974	k	star (KM)	1.41
	nu hat (KM)	39.79	nu star (KM)		11.28
the	eta hat (KM)	0.0794	theta	star (KM)	0.28
80% gamma per	centile (KM)	0.615	90% gamma percer	ntile (KM)	0.835
95% gamma per	centile (KM)	1.05	99% gamma percer	ntile (KM)	1.537
	L. L			I	
The following sta	tistics are co	omputed usi	ng gamma distribution and KM estimates		
Upper Limits u	using Wilson	Hilferty (W	H) and Hawkins Wixley (HW) Methods		
	WH	HW		WH	HW
95% Approx. Gamma UTL with 95% Coverage	2.009	2.205	95% Approx. Gamma UPL	0.989	1.014
95% KM Gamma Percentile	0.709	0.714	95% Gamma USL	0.664	0.667
Lo	gnormal GO	F Test on D	etected Observations Only		
Shapiro Wilk T	est Statistic	0.995	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value		0.767	Detected Data appear Lognormal at 5% Significance Level		evel
Lilliefors T	est Statistic	0.2	Lilliefors GOF Test		
5% Lilliefors Critical Value		0.425	Detected Data appear Lognormal at 5% Sigr	nificance L	evel
Detec	cted Data ap	pear Logno	rmal at 5% Significance Level		
Background Lognormal RC	DS Statistics	Assuming I	Lognormal Distribution Using Imputed Non-Detects	;	
Mean in Or	riginal Scale	0.393	Mean in L	Log Scale	-1.031
SD in Or	riginal Scale	0.206	SD in L	Log Scale	0.505
95% UTL959	% Coverage	4.796	95% BCA UTL95% (Coverage	N/A
95% Bootstrap (%) UTL959	% Coverage	N/A	959	% UPL (t)	1.347
90% P	ercentile (z)	0.681	95% Perc	centile (z)	0.818
99% P	ercentile (z)	1.155	(95% USL	0.746
Statistics using KM	A estimates	on Logged [Data and Assuming Lognormal Distribution		
KM Mean of L	ogged Data	-1.025	95% KM UTL (Lognormal)95% (Coverage	3.309
KM SD of L	ogged Data	0.432	95% KM UPL (Lo	ognormal)	1.118
95% KM Percentile Lo	ognormal (z)	0.73	95% KM USL (Lo	ognormal)	0.675
Backg	round DL/2	Statistics As	suming Lognormal Distribution		
Mean in Or	riginal Scale	0.385	Mean in L	Log Scale	-1.071
SD in Or	riginal Scale	0.215	SD in L	Log Scale	0.553
95% UTL959	% Coverage	5.895	959	% UPL (t)	1.469
90% P	ercentile (z)	0.696	95% Perc	centile (z)	0.851
99% P	ercentile (z)	1.241		95% USL	0.769
DL/2 is not a Recomm	ended Meth	od. DL/2 pro	ovided for comparisons and historical reasons.		
Noi	nparametric	Distribution	Free Background Statistics		

Data appear to follow a Discernible Distribution at 5% Significance Level

453

Nonparametric Upper Limits for B	ſVs(no dist	inction made between detects and nondetects)	
Order of Statistic, r	4	95% UTL with95% Coverage	0.671
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185
Approximate Sample Size needed to achieve specified CC	59	95% UPL	0.671
95% USL	0.671	95% KM Chebyshev UPL	1.257
Note: The use of USL tends to yield a conservative	ve estimate	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV of	only when t	he data set represents a background data set free of outliers	
and consists of observa	tions collec	ted from clean unimpacted locations.	
The use of USL tends to provide a balan	ce between	false positives and false negatives provided the data	
represents a background data set and wh	nen many o	nsite observations need to be compared with the BTV.	
trivalent chromium			
General Statistics			
Total Number of Observations	4	Number of Distinct Observations	4
Minimum	22.76	First Quartile	37.57
Second Largest	62.88	Median	52.69
Maximum	64.97	Third Quartile	63.4
Mean	48.28	SD	19.8
Coefficient of Variation	0.41	Skewness	-0.776
Mean of logged Data	3.797	SD of logged Data	0.488
Critical Values for Tolerance Factor K (For UTL)	or Backgrou 5.144	und Threshold Values (BTVs) d2max (for USL)	1.462
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.894	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.27	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level	
Data appea	ar Normal a	t 5% Significance Level	
Background S	tatistics As	suming Normal Distribution	
95% UTL with 95% Coverage	150.1	90% Percentile (z)	73.66
95% UPL (t)	100.4	95% Percentile (z)	80.85
95% USL	77.24	99% Percentile (z)	94.35
	Gamma	GOF Test	
A-D Test Statistic	0.401	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.658	Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic	0.297	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.396	Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected data appear	Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	6.447	k star (bias corrected MLE)	1.778
Theta hat (MLE)	7.488	Theta star (bias corrected MLE)	27.15
nu hat (MLE)	51.58	nu star (bias corrected)	14.23

MLE Mean (bias corrected)	48.28	MLE Sd (bias corrected)	36.2			
Background Statistics Assuming Gamma Distribution						
95% Wilson Hilferty (WH) Approx. Gamma UPL	127.5	90% Percentile	96.54			
95% Hawkins Wixley (HW) Approx. Gamma UPL	133.7	95% Percentile	118.9			
95% WH Approx. Gamma UTL with 95% Coverage	264.9	99% Percentile	168.8			
95% HW Approx. Gamma UTL with 95% Coverage	301.4					
95% WH USL	84.49	95% HW USL	85.86			
	Lognorma	I GOF Test				
Shapiro Wilk Test Statistic	0.866	Shapiro Wilk Lognormal GOF Test				
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level				
Lilliefors Test Statistic	0.259	Lilliefors Lognormal GOF Test				
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level				
Data appear	Lognormal	at 5% Significance Level				
Background Sta	tistics assu	ming Lognormal Distribution				
95% UTL with 95% Coverage	548.8	90% Percentile (z)	83.33			
95% UPL (t)	161	95% Percentile (z)	99.49			
95% USL	91.02	99% Percentile (z)	138.7			
Nonparametric	Distribution	Free Background Statistics				
Data appe	ar Normal a	t 5% Significance Level				
Nonparametric Upp	er Limits fo	r Background Threshold Values				
Order of Statistic, r	4	95% UTL with 95% Coverage	64.97			
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185			
		Approximate Sample Size needed to achieve specified CC	59			
95% Percentile Bootstrap UTL with 95% Coverage	N/A	95% BCA Bootstrap UTL with 95% Coverage	N/A			
95% UPL	64.97	90% Percentile	64.34			
90% Chebyshev UPL	114.7	95% Percentile	64.66			
95% Chebyshev UPL	144.8	99% Percentile	64.91			
95% USL	64.97					
Therefore, one movilies USL to estimate a BTV	ve estimate	of BTV, especially when the sample size starts exceeding 20.				
and consists of absonut						
The use of USL tends to provide a balar		false positives and false positives provided the data				
represents a background data set and w		raise positives and raise negatives provided the data				
		isite observations need to be compared with the DTV.				
total chromium						
			,			
I otal Number of Observations	4	Number of Distinct Observations	4			
Minimum	23	First Quartile	37.63			
Second Largest	03.55	Median	53.03			
Maximum	65.4	I hird Quartile	64.01			
Mean	48.61	SD	19.99			
Coefficient of Variation	0.411	Skewness	-0.749			
Mean of logged Data	3.804	SD of logged Data	0.487			

Critical Values fo	r Bookaro	und Threshold Volues (PTVs)	
			1 460
Tolerance Factor K (For UTL)	5.144	d2max (for USL)	1.402
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.891	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.273	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level	
Data appea	r Normal a	t 5% Significance Level	
		-	
Background St	atistics As	suming Normal Distribution	
95% UTL with 95% Coverage	151.4	90% Percentile (z)	74.23
95% UPL (t)	101.2	95% Percentile (z)	81.49
95% USL	77.84	99% Percentile (z)	95.11
	Gamma	GOF Test	
A-D Test Statistic	0.403	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.658	Detected data appear Gamma Distributed at 5% Significance	ce Level
K-S Test Statistic	0.3	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.396	Detected data appear Gamma Distributed at 5% Significance	ce Level
Detected data appear	Gamma D	istributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	6.448	k star (bias corrected MLE)	1.779
Theta hat (MLE)	7.539	Theta star (bias corrected MLE)	27.33
nu hat (MLE)	51.58	nu star (bias corrected)	14.23
MLE Mean (bias corrected)	48.61	MLE Sd (bias corrected)	36.45
Background St	atistics As	suming Gamma Distribution	
95% Wilson Hilferty (WH) Approx, Gamma LIPI	128 /		97 21
95% Hawkins Wiyley (HW) Approx. Gamma UPL	134.6	95% Percentile	110 7
95% WH Approx, Gamma LITL with 95% Coverage	266.7	99% Percentile	170
95% HW Approx, Gamma LITL with 95% Coverage	303.3		170
95% WH USL	85.08	95% HW USL	86.44
	Lognorma	al GOF Test	
Shapiro Wilk Test Statistic	0.866	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.262	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal	at 5% Significance Level	
Background Sta	tistics assu	uming Lognormal Distribution	
95% UTL with 95% Coverage	550.8	90% Percentile (z)	83.84
95% UPL (t)	161.9	95% Percentile (z)	100.1
95% USL	91.57	99% Percentile (z)	139.5
Nonparametric	Distribution	Free Background Statistics	
Data appea	ar Normal a	t 5% Significance Level	

	per Limits fo	r Background Threshold Values	
Order of Statistic, r	4	95% UTL with 95% Coverage	65.4
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.18
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	N/A	95% BCA Bootstrap UTL with 95% Coverage	N/A
95% UPL	65.4	90% Percentile	64.85
90% Chebyshev UPL	115.6	95% Percentile	65.12
95% Chebyshev UPL	146	99% Percentile	65.34
95% USL	65.4		
Note: The use of USL tends to yield a conservation	ve estimate	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV	only when th	ne data set represents a background data set free of outliers	
and consists of observa	ations collec	ted from clean unimpacted locations.	
The use of USL tends to provide a balar	nce between	false positives and false negatives provided the data	
represents a background data set and w	hen many oi	nsite observations need to be compared with the BTV.	
		· · · · · · · · · · · · · · · · · · ·	
balt			
eneral Statistics			
Total Number of Observations	4	Number of Distinct Observations	4
Minimum	3.9	First Quartile	6.33
Second Largest	7.63	Median	7.39
Maximum	14.1	Third Quartile	9.24
Mean	8.194	SD	4.26
Coefficient of Variation	0.521	Skewness	1.07
Mean of logged Data	2.001	SD of logged Data	0.52
Critical Values f	or Backgrou	Ind Threshold Values (BTVs)	
Tolerance Factor K (For LITL)	5.144	d2max (for USL)	1.46
	Normal	GOF Test	
Shapiro Wilk Test Statistic	Normal (GOF Test Shapiro Wilk GOF Test	
Shapiro Wilk Test Statistic	Normal (0.919 0.748	GOF Test Shapiro Wilk GOF Test Data appear Normal at 5% Significance Level	
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	Normal (0.919 0.748 0.303	GOF Test Shapiro Wilk GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test	
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	Normal 0 0.919 0.748 0.303 0.375	GOF Test Shapiro Wilk GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level	
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appe	Normal (0.919 0.748 0.303 0.375 ar Normal a	GOF Test Shapiro Wilk GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level t 5% Significance Level	
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appe	Normal (0.919 0.748 0.303 0.375 ar Normal a	GOF Test Shapiro Wilk GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level t 5% Significance Level	
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appe	Normal (0.919 0.748 0.303 0.375 ar Normal a	GOF Test Shapiro Wilk GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level t 5% Significance Level suming Normal Distribution	
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appe Background S 95% UTL with 95% Coverage	Normal (0.919 0.748 0.303 0.375 ar Normal a statistics Ass 30.15	GOF Test Shapiro Wilk GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level t 5% Significance Level suming Normal Distribution 90% Percentile (z)	13.60
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appe Background S 95% UTL with 95% Coverage 95% UPL (t)	Normal (0.919 0.748 0.303 0.375 ar Normal a tatistics Ass 30.15 19.43	GOF Test	13.60
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appe Background S 95% UTL with 95% Coverage 95% UPL (t) 95% USL	Normal (0.919 0.748 0.303 0.375 ar Normal a statistics Ass 30.15 19.43 14.44	GOF Test GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level t 5% Significance Level suming Normal Distribution 90% Percentile (z) 95% Percentile (z) 99% Percentile (z)	13.60 15.22 18.12
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appe Background S 95% UTL with 95% Coverage 95% UPL (t) 95% USL	Normal (0.919 0.748 0.303 0.375 ar Normal a tatistics Ass 30.15 19.43 14.44	GOF Test Shapiro Wilk GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level t 5% Significance Level suming Normal Distribution 90% Percentile (z) 95% Percentile (z) 99% Percentile (z)	13.60 15.22 18.12
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appe Background S 95% UTL with 95% Coverage 95% UPL (t) 95% USL	Normal 0 0.919 0.748 0.303 0.375 ar Normal a tatistics Ass 30.15 19.43 14.44 Gamma	GOF Test GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level t 5% Significance Level suming Normal Distribution 90% Percentile (z) 95% Percentile (z) 99% Percentile (z)	13.6 15.2 18.1
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appe Background S 95% UTL with 95% Coverage 95% UPL (t) 95% USL	Normal (0.919 0.748 0.303 0.375 ar Normal a 30.15 19.43 14.44 Gamma 0.29	GOF Test GOF Test GOF Test Data appear Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level t 5% Significance Level suming Normal Distribution 90% Percentile (z) 95% Percentile (z) 99% Percentile (z) 99% Percentile (z)	13.6 15.2 18.1
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appe Background S 95% UTL with 95% Coverage 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value	Normal (0.919 0.748 0.303 0.375 ar Normal a tatistics Ass 30.15 19.43 14.44 Gamma 0.29 0.659	GOF Test	13.60 15.2: 18.1: e Leve
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appe Background S 95% UTL with 95% Coverage 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	Normal (0.919 0.748 0.303 0.375 ar Normal a tatistics Ass 30.15 19.43 14.44 Gamma 0.29 0.659 0.254	GOF Test	13.6 15.2 18.1
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appe Background S 95% UTL with 95% Coverage 95% UPL (t) 95% USL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	Normal (0.919 0.748 0.303 0.375 ar Normal a 30.15 19.43 14.44 Gamma 0.29 0.659 0.254 0.396	GOF Test GOF Test GOF Test GOF Test GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance GOF Test Detected data appear Gamma Distributed at 5% Significance Suming Anderson-Darling Camma GOF Test Detected data appear Gamma Distributed at 5% Significance	13.6 15.2 18.1

	Gamma	Statistics				
k hat (MLE)	5.069	k star (bias corrected MLE)	1.434			
Theta hat (MLE)	1.616	Theta star (bias corrected MLE)	5.714			
nu hat (MLE)	40.55	nu star (bias corrected)	11.47			
MLE Mean (bias corrected)	8.194	MLE Sd (bias corrected)	6.843			
Background Statistics Assuming Gamma Distribution						
95% Wilson Hilferty (WH) Approx. Gamma UPL	23.87	90% Percentile	17.26			
95% Hawkins Wixley (HW) Approx. Gamma UPL	24.89	95% Percentile	21.67			
95% WH Approx. Gamma UTL with 95% Coverage	52.57	99% Percentile	31.65			
95% HW Approx. Gamma UTL with 95% Coverage	59.85					
95% WH USL	15.18	95% HW USL	15.33			
Lognormal GOF Test						
Shapiro Wilk Test Statistic	0.965	Shapiro Wilk Lognormal GOF Test				
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level				
Lilliefors Test Statistic	0.227	Lilliefors Lognormal GOF Test				
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level				
Data appear	Lognormal	at 5% Significance Level				
Background Sta	tistics assu	ming Lognormal Distribution				
95% UTL with 95% Coverage	110.3	90% Percentile (z)	14.51			
95% UPL (t)	29.47	95% Percentile (z)	17.56			
95% USL	15.95	99% Percentile (z)	25.11			
Nonparametric	Distribution	Free Background Statistics				
Data appe	ar Normal at	t 5% Significance Level				
Nonparametric Upp	er Limits for	r Background Threshold Values				
Order of Statistic, r	4	95% UTL with 95% Coverage	1/1			
			14.1			
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185			
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC	0.185			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage	0.211 N/A	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage	0.185 59 N/A			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL	0.211 N/A 14.1	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile	0.185 59 N/A 12.16			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL	0.211 N/A 14.1 22.51	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile	0.185 59 N/A 12.16 13.13			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL	0.211 N/A 14.1 22.51 29	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile	0.185 59 N/A 12.16 13.13 13.9			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL	0.211 N/A 14.1 22.51 29 14.1	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile	0.185 59 N/A 12.16 13.13 13.9			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL	0.211 N/A 14.1 22.51 29 14.1	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile	0.185 59 N/A 12.16 13.13 13.9			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL 95% USL	0.211 N/A 14.1 22.51 29 14.1 ve estimate	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile 06 BTV, especially when the sample size starts exceeding 20.	0.185 59 N/A 12.16 13.13 13.9			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL 95% USL Note: The use of USL tends to yield a conservati Therefore, one may use USL to estimate a BTV	0.211 N/A 14.1 22.51 29 14.1 ve estimate only when th	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile 00 BTV, especially when the sample size starts exceeding 20. ne data set represents a background data set free of outliers	0.185 59 N/A 12.16 13.13 13.9			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL 95% USL Note: The use of USL tends to yield a conservati Therefore, one may use USL to estimate a BTV and consists of observa	0.211 N/A 14.1 22.51 29 14.1 ve estimate only when th titons collect	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile 99% Percentile	0.185 59 N/A 12.16 13.13 13.9			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL 95% USL Note: The use of USL tends to yield a conservati Therefore, one may use USL to estimate a BTV and consists of observa The use of USL tends to provide a balar	0.211 N/A 14.1 22.51 29 14.1 ve estimate only when th tions collect ace between	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile 99% Percentile 0f BTV, especially when the sample size starts exceeding 20. ne data set represents a background data set free of outliers ed from clean unimpacted locations. false positives and false negatives provided the data	0.185 59 N/A 12.16 13.13 13.9			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL 95% USL Note: The use of USL tends to yield a conservati Therefore, one may use USL to estimate a BTV and consists of observa The use of USL tends to provide a balar represents a background data set and w	0.211 N/A 14.1 22.51 29 14.1 ve estimate only when th tions collect ice between nen many or	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile 99% Percentile 0 f BTV, especially when the sample size starts exceeding 20. ne data set represents a background data set free of outliers ed from clean unimpacted locations. false positives and false negatives provided the data nsite observations need to be compared with the BTV.	0.185 59 N/A 12.16 13.13 13.9			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL 95% USL Note: The use of USL tends to yield a conservati Therefore, one may use USL to estimate a BTV and consists of observa The use of USL tends to provide a balar represents a background data set and w	0.211 N/A 14.1 22.51 29 14.1 ve estimate only when th tions collect ice between nen many or	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile 99% Percentile 0 f BTV, especially when the sample size starts exceeding 20. ne data set represents a background data set free of outliers ed from clean unimpacted locations. false positives and false negatives provided the data nsite observations need to be compared with the BTV.	0.185 59 N/A 12.16 13.13 13.9			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL 95% USL Note: The use of USL tends to yield a conservati Therefore, one may use USL to estimate a BTV and consists of observa The use of USL tends to provide a balar represents a background data set and wi copper	0.211 N/A 14.1 22.51 29 14.1 ve estimate only when th tions collect ice between nen many or	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile 99% Percentile 0f BTV, especially when the sample size starts exceeding 20. ne data set represents a background data set free of outliers ed from clean unimpacted locations. false positives and false negatives provided the data nsite observations need to be compared with the BTV.	0.185 59 N/A 12.16 13.13 13.9			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL 95% USL Note: The use of USL tends to yield a conservati Therefore, one may use USL to estimate a BTV and consists of observa The use of USL tends to provide a balar represents a background data set and w copper	0.211 N/A 14.1 22.51 29 14.1 ve estimate only when th titions collect ice between nen many or	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile 99% Percentile 0f BTV, especially when the sample size starts exceeding 20. ne data set represents a background data set free of outliers ed from clean unimpacted locations. false positives and false negatives provided the data nsite observations need to be compared with the BTV.	0.185 59 N/A 12.16 13.13 13.9			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL 95% USL Note: The use of USL tends to yield a conservati Therefore, one may use USL to estimate a BTV and consists of observa The use of USL tends to provide a balar represents a background data set and wi copper General Statistics	0.211 N/A 14.1 22.51 29 14.1 ve estimate only when th tions collect ice between nen many or	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile 99% Percentile 0 f BTV, especially when the sample size starts exceeding 20. ne data set represents a background data set free of outliers ed from clean unimpacted locations. false positives and false negatives provided the data nsite observations need to be compared with the BTV.	0.185 59 N/A 12.16 13.13 13.9			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL 95% USL Note: The use of USL tends to yield a conservati Therefore, one may use USL to estimate a BTV and consists of observat The use of USL tends to provide a balar represents a background data set and wi copper General Statistics Total Number of Observations	0.211 N/A 14.1 22.51 29 14.1 ve estimate only when th titions collect ince between hen many or 4	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile 99% Percentile 0 f BTV, especially when the sample size starts exceeding 20. ne data set represents a background data set free of outliers ed from clean unimpacted locations. false positives and false negatives provided the data nsite observations need to be compared with the BTV.	0.185 59 N/A 12.16 13.13 13.9			
Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL 95% USL Note: The use of USL tends to yield a conservati Therefore, one may use USL to estimate a BTV and consists of observat The use of USL tends to provide a balar represents a background data set and wi copper General Statistics Total Number of Observations Minimum	0.211 N/A 14.1 22.51 29 14.1 ve estimate only when th titons collect ice between hen many or hen many or 4 4.2	Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile 90% Percentile 90% Percentile 90% Percentile 90% Percentile 91% Percentile 91% Percentile 91% Percentile 91% Percentile 91% Percentile	0.185 59 N/A 12.16 13.13 13.9			
Mean	7.866	SD	2.589			
---	---	---	---	--	--	--
Coefficient of Variation	0.329	Skewness	-1.323			
Mean of logged Data	2.011	SD of logged Data	0.395			
Critical Values for	or Backgrou	nd Threshold Values (BTVs)				
Tolerance Factor K (For UTL)	5.144	d2max (for USL)	1.462			
		L I				
	Normal C	GOF Test				
Shapiro Wilk Test Statistic	0.881	Shapiro Wilk GOF Test				
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level				
Lilliefors Test Statistic	0.335	Lilliefors GOF Test				
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level				
Data appea	ar Normal at	5% Significance Level				
Background S	tatistics Ass	suming Normal Distribution	11.10			
95% UTL with 95% Coverage	21.19	90% Percentile (z)	11.18			
95% UPL (t)	14.68	95% Percentile (z)	12.13			
95% USL	11.65	99% Percentile (z)	13.89			
	Commo					
A D Test Statistic	0.517	Anderson Darling Commo COE Test				
5% A-D Critical Value	0.517	Detected data annear Gamma Distributed at 5% Significance				
K-S Test Statistic	0.007	Kolmogorov-Smirnov Gamma GOE Test				
5% K-S Critical Value	0.395	Detected data appear Gamma Distributed at 5% Significance				
Detected data annear	Gamma Di	stributed at 5% Significance Level				
Detected data appear Gamma Distributed at 5% Significance Level						
	Gamma	Statistics				
k hat (MLE)	Gamma 9.824	Statistics k star (bias corrected MLE)	2.623			
k hat (MLE) Theta hat (MLE)	Gamma 9.824 0.801	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE)	2.623			
k hat (MLE) Theta hat (MLE) nu hat (MLE)	Gamma 9.824 0.801 78.59	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE)	2.623 2.999 20.98			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)	Gamma 9.824 0.801 78.59 7.866	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	2.623 2.999 20.98 4.857			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)	Gamma 9.824 0.801 78.59 7.866	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	2.623 2.999 20.98 4.857			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St	Gamma 9.824 0.801 78.59 7.866 atistics Ass	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution	2.623 2.999 20.98 4.857			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE Sd (bias corrected) WILE Sd (bias corrected) 90% Percentile	2.623 2.999 20.98 4.857 14.38			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile	2.623 2.999 20.98 4.857 14.38 17.17			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL 95% WH Approx. Gamma UTL with 95% Coverage	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42 33.5	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile 99% Percentile	2.623 2.999 20.98 4.857 14.38 17.17 23.27			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL 95% WH Approx. Gamma UTL with 95% Coverage 95% HW Approx. Gamma UTL with 95% Coverage	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42 33.5 36.97	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile 99% Percentile	2.623 2.999 20.98 4.857 14.38 17.17 23.27			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL 95% WH Approx. Gamma UTL with 95% Coverage 95% HW Approx. Gamma UTL with 95% Coverage 95% WH USL	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42 33.5 36.97 12.56	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile 95% HW USL	2.623 2.999 20.98 4.857 14.38 17.17 23.27 12.72			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL 95% WH Approx. Gamma UTL with 95% Coverage 95% HW Approx. Gamma UTL with 95% Coverage 95% WH USL	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42 33.5 36.97 12.56	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile 95% HW USL	2.623 2.999 20.98 4.857 14.38 17.17 23.27 12.72			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL 95% WH Approx. Gamma UTL with 95% Coverage 95% HW Approx. Gamma UTL with 95% Coverage 95% WH USL	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42 33.5 36.97 12.56 Lognorma	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile 99% Percentile 95% HW USL	2.623 2.999 20.98 4.857 14.38 17.17 23.27 12.72			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL 95% WH Approx. Gamma UTL with 95% Coverage 95% HW Approx. Gamma UTL with 95% Coverage 95% WH USL Shapiro Wilk Test Statistic	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42 33.5 36.97 12.56 Lognormal 0.82	Statistics Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile 95% HW USL GOF Test Shapiro Wilk Lognormal GOF Test	2.623 2.999 20.98 4.857 14.38 17.17 23.27 12.72			
k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL 95% WH Approx. Gamma UTL with 95% Coverage 95% HW Approx. Gamma UTL with 95% Coverage 95% WH USL Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42 33.5 36.97 12.56 Lognorma 0.82 0.748	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile 99% Percentile 95% HW USL IGOF Test Data appear Lognormal at 5% Significance Level	2.623 2.999 20.98 4.857 14.38 17.17 23.27 12.72			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL 95% WH Approx. Gamma UTL with 95% Coverage 95% WH Approx. Gamma UTL with 95% Coverage 95% WH Approx. Gamma UTL with 95% Coverage 95% WH USL Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42 33.5 36.97 12.56 Lognorma 0.82 0.748 0.369	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE Sd (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile 99% Percentile 95% HW USL IGOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test	2.623 2.999 20.98 4.857 14.38 17.17 23.27 12.72			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL 95% WH Approx. Gamma UTL with 95% Coverage 95% HW Approx. Gamma UTL with 95% Coverage 95% WH USL Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42 33.5 36.97 12.56 Lognorma 0.82 0.748 0.369 0.375	Statistics Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile 99% Percentile 95% HW USL GOF Test Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level	2.623 2.999 20.98 4.857 14.38 17.17 23.27 12.72			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL 95% WH Approx. Gamma UTL with 95% Coverage 95% HW Approx. Gamma UTL with 95% Coverage 95% WH USL 95% WH USL Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42 33.5 36.97 12.56 Lognormal 0.82 0.748 0.369 0.375 Lognormal	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile 99% Percentile 95% HW USL IGOF Test Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal at 5% Significance Level at 5% Significance Level	2.623 2.999 20.98 4.857 14.38 17.17 23.27 12.72			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL 95% WH Approx. Gamma UTL with 95% Coverage 95% WH Approx. Gamma UTL with 95% Coverage 95% WH Approx. Gamma UTL with 95% Coverage 95% WH USL Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42 33.5 36.97 12.56 Lognormal 0.82 0.748 0.369 0.375 Lognormal	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE Sd (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile 99% Percentile 95% HW USL IGOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal at 5% Significance Level at 5% Significance Level	2.623 2.999 20.98 4.857 14.38 17.17 23.27 12.72			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL 95% WH Approx. Gamma UTL with 95% Coverage 95% HW Approx. Gamma UTL with 95% Coverage 95% WH USL Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42 33.5 36.97 12.56 0.82 0.748 0.375 Lognormal tistics assu	Statistics Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile 99% Percentile 95% HW USL GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal at 5% Significance Level at 5% Significance Level ming Lognormal Distribution	2.623 2.999 20.98 4.857 14.38 17.17 23.27 12.72			
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Background St 95% Wilson Hilferty (WH) Approx. Gamma UPL 95% Hawkins Wixley (HW) Approx. Gamma UPL 95% WH Approx. Gamma UTL with 95% Coverage 95% WH Approx. Gamma UTL with 95% Coverage 95% WH USL Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear 95% UTL with 95% Coverage	Gamma 9.824 0.801 78.59 7.866 atistics Ass 17.78 18.42 33.5 36.97 12.56 Cognormal 0.82 0.748 0.369 0.375 Lognormal tistics assu	Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) uming Gamma Distribution 90% Percentile 95% Percentile 95% HW USL IGOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test Data appear Lognormal at 5% Significance Level at 5% Significance Level at 5% Significance Level ming Lognormal Distribution	2.623 2.999 20.98 4.857 14.38 17.17 23.27 12.72 12.72			

95% USL	13.3	99% Percentile (z)	18.7			
		1				
Nonparametric	Distribution	Free Background Statistics				
Data appear Normal at 5% Significance Level						
Nonparametric Upp	er Limits fo	r Background Threshold Values				
Order of Statistic, r	4	95% UTL with 95% Coverage	10.3			
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185			
		Approximate Sample Size needed to achieve specified CC	59			
95% Percentile Bootstrap UTL with 95% Coverage	N/A	95% BCA Bootstrap UTL with 95% Coverage	N/A			
95% UPL	10.3	90% Percentile	9.772			
90% Chebyshev UPL	16.55	95% Percentile	10.03			
95% Chebyshev UPL	20.49	99% Percentile	10.24			
95% USL	10.3					
Note: The use of USL tends to yield a conservation	ve estimate	of BTV, especially when the sample size starts exceeding 20.				
Therefore, one may use USL to estimate a BTV	only when th	he data set represents a background data set free of outliers				
and consists of observa	tions collect	ted from clean unimpacted locations.				
The use of USL tends to provide a balan	ce between	false positives and false negatives provided the data				
represents a background data set and w	nen many or	nsite observations need to be compared with the BTV.				
lead						
General Statistics						
Total Number of Observations	2	Number of Distinct Observations	2			
		Number of Missing Observations	2			
Minimum	4	First Quartile	4.725			
Second Largest	4	Median	5.45			
Maximum	6.9	Third Quartile	6.175			
Mean	5.45	SD	2.051			
Coefficient of Variation	0.376	Skewness	N/A			
Warning: Th	is data set	only has 2 observations!				
Data set is too small to comp	oute reliable	and meaningful statistics and estimates!				
The data set	for variable	lead was not processed!				
It is suggested to collect at least 8	to 10 obser	vations before using these statistical methods!				
If possible, compute and collect Data Qu	ality Object	ives (DQO) based sample size and analytical results.				
Inanyanese						
Conorol Statiation						
	Λ	Number of Distinct Observations	Λ			
	4		4			
Minimum Socord Learnet	100		270.5			
	570		0/9.0 /01 F			
Maar	379 270 F		401.0			
	0 455	50	0			
	0.455	Skewness	0.507			
Mean of logged Data	5.849	SD of logged Data	0.507			

Critical Values for Background Threshold Values (BTVs)			
Tolerance Factor K (For UTL)	5.144	d2max (for USL)	1.462
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.992	Shaniro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.002	Data appear Normal at 5% Significance Level	
	0.156	Lillioform GOE Toot	
	0.150		
5% Lillerors Critical Value	0.375	Data appear Normal at 5% Significance Level	
	ar Normai a		
Deskersund C	tatiatica Aar	uming Namual Distribution	
Background S		suming Normal Distribution	200.0
95% UTL with 95% Coverage	1267	90% Percentile (z)	00.6
95% UPL (t)	833.4	95% Percentile (z)	63.2
95% USL	631.8	99% Percentile (z)	/80.8
	-		
	Gamma	GOF Test	
A-D Test Statistic	0.22	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.659	Detected data appear Gamma Distributed at 5% Significance	Level
K-S Test Statistic	0.21	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.396	Detected data appear Gamma Distributed at 5% Significance	Level
Detected data appear	Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	5.755	k star (bias corrected MLE)	1.605
Theta hat (MLE)	65.94	Theta star (bias corrected MLE) 2	236.4
nu hat (MLE)	46.04	nu star (bias corrected)	12.84
MLE Mean (bias corrected)	379.5	MLE Sd (bias corrected) 2	299.5
		· · · · ·	
Background St	atistics Ass	uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	1049	90% Percentile 7	77.9
95% Hawkins Wixley (HW) Approx. Gamma UPL	1099	95% Percentile 9	966.5
95% WH Approx. Gamma UTL with 95% Coverage	2240	99% Percentile 1	391
95% HW Approx. Gamma UTL with 95% Coverage	2554		
95% WH USL	682.1	95% HW USL 6	691.8
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.969	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.194	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal	at 5% Significance Level	
Background Sta	tistics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	4717	90% Percentile (z)	64.9
95% UPL (t)	1318	95% Percentile (z) 7	/99.4
95% USL	728.8	99% Percentile (z) 1	130
	-		
Nonparametric	Distribution	Free Background Statistics	
Data appea	ar Normal a	t 5% Significance Level	
		-	

Nonparametric Upr	per Limits fo	r Background Threshold Values	
Order of Statistic, r	4	95% UTL with 95% Coverage	579
Approx fused to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0 185
	0.2.1.1	Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	N/A	95% BCA Bootstrap UTL with 95% Coverage	N/A
95% UPL	579	90% Percentile	540
90% Chebyshey UPL	958.1	95% Percentile	559.5
95% Chebyshev UPL	1220	99% Percentile	575.1
95% USL	579		
Note: The use of USL tends to yield a conservati	ve estimate	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV	only when th	ne data set represents a background data set free of outliers	
and consists of observa	ations collect	ted from clean unimpacted locations.	
The use of USL tends to provide a balar	nce between	false positives and false negatives provided the data	
represents a background data set and w	hen many or	nsite observations need to be compared with the BTV.	
······································	, -		
mercury			
	General	Statistics	
Total Number of Observations	4	Number of Missing Observations	0
Number of Distinct Observations	4		
Number of Detects	2	Number of Non-Detects	2
Number of Distinct Detects	2	Number of Distinct Non-Detects	2
Minimum Detect	0.0052	Minimum Non-Detect	0.0255
Maximum Detect	0.0078	Maximum Non-Detect	0.026
Variance Detected	3.3800E-6	Percent Non-Detects	50%
Mean Detected	0.0065	SD Detected	0.00184
Mean of Detected Logged Data	-5.056	SD of Detected Logged Data	0.287
Warning: D	ata set has	only 2 Detected Values.	
This is not enough to comp	oute meanin	gful or reliable statistics and estimates.	
Critical Values f	or Backgrou	Ind Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	5.144	d2max (for USL)	1.462
	I	· · · · · · · · · · · · · · · · · · ·	
Norm	nal GOF Tes	st on Detects Only	
Not En	ough Data te	o Perform GOF Test	
Kaplan Meier (KM) Bac	kground Sta	tistics Assuming Normal Distribution	
KM Mean	0.0065	KM SD	0.0013
95% UTL95% Coverage	0.0132	95% KM UPL (t)	0.00992
90% KM Percentile (z)	0.00817	95% KM Percentile (z)	0.00864
99% KM Percentile (z)	0.00952	95% KM USL	0.0084
DL/2 Substitution Back	ground Stat	istics Assuming Normal Distribution	
Mean	0.00969	SD	0.00383
95% UTL95% Coverage	0.0294	95% UPL (t)	0.0198
90% Percentile (z)	0.0146	95% Percentile (z)	0.016

99% Pe	ercentile (z)	0.0186	95% USL	0.0153	
DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons					
Gamma GOE Tasts on Datastad Observations Only					
	Not End	ough Data to	Perform GOF Test		
		-			
	Gamma	Statistics or	Detected Data Only		
k	that (MLE)	24.66	k star (bias corrected MLE)	N/A	
Theta	hat (MLE)	2.6356E-4	Theta star (bias corrected MLE)	N/A	
nu	hat (MLE)	98.65	nu star (bias corrected)	N/A	
MLE Mean (bias	corrected)	N/A	05% Decembile of Chicauere (Sketer)	NI/A	
	corrected)	IN/A	95% Percentile of Chisquare (28star)	N/A	
Esti	mates of G	amma Para	meters using KM Estimates		
	Mean (KM)	0.0065	SD (KM)	0.0013	
Var	iance (KM)	1.6900E-6	SE of Mean (KM)	0.0013	
	k hat (KM)	25	k star (KM)	6.417	
r	u hat (KM)	200	nu star (KM)	51.33	
the contract of the contract o	ta hat (KM)	2.6000E-4	theta star (KM)	0.00101	
80% gamma perc	entile (KIVI)	0.0085	90% gamma percentile (KM)	0.00993	
		0.0112	33 % gamma percentile (KW)	0.0133	
The following stat	istics are c	omputed usi	ng gamma distribution and KM estimates		
Upper Limits u	sing Wilsor	Hilferty (W	H) and Hawkins Wixley (HW) Methods		
	WH	HW	WH	HW	
95% Approx. Gamma UTL with 95% Coverage	0.0157	0.0162	95% Approx. Gamma UPL 0.0105	0.0106	
95% KM Gamma Percentile	0.00879	0.00882	95% Gamma USL 0.0085	0.00852	
	normal CO	F Test on D	etected Observations Only		
	Not End	ough Data to	Perform GOF Test		
Background Lognormal RO	S Statistics	Assuming I	Lognormal Distribution Using Imputed Non-Detects		
Mean in Ori	ginal Scale	0.00643	Mean in Log Scale	-5.056	
SD in Ori	ginal Scale	0.00106	SD in Log Scale	0.166	
95% UTL95%	Coverage	0.0149	95% BCA UTL95% Coverage	N/A	
95% Bootstrap (%) UTL95%		N/A	95% UPL (t)	0.00984	
90% Pe	ercentile (z)	0.00787	95% Percentile (2)	0.00830	
		0.00000	33 % USL	0.00011	
Statistics using KM	estimates	on Logged I	Data and Assuming Lognormal Distribution		
KM Mean of Lo	ogged Data	-5.056	95% KM UTL (Lognormal)95% Coverage	0.0181	
KM SD of Lo	ogged Data	0.203	95% KM UPL (Lognormal)	0.0109	
95% KM Percentile Log	gnormal (z)	0.00889	95% KM USL (Lognormal)	0.00857	
De alas		Ptotiotics A-	ourning Lognormal Distribution		
Backgro Mean in Ori	ainal Scale		Summy Lognormal Distribution	-4 704	
SD in Ori	ginal Scale	0.00383	SD in Log Scale	0 439	
95% UTL95%		0.0866	95% UPL (t)	0.0287	
90% Pe	ercentile (z)	0.0159	95% Percentile (z)	0.0186	
99% Pe	ercentile (z)	0.0251	95% USL	0.0172	

DL/2 is not a Recommended Method. DL/2 provided for comparisons and historical reasons.				
Distribution	Free Background Statistics			
llow a Disc	ernible Distribution (0.05)			
℃s(no disti	nction made between detects and nondetects)			
4	95% UTL with95% Coverage	0.026		
0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185		
59	95% UPL	0.026		
0.026	95% KM Chebyshev UPL	0.0128		
	·			
e estimate	of BTV, especially when the sample size starts exceeding 20.			
only when th	e data set represents a background data set free of outliers			
tions collect	ed from clean unimpacted locations.			
ce between	false positives and false negatives provided the data			
ien many or	site observations need to be compared with the BTV.			
4	Number of Distinct Observations	4		
3.8	First Quartile	5.9		
7.1	Median	6.85		
9.54	Third Quartile	7.71		
6.76	SD	2.355		
0.348	Skewness	-0.225		
1.859	SD of logged Data	0.384		
r Backgrou	nd Threshold Values (BTVs)			
5.144	d2max (for USL)	1.462		
Normal (GOF Test			
0.976	Shapiro Wilk GOF Test			
0.748	Data appear Normal at 5% Significance Level			
0.223	Lilliefors GOF Test			
0.375	Data appear Normal at 5% Significance Level			
r Normal a	t 5% Significance Level			
ır Normal a	t 5% Significance Level			
ar Normal a	t 5% Significance Level			
atistics Ass 18.87	t 5% Significance Level suming Normal Distribution 90% Percentile (z)	9.777		
atistics Ass 18.87 12.96	t 5% Significance Level Suming Normal Distribution 90% Percentile (z) 95% Percentile (z)	9.777 10.63		
ar Normal a atistics As: 18.87 12.96 10.2	t 5% Significance Level suming Normal Distribution 90% Percentile (z) 95% Percentile (z) 99% Percentile (z)	9.777 10.63 12.24		
ar Normal a atistics Ass 18.87 12.96 10.2	t 5% Significance Level Suming Normal Distribution 90% Percentile (z) 95% Percentile (z) 99% Percentile (z)	9.777 10.63 12.24		
at Normal a atistics As: 18.87 12.96 10.2 Gamma	t 5% Significance Level suming Normal Distribution 90% Percentile (z) 95% Percentile (z) 99% Percentile (z) GOF Test	9.777 10.63 12.24		
atistics Ass 18.87 12.96 10.2 Gamma 0.289	t 5% Significance Level suming Normal Distribution 90% Percentile (z) 95% Percentile (z) 99% Percentile (z) GOF Test Anderson-Darling Gamma GOF Test	9.777 10.63 12.24		
atistics Ass 18.87 12.96 10.2 Gamma 0.289 0.657	t 5% Significance Level suming Normal Distribution 90% Percentile (z) 95% Percentile (z) 99% Percentile (z) GOF Test Carter Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	9.777 10.63 12.24		
ar Normal a atistics As: 18.87 12.96 10.2 Gamma 0.289 0.657 0.263	t 5% Significance Level suming Normal Distribution 90% Percentile (z) 95% Percentile (z) 99% Percentile (z) GOF Test Composition Com	9.777 10.63 12.24		
atistics Ass 18.87 12.96 10.2 Gamma 0.289 0.657 0.263 0.395	t 5% Significance Level suming Normal Distribution 90% Percentile (z) 95% Percentile (z) 99% Percentile (z) GOF Test Content Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	9.777 10.63 12.24 ee Level		
	Distribution Question 4 0.211 59 0.026 // e estimate only when th tions collect ce between en many or 4 3.8 7.1 9.54 6.76 0.348 1.859 or Backgrou 5.144 Normal (0.223 0.375	ad. DL/2 provided for comparisons and historical reasons. Distribution Free Background Statistics bilow a Discernible Distribution (0.05) Vs(no distinction made between detects and nondetects) 4 95% UTL with95% Coverage 0.211 Approximate Actual Confidence Coefficient achieved by UTL 59 95% UPL 0.026 95% KM Chebyshev UPL re estimate of BTV, especially when the sample size starts exceeding 20. only when the data set represents a background data set free of outliers tions collected from clean unimpacted locations. ce between false positives and false negatives provided the data ten many onsite observations need to be compared with the BTV. 4 Number of Distinct Observations 3.8 First Quartile 7.1 Median 9.54 Third Quartile 6.76 SD 0.348 Skewness 1.859 SD of logged Data or Background Threshold Values (BTVs) 5.144 0.976 Shapiro Wilk GOF Test 0.976 Shapiro Wilk GOF Test 0.976 Shapiro Korr GOF Test 0.375 Data appear Normal at 5% Significance Level		

	Gamma	Statistics	
k hat (MLE)	9.852	k star (bias corrected MLE)	2.63
Theta hat (MLE)	0.686	Theta star (bias corrected MLE)	2.571
nu hat (MLE)	78.82	nu star (bias corrected)	21.04
MLE Mean (bias corrected)	6.76	MLE Sd (bias corrected)	4.169
Background St	tatistics Ass	uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	15.26	90% Percentile	12.35
95% Hawkins Wixley (HW) Approx. Gamma UPL	15.73	95% Percentile	14.74
95% WH Approx. Gamma UTL with 95% Coverage	28.74	99% Percentile	19.97
95% HW Approx. Gamma UTL with 95% Coverage	31.44		
95% WH USL	10.78	95% HW USL	10.88
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.939	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.279	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal	at 5% Significance Level	
Background Sta	tistics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	46.32	90% Percentile (z)	10.5
95% UPL (t)	17.64	95% Percentile (z)	12.08
95% USL	11.26	99% Percentile (z)	15.69
Nonparametric	Distribution	Free Background Statistics	
Data appea	ar Normal at	5% Significance Level	
Nonparametric Upp	per Limits for	Background Threshold Values	
Order of Statistic, r	4	95% UTL with 95% Coverage	9.54
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	N/A	95% BCA Bootstrap UTL with 95% Coverage	N/A
95% UPL	9.54	90% Percentile	8.808
90% Chebyshev UPL	14.66	95% Percentile	9.174
95% Chebyshev UPL	18.23	99% Percentile	9.467
95% USL	9.54		
Note: The use of USL tends to yield a conservati	ve estimate o	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV	only when th	e data set represents a background data set free of outliers	
and consists of observa	tions collect	ed from clean unimpacted locations.	
The use of USL tends to provide a balan	ice between	false positives and false negatives provided the data	
represents a background data set and w	hen many on	site observations need to be compared with the BTV.	
	,	·	
selenium			
	General	Statistics	
Total Number of Observations	4	Number of Missing Observations	0
Number of Distinct Observations	3		
Number of Detects	2	Number of Non-Detects	2

Number of Distinct Detects	2	Number of Distinct Non-Detects	1
Minimum Detect	0.272	Minimum Non-Detect	0.64
Maximum Detect	0.409	Maximum Non-Detect	0.64
Variance Detected	0.00945	Percent Non-Detects	50%
Mean Detected	0.34	SD Detected	0.0972
Mean of Detected Logged Data	-1.099	SD of Detected Logged Data	0.29
Warning: D	ata set has	only 2 Detected Values.	
This is not enough to comp	oute meaning	gful or reliable statistics and estimates.	
Critical Values for	or Backgrou	nd Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	5.144	d2max (for USL)	1.462
Norm	al GOF Tes	t on Detects Only	
Not End	ough Data to	Perform GOF Test	
Kaplan Meier (KM) Back	kground Sta	tistics Assuming Normal Distribution	
KM Mean	0.34	KM SD	0.0688
95% UTL95% Coverage	0.694	95% KM UPL (t)	0.521
90% KM Percentile (z)	0.428	95% KM Percentile (z)	0.453
99% KM Percentile (z)	0.5	95% KM USL	0.441
DL/2 Substitution Back	ground Stat	stics Assuming Normal Distribution	
Mean	0.33	SD	0.0573
95% UTL95% Coverage	0.625	95% UPL (t)	0.481
90% Percentile (z)	0.404	95% Percentile (z)	0.424
99% Percentile (z)	0.464	95% USL	0.414
DL/2 is not a recommended meth	oa. DL/2 pro	ovided for comparisons and historical reasons	
Commo COE	Tooto on Do	staated Observations Only	
Gainina GOF	Tests of De	Perform GOE Test	
Gamma	Statistics or	Detected Data Only	
k hat (MLE)	24.16	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.0141	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	96.62	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A		
MLE Sd (bias corrected)	N/A	95% Percentile of Chisquare (2kstar)	N/A
		· · · · /	
Estimates of G	amma Para	meters using KM Estimates	
Mean (KM)	0.34	SD (KM)	0.0688
Variance (KM)	0.00473	SE of Mean (KM)	0.0688
k hat (KM)	24.49	k star (KM)	6.29
nu hat (KM)	195.9	nu star (KM)	50.32
theta hat (KM)	0.0139	theta star (KM)	0.0541
80% gamma percentile (KM)	0.446	90% gamma percentile (KM)	0.522
95% gamma percentile (KM)	0.59	99% gamma percentile (KM)	0.732
The following statistics are ca	omputed usi	ng gamma distribution and KM estimates	

Upper Limits us	ina Wilson	Hilferty (W	H) and Hawkins Wixley (HW) Methods	
	WH	HW	WH	HW
95% Approx Gamma UTL with 95% Coverage	0 827	0 853	95% Approx Gamma UPL 0.551	0 555
95% KM Gamma Percentile	0.462	0 463	95% Gamma USI 0 446	0 447
	01102			
Loa	normal GO	F Test on D	etected Observations Only	
g·	Not End	ough Data to	o Perform GOF Test	
Background Lognormal ROS	S Statistics	Assuming	Lognormal Distribution Using Imputed Non-Detects	
Mean in Orig	inal Scale	0.34	Mean in Log Scale	-1.099
SD in Orig	jinal Scale	0.0794	SD in Log Scale	0.237
95% UTL95%	Coverage	1.125	95% BCA UTL95% Coverage	N/A
95% Bootstrap (%) UTL95%	Coverage	N/A	95% UPL (t)	0.621
90% Per	rcentile (z)	0.451	95% Percentile (z)	0.492
99% Per	rcentile (z)	0.578	95% USL	0.471
Statistics using KM	estimates (on Logged	Data and Assuming Lognormal Distribution	
KM Mean of Log	gged Data	-1.099	95% KM UTL (Lognormal)95% Coverage	0.956
KM SD of Log	gged Data	0.205	95% KM UPL (Lognormal)	0.571
95% KM Percentile Log	normal (z)	0.467	95% KM USL (Lognormal)	0.45
Backgro	ound DL/2 S	Statistics As	suming Lognormal Distribution	
Mean in Orig	jinal Scale	0.33	Mean in Log Scale	-1.119
SD in Orig	jinal Scale	0.0573	SD in Log Scale	0.169
95% UTL95%	Coverage	0.779	95% UPL (t)	0.509
90% Per	rcentile (z)	0.405	95% Percentile (z)	0.431
99% Per	rcentile (z)	0.484	95% USL	0.418
DL/2 is not a Recomme	nded Meth	od. DL/2 pro	ovided for comparisons and historical reasons.	
Nonr	oromotrio	Distribution	Free Beekground Statistics	
	ta do pot fr			
Da				
Nonparametric Upper L	imits for B	[Vs(no disti	nction made between detects and nondetects)	
Order of	Statistic. r	4	95% UTL with95% Coverage	0.64
Approx, f used to compute acl	hieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185
Approximate Sample Size needed to achieve spo	ecified CC	59	95% UPL	0.64

95% USL	0.64	95% KM Chebyshev UPL	0.675
Note: The use of USL tends to yield a conservati	ve estimate	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV	only when th	e data set represents a background data set free of outliers	

and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

 strontium

 General Statistics

 Total Number of Observations
 4
 Number of Distinct Observations
 4

 Minimum
 6.9
 First Quartile
 8.025

 Second Largest
 11.5
 Median
 9.95

· · ·			
Maximum	12.85	Third Quartile	11.84
Mean	9.913	SD	2.739
Coefficient of Variation	0.276	Skewness	-0.0471
Mean of logged Data	2.264	SD of logged Data	0.285
Critical Values fe	or Backgrou	nd Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	5.144	d2max (for USL)	1.462
	-		-
	Normal C	GOF Test	
Shapiro Wilk Test Statistic	0.944	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.219	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level	
Data appe	ar Normal at	5% Significance Level	
Pool/ground S	tatiation Acc	uming Normal Distribution	
	24		12 / 2
	17 10		13.42
	12.02	95% Percentile (z)	14.42
95% USL	13.92	99% Percentile (z)	16.29
	Gamma	GOF Test	
A-D Test Statistic	0.296	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significanc	e Level
K-S Test Statistic	0.26	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.394	Detected data appear Gamma Distributed at 5% Significanc	e Level
Detected data appear	Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	16.87	k star (bias corrected MLE)	4.384
Theta hat (MLE)	0.588	Theta star (bias corrected MLE)	2.261
nu hat (MLE)	134.9	nu star (bias corrected)	35.07
MLE Mean (bias corrected)	9.913	MLE Sd (bias corrected)	4.734
Background St	atistics Ass	uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	18.91	90% Percentile	16.26
95% Hawkins Wixley (HW) Approx. Gamma UPL	19.23	95% Percentile	18.76
95% WH Approx. Gamma UTL with 95% Coverage	31.87	99% Percentile	24.09
95% HW Approx, Gamma UTL with 95% Coverage	33.66		
95% WH USL	14.33	95% HW USL	14.39
	Lognorma	GOF Test	
Shapiro Wilk Test Statistic	0.942	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.234	Lilliefors Lognormal GOF Test	
		-	
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level	
5% Lilliefors Critical Value Data appear	0.375 Lognormal	Data appear Lognormal at 5% Significance Level at 5% Significance Level	
5% Lilliefors Critical Value Data appear	0.375 Lognormal	Data appear Lognormal at 5% Significance Level at 5% Significance Level	
5% Lilliefors Critical Value Data appear Background Sta	0.375 Lognormal tistics assu	Data appear Lognormal at 5% Significance Level at 5% Significance Level ming Lognormal Distribution	
5% Lilliefors Critical Value Data appear Background Sta 95% UTL with 95% Coverage	0.375 Lognormal itistics assu 41.78	Data appear Lognormal at 5% Significance Level at 5% Significance Level ming Lognormal Distribution 90% Percentile (z)	13.87

95% USL	14.61	99% Percentile (z)	18.69
		· · · · · ·	
Nonparametric	Distribution	Free Background Statistics	
Data appea	ar Normal a	t 5% Significance Level	
Nonparametric Upp	er Limits fo	r Background Threshold Values	
Order of Statistic, r	4	95% UTL with 95% Coverage	12.85
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	12.95	95% BCA Bootstrap UTL with 95% Coverage	N/A
	12.00	90% Percentile	12.45
95% Chebyshev UPL	23.26	90% Percentile	12.05
95% USI	12 85		12.01
	12.00		
Note: The use of USL tends to vield a conservativ	ve estimate	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV of	only when th	ne data set represents a background data set free of outliers	
and consists of observa	tions collect	ted from clean unimpacted locations.	
The use of USL tends to provide a balan	ce between	false positives and false negatives provided the data	
represents a background data set and wh	nen many or	nsite observations need to be compared with the BTV.	
thallium			
	General	Statistics	
Total Number of Observations	2	Number of Missing Observations	2
Number of Distinct Observations	1		
Number of Detects	0	Number of Non-Detects	2
Number of Distinct Detects	0	Number of Distinct Non-Detects	1
Minimum Detect	N/A	Minimum Non-Detect	0.64
Variance Detected		Recent Non-Detect	100%
Mean Detected	N/A	SD Detected	N/A
Mean of Detected Logged Data	N/A	SD of Detected Logged Data	N/A
		OD OF Delected Logged Data	IN/A
Warning: Th	is data set	only has 2 observations!	
Data set is too small to comp	ute reliable	and meaningful statistics and estimates!	
The data set fo	or variable t	hallium was not processed!	
		·	
It is suggested to collect at least 8	to 10 obser	vations before using these statistical methods!	
If possible, compute and collect Data Qu	ality Object	ives (DQO) based sample size and analytical results.	
vanadium			
General Statistics			
Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	2
Minimum	19	First Quartile	23.25
Second Largest	19	Median	27.5
Maximum	36	Third Quartile	31.75

Mean	27.5	SD	12.02		
Coefficient of Variation	0.437	Skewness	N/A		
Warning: Th	is data set o	only has 2 observations!			
Data set is too small to comp	ute reliable	and meaningful statistics and estimates!			
The data set for	[.] variable va	nadium was not processed!			
It is suggested to collect at least 8	to 10 obser	vations before using these statistical methods!			
If possible, compute and collect Data Qu	ality Objecti	ves (DQO) based sample size and analytical results.			
zinc					
General Statistics					
Total Number of Observations	2	Number of Distinct Observations	2		
		Number of Missing Observations	2		
Minimum	19	First Quartile	22.38		
Second Largest	19	Median	25.75		
Maximum	32.5	Third Quartile	29.13		
Mean	25.75	SD	9.546		
Coefficient of Variation	0.371	Skewness	N/A		
Warning: Th	is data set o	only has 2 observations!			
Data set is too small to comp	ute reliable	and meaningful statistics and estimates!			
The data set	for variable	zinc was not processed!			
It is suggested to collect at least 8	to 10 obser	vations before using these statistical methods!			
If possible, compute and collect Data Qu	ality Object	ves (DQO) based sample size and analytical results.			

	Background Statistics fc	or Data Sets	s with Non-Detects	
User Selected Options	3			
Date/Time of Computation	ProUCL 5.18/20/2021 9:4	47:02 AM		
From File	ProUCL Background Inp	uts_a.xls		
Full Precision	OFF			
Confidence Coefficient	95%			
Coverage	95%			
Different or Future K Observations	1			
Number of Bootstrap Operations	2000			
aluminum				
General Statistics				
Total	Number of Observations	0	Number of Distinct Observations	0
			Number of Missing Observations	5
	Minimum	N/A	First Quartile	N/A
	Second Largest	N/A	Median	N/A
	Maximum	N/A	Third Quartile	N/A
	Mean	N/A	SD	N/A
	Coefficient of Variation	N/A	Skewness	N/A
				
Dat	vvarning: In	is data set	only has 0 observations!	
	The data set for	variable al	uminum was not processed!	
lt is suaa	ested to collect at least 8	to 10 obse	vations before using these statistical methods!	
If possible, com	pute and collect Data Qu	ality Object	ives (DQO) based sample size and analytical results.	
antimony				
		General	Statistics	
Total	Number of Observations	2	Number of Missing Observations	3
Numbe	r of Distinct Observations	1		
	Number of Detects	0	Number of Non-Detects	2
N	umber of Distinct Detects	0	Number of Distinct Non-Detects	
	Minimum Detect	N/A	Minimum Non-Detect	5
	Maximum Detect	N/A	Maximum Non-Detect	5
	Variance Detected	N/A	Percent Non-Detects	100%
	Mean Detected	N/A	SD Detected	N/A
Mean	of Detected Logged Data	N/A	SD of Detected Logged Data	N/A
	Warning: Th	is data set	only has 2 observations!	
Dat	a set is too small to comp	ute reliable	and meaningful statistics and estimates!	
	The data set for	r variable a	ntimony was not processed!	
It is sugg	ested to collect at least 8	to 10 obser	vations before using these statistical methods!	
IT possible, com	pute and collect Data Qua	anty Object	ויפא (סאָט) based sample size and analytical results.	

arsenic					
General Statistics					
Total Number of Observations	4	Number of Missing Observations	1		
Number of Distinct Observations	3				
Number of Detects	2	Number of Non-Detects	2		
Number of Distinct Detects	2	Number of Distinct Non-Detects	1		
Minimum Detect	0.42	Minimum Non-Detect	10		
Maximum Detect	0.44	Maximum Non-Detect	10		
Variance Detected	2.0000E-4	Percent Non-Detects	50%		
Mean Detected	0.43	SD Detected	0.0141		
Mean of Detected Logged Data	-0.844	SD of Detected Logged Data	0.0329		
Warning: D	ata set has	only 2 Detected Values.			
This is not enough to comp	oute meaning	gful or reliable statistics and estimates.			
Critical Values f	or Backgrou	nd Threshold Values (BTVs)			
Tolerance Factor K (For UTL)	5.144	d2max (for USL)	1.462		
Norm	al GOF Tes	t on Detects Only			
Not End	ough Data to	Perform GOF Test			
Kaplan Meier (KM) Bacl	ground Sta	tistics Assuming Normal Distribution			
KM Mean	0.43	KM SD	0.01		
95% UTL95% Coverage	0.481	95% KM UPL (t)	0.456		
90% KM Percentile (z)	0.443	95% KM Percentile (z)	0.446		
99% KM Percentile (z)	0.453	95% KM USL	0.445		
DL/2 Substitution Back	ground Stat	istics Assuming Normal Distribution			
Mean	2.715	SD	2.639		
95% UTL95% Coverage	16.29	95% UPL (t)	9.657		
90% Percentile (z)	6.096	95% Percentile (z)	7.055		
99% Percentile (z)	8.853	95% USL	6.574		
DL/2 is not a recommended meth	od. DL/2 pro	ovided for comparisons and historical reasons			
Gamma GOF	Tests on De	etected Observations Only			
Not End	ough Data to	Perform GOF Test			
Gamma	Statistics or	Detected Data Only			
k hat (MLE)	1849	k star (bias corrected MLE)	N/A		
Theta hat (MLE)	2.3260E-4	Theta star (bias corrected MLE)	N/A		
nu hat (MLE)	7395	nu star (bias corrected)	N/A		
MLE Mean (bias corrected)	N/A				
MLE Sd (bias corrected)	N/A	95% Percentile of Chisquare (2kstar)	N/A		
Estimatos of G	amma Paro	meters using KM Estimates			
			0.01		
Variance (KM)			0.01		
variatice (KW)	18/0	SE UT Weart (KM)	162.4		
к nat (KM)	1049	K star (KM)	402.4		

nu	hat (KM)	14792	nu star (KM)	3699
theta	hat (KM)	2.3256E-4	theta star (KM)	9.2990E-4
80% gamma percer	ntile (KM)	0.447	90% gamma percentile (KM)	0.456
95% gamma percer	ntile (KM)	0.463	99% gamma percentile (KM)	0.478
The following statist	tics are c	omputed usi	ing gamma distribution and KM estimates	
Upper Limits usi	ng Wilson	h Hilferty (W	H) and Hawkins Wixley (HW) Methods	
	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	0.483	0.484	95% Approx. Gamma UPL 0.457	0.457
95% KM Gamma Percentile	0.447	0.447	95% Gamma USL 0.445	0.445
Logne	ormal GO	F Test on D	etected Observations Only	
	Not End	ough Data to	Perform GOF Test	
Background Lognormal ROS	Statistics	Assuming	Lognormal Distribution Using Imputed Non-Detects	
Mean in Origin	nal Scale	0.43	Mean in Log Scale	-0.844
SD in Origin	nal Scale	0.0115	SD in Log Scale	0.0269
95% UTL95% C	Coverage	0.494	95% BCA UTL95% Coverage	N/A
95% Bootstrap (%) UTL95% C	Coverage	N/A	95% UPL (t)	0.461
90% Perc	centile (z)	0.445	95% Percentile (z)	0.449
99% Perc	centile (z)	0.458	95% USL	0.447
Statistics using KM e	stimates	on Logged I	Data and Assuming Lognormal Distribution	
KM Mean of Log	ged Data	-0.844	95% KM UTL (Lognormal)95% Coverage	0.485
KM SD of Log	ged Data	0.0233	95% KM UPL (Lognormal)	0.457
95% KM Percentile Logn	ormal (z)	0.447	95% KM USL (Lognormal)	0.445
Backgrou	Ind DL/2	Statistics As	suming Lognormal Distribution	
Mean in Origin	nal Scale	2.715	Mean in Log Scale	0.383
SD in Origin	nal Scale	2.639	SD in Log Scale	1.417
95% UTL95% C	Coverage	2144	95% UPL (t)	60.96
90% Perc	centile (z)	9.009	95% Percentile (z)	15.07
99% Perc	centile (z)	39.59	95% USL	11.64
DL/2 is not a Recommen	ded Meth	od. DL/2 pro	ovided for comparisons and historical reasons.	
Nonpa	arametric	Distribution	Free Background Statistics	
Data	a do not f	ollow a Disc	ernible Distribution (0.05)	
Nonparametric Upper Lir	mits for B	TVs(no disti	nction made between detects and nondetects)	
Order of S	Statistic, r	4	95% UTL with95% Coverage	10
Approx, f used to compute achi	ieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185
Approximate Sample Size needed to achieve spec	cified CC	59	95% UPL	10
9	95% USL	10	95% KM Chebyshev UPL	0.479
			·	
Note: The use of USL tends to yield a c	conservati	ve estimate	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estima	ite a BTV	only when th	he data set represents a background data set free of outliers	
and consists of	of observa	tions collect	ed from clean unimpacted locations.	
The use of USL tends to provid	le a halan	ice hetween	false positives and false negatives provided the data	

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

barium			
General Statistics			
Total Number of Observations	5	Number of Distinct Observations	4
Minimum	23.1	First Quartile	23.2
Second Largest	27	Median	24
Maximum	27	Third Quartile	27
Mean	24.86	SD	1.984
Coefficient of Variation	0.0798	Skewness	0.477
Mean of logged Data	3.211	SD of logged Data	0.0791
Critical Values fo	or Backgrou	nd Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	4.203	d2max (for USL)	1.671
	Normal G	GOF Test	
Shapiro Wilk Test Statistic	0.782	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.762	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.268	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.343	Data appear Normal at 5% Significance Level	
Data appea	ar Normal at	5% Significance Level	
Background St	atistics Ass	uming Normal Distribution	
95% UTL with 95% Coverage	33.2	90% Percentile (z)	27.4
95% UPL (t)	29.49	95% Percentile (z)	28.12
95% USL	28.18	99% Percentile (z)	29.48
	Gamma (GOF Test	
A-D Test Statistic	0.647	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.678	Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic	0.286	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.357	Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected data appear	Gamma Dis	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	198.8	k star (bias corrected MLE)	79.64
Theta hat (MLE)	0.125	Theta star (bias corrected MLE)	0.312
nu hat (MLE)	1988	nu star (bias corrected)	796.4
MLE Mean (bias corrected)	24.86	MLE Sd (bias corrected)	2.786
Background St	atistics Ass	uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	29.71	90% Percentile	28.49
95% Hawkins Wixley (HW) Approx. Gamma UPL	29.74	95% Percentile	29.61
95% WH Approx. Gamma UTL with 95% Coverage	34.05	99% Percentile	31.8
95% HW Approx. Gamma UTL with 95% Coverage	34.17		
95% WH USL	28.26	95% HW USL	28.27
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.787	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.762	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.26	Lilliefors Lognormal GOF Test	

5% Lilliefors Critical Value	0.343	Data appear Lognormal at 5% Significance Level
Data appear	Lognormal	at 5% Significance Level
Background Sta	tistics assu	ming Lognormal Distribution
95% UTL with 95% Coverage	34.57	90% Percentile (z)
95% UPL (t)	29.83	95% Percentile (z)
95% USL	28.3	99% Percentile (z)
Nonparametric	Distribution	Free Background Statistics
Data appea	ar Normal a	t 5% Significance Level
Nonparametric Upp	er Limits fo	r Background Threshold Values
Order of Statistic, r	5	95% UTL with 95% Coverage
Approx, f used to compute achieved CC	0.263	Approximate Actual Confidence Coefficient achieved by UTL
		Approximate Sample Size needed to achieve specified CC
95% Percentile Bootstrap UTL with 95% Coverage	27	95% BCA Bootstrap UTL with 95% Coverage
95% UPL	27	90% Percentile
90% Chebyshev UPL	31.38	95% Percentile
95% Chebyshev UPL	34.34	99% Percentile
95% USL	27	
Note: The use of USL tends to yield a conservation	/e estimate	of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV	only when th	he data set represents a background data set free of outliers
and consists of observa	tions collect	ted from clean unimpacted locations.
The use of USL tends to provide a balan	ce between	false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

beryllium

	General	Statistics	
Total Number of Observations	4	Number of Missing Observations	1
Number of Distinct Observations	2		
Number of Detects	0	Number of Non-Detects	4
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
Minimum Detect	N/A	Minimum Non-Detect	0.1
Maximum Detect	N/A	Maximum Non-Detect	2
Variance Detected	N/A	Percent Non-Detects	100%
Mean Detected	N/A	SD Detected	N/A
Mean of Detected Logged Data	N/A	SD of Detected Logged Data	N/A

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable beryllium was not processed!

cadmium

475

27.44 28.24 29.81

27 0.226 59

General Statistics

Tatal Number of Observations			
Total Number of Observations	4	Number of Missing Observations	1
Number of Distinct Observations	2		
Number of Detects	0	Number of Non-Detects	4
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
Minimum Detect	N/A	Minimum Non-Detect	0.08
Maximum Detect	N/A	Maximum Non-Detect	1
Variance Detected	N/A	Percent Non-Detects	100%
Mean Detected	N/A	SD Detected	N/A
Mean of Detected Logged Data	N/A	SD of Detected Logged Data	N/A
Warning: All observations are Non-Detect	s (NDs), th	erefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	d other stat	istics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	ite specific	values to estimate environmental parameters (e.g., EPC, BTV).
The data set fo	r variable c	admium was not processed!	
alcium			
aeneral Statistics			
Total Number of Observations	0	Number of Distinct Observations	0
		Number of Missing Observations	5
Minimum	N/A	First Quartile	N/A
Second Largest	N/A	Median	N/A
Maximum	N/A	Third Quartile	N/A
Maximum Mean	N/A N/A	Third Quartile SD	N/A N/A
Maximum Mean Coefficient of Variation	N/A N/A N/A	Third Quartile SD Skewness	N/A N/A N/A
Maximum Mean Coefficient of Variation	N/A N/A N/A	Third Quartile SD Skewness	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th	N/A N/A N/A nis data set	Third Quartile SD Skewness only has 0 observations!	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to comp	N/A N/A N/A nis data set	Third Quartile SD Skewness only has 0 observations! and meaningful statistics and estimates!	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to comp The data set fe	N/A N/A N/A nis data set pute reliable pr variable o	Third Quartile SD Skewness only has 0 observations! and meaningful statistics and estimates! calcium was not processed!	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to comp The data set fo	N/A N/A N/A nis data set pute reliable or variable o	Third Quartile SD Skewness only has 0 observations! and meaningful statistics and estimates! calcium was not processed!	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to comp The data set fo It is suggested to collect at least 8	N/A N/A N/A nis data set pute reliable or variable of to 10 obse	Third Quartile SD Science SCI Science SCI Science SCI Science	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to comp The data set fo It is suggested to collect at least 8 If possible, compute and collect Data Qu	N/A N/A N/A nis data set pute reliable or variable of to 10 obse	Third Quartile SD Skewness only has 0 observations! and meaningful statistics and estimates! calcium was not processed! rvations before using these statistical methods! tives (DQO) based sample size and analytical results.	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to com The data set fo It is suggested to collect at least 8 If possible, compute and collect Data Qu	N/A N/A N/A nis data set pute reliable or variable of to 10 obse nality Objec	Third Quartile SD Sciences Sci	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to comp The data set for It is suggested to collect at least 8 If possible, compute and collect Data Qu	N/A N/A N/A nis data set pute reliable or variable o to 10 obse nality Objec	Third Quartile SD Science SD Skewness only has 0 observations! and meaningful statistics and estimates! calcium was not processed! rvations before using these statistical methods! tives (DQO) based sample size and analytical results.	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to com The data set fo It is suggested to collect at least 8 If possible, compute and collect Data Qu exavalent chromium	N/A N/A N/A nis data set pute reliable or variable o to 10 obse nality Objec	Third Quartile SD Skewness only has 0 observations! and meaningful statistics and estimates! calcium was not processed! rvations before using these statistical methods! tives (DQO) based sample size and analytical results.	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to comp The data set fo It is suggested to collect at least 8 If possible, compute and collect Data Qu exavalent chromium	N/A N/A N/A his data set pute reliable or variable to 10 obse nality Objec	Third Quartile SD Skewness only has 0 observations! a and meaningful statistics and estimates! calcium was not processed! rvations before using these statistical methods! tives (DQO) based sample size and analytical results.	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to comp The data set for It is suggested to collect at least 8 If possible, compute and collect Data Qu exavalent chromium	N/A N/A N/A nis data set pute reliable or variable o to 10 obse nality Objec	Third Quartile SD Sciences SI Stewness Statistics Number of Missing Observations	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to com The data set fo It is suggested to collect at least 8 If possible, compute and collect Data Qu exavalent chromium Total Number of Observations	N/A N/A N/A nis data set pute reliable or variable of to 10 obse nality Object General 2	Third Quartile SD Science SD Science Stewness Science Science Science Science Science Science Science Number of Missing Observations	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to comp The data set fo It is suggested to collect at least 8 If possible, compute and collect Data Qu If possible, compute and collect Data Qu exavalent chromium Total Number of Observations Number of Distinct Observations	N/A N/A N/A his data set oute reliable or variable to 10 obse nality Objec General 2 1	Third Quartile SD SL Skewness only has 0 observations! a and meaningful statistics and estimates! calcium was not processed! rvations before using these statistical methods! tives (DQO) based sample size and analytical results. Statistics Number of Missing Observations	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to comp The data set fo It is suggested to collect at least 8 If possible, compute and collect Data Qu exavalent chromium Total Number of Observations Number of Distinct Observations	N/A N/A N/A nis data set bute reliable or variable of to 10 obse raility Objec General 2 1 0	Third Quartile SD SL Skewness only has 0 observations! e and meaningful statistics and estimates! calcium was not processed! rvations before using these statistical methods! tives (DQO) based sample size and analytical results. Statistics Number of Missing Observations Number of Non-Detects	N/A N/A N/A 3 2
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to com The data set for It is suggested to collect at least 8 If possible, compute and collect Data Qu It possible, compute and collect Data Qu Number of Distinct Data Qu Total Number of Distinct Observations Number of Distinct Detects	N/A N/A N/A nis data set pute reliable or variable o to 10 obse nality Objec General 2 1 0 0	Third Quartile SD SL Skewness only has 0 observations! and meaningful statistics and estimates! calcium was not processed! rvations before using these statistical methods! tives (DQO) based sample size and analytical results. Statistics Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects	N/A N/A N/A 3 2 1 0.7/
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to comp The data set fo It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 It is suggested to collect at	N/A N/A N/A nis data set oute reliable or variable of to 10 obse nality Objec General 2 1 0 0 N/A	Third Quartile SD SD Skewness only has 0 observations! and meaningful statistics and estimates! calcium was not processed! rvations before using these statistical methods! tives (DQO) based sample size and analytical results. Statistics Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	N/A N/A N/A 3 2 1 0.74
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to comp The data set fo It is suggested to collect at least 8 If possible, compute and collect Data Qu It possible, compute and collect Data Qu exavalent chromium Total Number of Distinct Date Qu Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect	N/A N/A N/A nis data set oute reliable or variable of to 10 obse raility Objec General 2 1 0 0 N/A N/A	Third Quartile SD SD Skewness only has 0 observations! e and meaningful statistics and estimates! calcium was not processed! rvations before using these statistical methods! tives (DQO) based sample size and analytical results. Statistics Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	N/A N/A N/A 3 2 1 0.74 0.74
Maximum Mean Coefficient of Variation Warning: Tr Data set is too small to comp The data set for It is suggested to collect at least 8 If possible, compute and collect Data Qu If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute at least	N/A N/A N/A nis data set bute reliable or variable o to 10 obse rality Objec General 2 1 0 0 N/A N/A N/A	Third Quartile SD Science Solution Science Science Statistics Number of Missing Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Percent Non-Detects	N/A N/A N/A
Maximum Mean Coefficient of Variation Warning: Th Data set is too small to comp The data set fr It is suggested to collect at least 8 If possible, compute and collect Data Qu If possible, compute and collect Data Qu If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 If possible, compute and collect Data Qu It is suggested to collect at least 8 It is suggested to coll	N/A N/A N/A nis data set pute reliable or variable of to 10 obse raility Objec General 2 1 0 0 N/A N/A N/A N/A	Third Quartile SD Skewness only has 0 observations! and meaningful statistics and estimates! calcium was not processed! rvations before using these statistical methods! tives (DQO) based sample size and analytical results. Statistics Statistics Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Percent Non-Detects SD Detected SD Detected	N/A N/A N/A

able hexavalent chron	nium was not processed!	
1 to 10 obconvotions h		
ality Objectives (DO)	etore using these statistical methods:	
- -	Number of Distinct Observations	
U	Number of Missing Observations	U 5
N/A	First Quartile	
N/A	Median	N/A
N/A	Third Quartile	N/A
N/A	SD	N/A
N/A	Skewness	N/A
· · · · · · · · · · · · · · · · · · ·		
nis data set only has	0 observations!	
pute reliable and mea	iningful statistics and estimates!	
iable trivalent chrom	um was not processed!	
General Statistics		
General Statistics	Number of Missing Observations	1
General Statistics 4 3	Number of Missing Observations	1
General Statistics 4 3 2	Number of Missing Observations Number of Non-Detects	1
General Statistics 4 3 2 2 2 0 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	1 2 1 5
General Statistics 4 3 2 2 0.45 0.53	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	1 2 1 5 5
General Statistics 4 3 2 2 0.45 0.53 0.0032	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	1 2 1 5 5 50%
General Statistics 4 3 2 2 0.45 0.53 0.0032 0.49	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected	1 2 1 5 50% 0.056
General Statistics 4 3 2 2 0.45 0.53 0.0032 0.49 -0.717	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data	1 2 1 5 50% 0.056 0.110
General Statistics 4 3 2 2 0.45 0.53 0.0032 0.49 -0.717	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data	1 2 1 5 5 50% 0.056 0.110
General Statistics 4 3 2 2 0.45 0.53 0.0032 0.49 -0.717	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data tected Values.	1 2 1 5 50% 0.056 0.110
General Statistics 4 3 2 2 0.45 0.53 0.0032 0.49 -0.717	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detectt Maximum Non-Detectt Percent Non-Detects SD Detected SD of Detected Logged Data tected Values. liable statistics and estimates.	1 2 1 5 50% 0.056 0.110
General Statistics 4 3 2 0.45 0.53 0.0032 0.49 -0.717	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data Ntected Values. Name Statistics and estimates.	1 2 1 5 50% 0.056 0.116
General Statistics 4 3 2 2 0.45 0.53 0.0032 0.49 -0.717 Pata set has only 2 Depute meaningful or relevant or Background Thres 0	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detectt Maximum Non-Detectt Percent Non-Detects SD Detected SD of Detected Logged Data Netected Values.	1 2 1 5 50% 0.056 0.11
General Statistics 4 3 2 2 0.45 0.53 0.0032 0.49 -0.717 vata set has only 2 Depute meaningful or rel or Background Thres 5.144	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data tected Values. liable statistics and estimates. hold Values (BTVs) d2max (for USL)	1 2 1 5 5 50% 0.056 0.111
General Statistics 4 3 2 2 0.45 0.53 0.0032 0.49 -0.717	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data Ntected Values. liable statistics and estimates. hold Values (BTVs) d2max (for USL)	1 2 1 5 50% 0.056 0.110
General Statistics 4 3 2 2 0.45 0.53 0.0032 0.49 -0.717 -0.717 vata set has only 2 Depute meaningful or relevant or Background Thres 5.144 val GOF Test on Dete	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data tected Values. liable statistics and estimates. hold Values (BTVs) d2max (for USL) cts Only	1 2 1 5 5 50% 0.056 0.11
	0 N/A IN/A I	0 Number of Distinct Observations N/A Number of Missing Observations N/A First Quartile N/A Median N/A Median N/A SD N/A SD N/A Skewness his data set only has 0 observations! pute reliable and meaningful statistics and estimates! riable trivalent chromium was not processed! 8 to 10 observations before using these statistical methods! uality Objectives (DQO) based sample size and analytical results.

	-		
KM Mea	n 0.49	KM SD	0.04
95% UTL95% Coverag	e 0.696	95% KM UPL (t)	0.595
90% KM Percentile (z) 0.541	95% KM Percentile (z)	0.556
99% KM Percentile (z) 0.583	95% KM USL	0.548
DL/2 Substitution Bac	kground Stat	istics Assuming Normal Distribution	
Mea	n 1.495	SD	1.161
95% UTL95% Coverag	e 7.467	95% UPL (t)	4.55
90% Percentile (z) 2.983	95% Percentile (z)	3.405
99% Percentile (z) 4.196	95% USL	3.193
DL/2 is not a recommended me	hod. DL/2 pro	bvided for comparisons and historical reasons	
Gamma GO	- Tests on De	etected Observations Only	
Not E	nough Data to	Perform GOF Test	
Gamm	Statistics or	Detected Data Only	
k bat (MLF	149 7	k star (bias corrected MLE)	N/A
Theta hat (MLE) 0.00327	Theta star (bias corrected MLE)	N/A
nu hat (MLE) 598.9	nu star (bias corrected)	Ν/Δ
MLE Mean (bias corrected) N/A		1.0/7.
		05% Perceptile of Chicquere (2kster)	NI/A
) 11/A		11/7
Estimatos of	Commo Doro	motora uning KM Entimaton	
Esumates of Macon (KN			0.04
) 0.49	SD (RM)	0.04
) 150.1	SE OF Mean (KM)	0.04
K hat (Kiv) 150.1	K star (KM)	37.68
) 1201	nu star (KM)	301.5
) 0.00327	theta star (KM)	0.013
80% gamma percentile (KM) 0.556	90% gamma percentile (KM)	0.595
95% gamma percentile (Kiv) 0.628	99% gamma percentile (KM)	0.695
The following statistics are	computed us	ing gamma distribution and KM estimates	
Upper Limits using Wilso	on Hilferty (W	H) and Hawkins Wixley (HW) Methods	
WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage 0.725	0.729	95% Approx. Gamma UPL 0.602	0.603
95% KM Gamma Percentile 0.558	0.558	95% Gamma USL 0.55	0.55
Lognormal G	OF Test on D	etected Observations Only	
Not E	nough Data to	Perform GOF Test	
Background Lognormal ROS Statistic	s Assuming	Lognormal Distribution Using Imputed Non-Detects	
Mean in Original Scal	e 0.49	Mean in Log Scale	-0.717
SD in Original Scal	e 0.0462	SD in Log Scale	0.0945
95% UTL95% Coverag	e 0.794	95% BCA UTL95% Coverage	N/A
95% Bootstrap (%) UTL95% Coverag	e N/A	95% UPL (t)	0.626
90% Percentile (z) 0.551	95% Percentile (z)	0.57
99% Percentile (z) 0.608	95% USL	0.561
			ı
Statistics using KM estimate	s on Logged	Data and Assuming Lognormal Distribution	
KM Mean of Logged Dat	a -0.717	95% KM UTL (Lognormal)95% Coverage	0.744

KM SD of Logged Data	0.0818	95% KM UPL (Lognormal)	0.606			
95% KM Percentile Lognormal (z)	0.559	95% KM USL (Lognormal)	0.55			
Background DL/2 Statistics Assuming Lognormal Distribution						
Mean in Original Scale	1.495	Mean in Log Scale	0.0998			
SD in Original Scale	1.161	SD in Log Scale	0.945			
95% UTL95% Coverage	142.8	95% UPL (t)	13.29			
90% Percentile (z)	3.71	95% Percentile (z)	5.23			
99% Percentile (z)	9.96	95% USL	4.402			
DL/2 is not a Recommended Meth	od. DL/2 pr	ovided for comparisons and historical reasons.	-			
	p.					
Nonparametric	Distribution	Free Background Statistics				
Data do not fr	ollow a Disc	ernible Distribution (0.05)				
Nonparametric Upper Limits for B	TVs(no disti	nction made between detects and nondetects)				
	4	95% LITL with 95% Coverage	5			
	0 211	Approximate Actual Confidence Coefficient achieved by LITI	0 185			
Approximate Sample Size needed to achieve specified CC	50		5			
	5	95% GPL	0.695			
95 % USL	5		0.065			
Note: The use of USL tends to yield a concentration	vo octimato	of PTV according 20				
Therefore, one moviling USL to estimate a BTV		or bit v, especially when the sample size starts exceeding 20.				
mereloie, one may use USL to estimate a BTV		e data set represents a background data set nee of outliers				
	tions collect	ed from clean unimpacted locations.				
The use of USL tends to provide a balan	ce between	false positives and false negatives provided the data				
cobalt						
	0	04-41-41				
Total Number of Observations	General	Statistics	1			
	4		I			
Number of Distinct Observations	2					
Number of Detects	2	Number of Non-Detects	2			
Number of Distinct Detects	1	Number of Distinct Non-Detects	1			
Minimum Detect	0.16	Minimum Non-Detect	5			
Maximum Detect	0.16	Maximum Non-Detect	5			
Variance Detected	0	Percent Non-Detects	50%			
Mean Detected	0.16	SD Detected	0			
Mean of Detected Logged Data	-1.833	SD of Detected Logged Data	0			
Warning: Only and distinct data value was data at						
t is suggested to use alternative site apositio voluce determ						
It is suggested to use alternative site specific values determ	ninea by the	Project ream to estimate environmental parameters (e.g., Er	-С, БТУ).			
The data set (or voriable .					
i në data set i		Cupair was 1101 processeu:				
copper						
General Statistics						
	General	Statistics				
Total Number of Observations	General 4	Statistics Number of Missing Observations	1			

Number of Detects	2	Number of Non-Detects	2
Number of Distinct Detects	2	Number of Distinct Non-Detects	1
Minimum Detect	1.1	Minimum Non-Detect	10
Maximum Detect	1.2	Maximum Non-Detect	10
Variance Detected	0.005	Percent Non-Detects	50%
Mean Detected	1.15	SD Detected	0.0707
Mean of Detected Logged Data	0.139	SD of Detected Logged Data	0.0615
		I	
Warning: D	ata set has	only 2 Detected Values.	
This is not enough to comp	ute meanin	gful or reliable statistics and estimates.	
Critical Values f	or Backgrou	nd Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	5.144	d2max (for USL)	1.462
, , , , , , , , , , , , , , , , ,			
Norm	al GOF Tes	t on Detects Only	
Not End	ouch Data to	p Perform GOF Test	
Kaplan Meier (KM) Bacl	around Sta	tistics Assuming Normal Distribution	
KM Mean	1 15	KM SD	0.05
95% UTI 95% Coverage	1 407	95% KM LIPL (t)	1 282
90% KM Percentile (z)	1 214	95% KM Percentile (z)	1 232
90% KM Percentile (z)	1 266	95% KM LISI	1 223
	1.200	55 % KW 05L	1.225
DI /2 Substitution Book	around Stat	ictics Assuming Normal Distribution	
DL/2 Substitution Back			2 2 2 2
Mean	3.075		2.223
95% UTL95% Coverage	14.51	95% UPL (t)	8.924
90% Percentile (z)	5.924	95% Percentile (z)	6.732
99% Percentile (z)	8.247	95% USL	6.326
DL/2 is not a recommended meth	od. DL/2 pro	ovided for comparisons and historical reasons	
Gamma GOF	Tests on De	etected Observations Only	
Not End	ough Data to	o Perform GOF Test	
Gamma	Statistics or	n Detected Data Only	
k hat (MLE)	528.7	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.00218	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	2115	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A		
MLE Sd (bias corrected)	N/A	95% Percentile of Chisquare (2kstar)	N/A
Estimates of G	amma Para	meters using KM Estimates	
Mean (KM)	1.15	SD (KM)	0.05
Variance (KM)	0.0025	SE of Mean (KM)	0.05
k hat (KM)	529	k star (KM)	132.4
nu hat (KM)	4232	nu star (KM)	1059
theta hat (KM)	0.00217	theta star (KM)	0.00868
80% gamma percentile (KM)	1.233	90% gamma percentile (KM)	1.28
95% gamma percentile (KM)	1.319	99% gamma percentile (KM)	1.395

The following statistics are computed using gamma distribution and KM estimates					
Upper Limits usir	ng Wilson	Hilferty (W	H) and Hawkins Wixley (HW) Methods		
	WH	HW	WH	HW	
95% Approx. Gamma UTL with 95% Coverage	1.426	1.429	95% Approx. Gamma UPL 1.286	1.286	
95% KM Gamma Percentile	1.233	1.234	95% Gamma USL 1.224	1.224	
I	1		· · · ·		
Logno	ormal GO	F Test on D	etected Observations Only		
	Not End	ough Data to	Perform GOF Test		
Background Lognormal ROS	Statistics	Assuming	Lognormal Distribution Using Imputed Non-Detects		
Mean in Origin	nal Scale	1.15	Mean in Log Scale	0.139	
SD in Origin	nal Scale	0.0577	SD in Log Scale	0.0502	
95% UTL95% C	coverage	1.488	95% BCA UTL95% Coverage	N/A	
95% Bootstrap (%) UTL95% C	coverage	N/A	95% UPL (t)	1.311	
90% Perc	entile (z)	1.225	95% Percentile (z)	1.248	
99% Perce	entile (z)	1.291	95% USL	1.237	
Statistics using KM es	stimates	on Logged	Data and Assuming Lognormal Distribution		
KM Mean of Logo	ged Data	0.139	95% KM UTL (Lognormal)95% Coverage	1.437	
KM SD of Logo	ged Data	0.0435	95% KM UPL (Lognormal)	1.288	
95% KM Percentile Logno	ormal (z)	1.234	95% KM USL (Lognormal)	1.224	
Backgrou	nd DL/2 S	Statistics As	suming Lognormal Distribution		
Mean in Origin	nal Scale	3.075	Mean in Log Scale	0.874	
SD in Origin	nal Scale	2.223	SD in Log Scale	0.85	
95% UTL95% C	coverage	189.7	95% UPL (t)	22.42	
90% Perc	entile (z)	7.122	95% Percentile (z)	9.698	
99% Percentile (z) 17.31 95% USL				8.306	
DL/2 is not a Recommend	ded Meth	od. DL/2 pr	ovided for comparisons and historical reasons.		
Nonpa	rametric	Distribution	Free Background Statistics		
Data	a do not fo	ollow a Disc	ernible Distribution (0.05)		
Nonparametric Upper Lin	nits for B	rVs(no disti	nction made between detects and nondetects)		
Order of S	tatistic, r	4	95% UTL with95% Coverage	10	
Approx, f used to compute achie	eved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185	
Approximate Sample Size needed to achieve spec	cified CC	59	95% UPL	10	
9	5% USL	10	95% KM Chebyshev UPL	1.394	
Note: The use of USL tends to yield a co	onservati	/e estimate	of BTV, especially when the sample size starts exceeding 20.		
I herefore, one may use USL to estimat		only when th	he data set represents a background data set free of outliers		
and consists o	f observa	tions collect	ed from clean unimpacted locations.		
I he use of USL tends to provid	e a balan	ce between	taise positives and false negatives provided the data		
represents a background data s	et and wh	ien many or	isite observations need to be compared with the BTV.		
han					
		0	Otabiation		
T . IN		General	STATISTICS	2	
I otal Number of Obse	ervations	2	Number of Missing Observations	კ	
Number of Distinct Obse	rvations	I			

Number of Detects	0	Number of Non-Detects	2
Number of Distinct Detects	0	Number of Distinct Non-Detects	1
Minimum Detect	N/A	Minimum Non-Detect	0.2
Maximum Detect	N/A	Maximum Non-Detect	0.2
Variance Detected	N/A	Percent Non-Detects	100%
Mean Detected	N/A	SD Detected	N/A
Mean of Detected Logged Data	N/A	SD of Detected Logged Data	N/A
Warning: Th	ie data ee	at only has 2 observations!	
Data set is too small to comr	ute reliab	le and meaningful statistics and estimates	
The data set	for variat	ble iron was not processed	
It is suggested to collect at least 8	to 10 obs	ervations before using these statistical methods!	
If possible, compute and collect Data Qu	ality Obje	ctives (DQO) based sample size and analytical results.	
lead			
	Genera	al Statistics	
Total Number of Observations	2	Number of Missing Observations	3
Number of Distinct Observations	1		
Number of Detects	0	Number of Non-Detects	2
Number of Distinct Detects	0	Number of Distinct Non-Detects	1
Minimum Detect	N/A	Minimum Non-Detect	5
Maximum Detect	N/A	Maximum Non-Detect	5
Variance Detected	N/A	Percent Non-Detects	100%
Mean Detected	N/A	SD Detected	N/A
Mean of Detected Logged Data	N/A	SD of Detected Logged Data	N/A
Warning: Th	ie data ec	at only has 2 observations!	
Data set is too small to comr	uto reliah	le and meaningful statistics and estimates	
	for variab	le lead was not processed!	
It is suggested to collect at least 8	to 10 obs	ervations before using these statistical methods	
If possible, compute and collect Data Qu	ality Ohie	ctives (DOO) based sample size and analytical results	
	uniy e bje		
magnesium			
-			
General Statistics			
Total Number of Observations	0	Number of Distinct Observations	0
		Number of Missing Observations	5
Minimum	N/A	First Quartile	N/A
Second Largest	N/A	Median	N/A
Maximum	N/A	Third Quartile	N/A
Mean	N/A	SD	N/A
Coefficient of Variation	N/A	Skewness	N/A
Warning: Th	is data se	et only has 0 observations!	
Data set is too small to comp	oute reliab	le and meaningful statistics and estimates!	

The data set for variable magnesium was not processed!		
It is suggested to collect at least 8 to 10 observations before using these statistical methods		
It is suggested to collect at least o to 10 observations before using these statistical methods:		
manganese		
<u> </u>		
General Statistics		
Total Number of Observations 4 Number of Missing Observ	ations	1
Number of Distinct Observations 4		
Number of Detects 3 Number of Non-D	etects	1
Number of Distinct Detects 3 Number of Distinct Non-D	etects	1
Minimum Detect 11 Minimum Non-I	etect	10
Maximum Detect 22.2 Maximum Non-I	etect	10
Variance Detected 38.41 Percent Non-D	etects	25%
Mean Detected 18.13 SD Det	ected	6.198
Mean of Detected Logged Data 2.851 SD of Detected Logged	Data	0.393
Warring: Data and has any 2 Datasted Values		
This is not ensure to compute machineful or reliable statistics and estimates		
Critical Values for Background Threshold Values (BTVs)		
Tolerance Factor K (For UTL) 5 144	USI.)	1 462
	002)	
Normal GOF Test on Detects Only		
Shapiro Wilk Test Statistic 0.816 Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value 0.767 Detected Data appear Normal at 5% Significant	ce Lev	el
Lilliefors Test Statistic 0.356 Lilliefors GOF Test		
5% Lilliefors Critical Value 0.425 Detected Data appear Normal at 5% Significant	ce Lev	el
Detected Data appear Normal at 5% Significance Level		
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution		
KM Mean 16.1 K	MSD	5.622
95% UTL95% Coverage 45.02 95% KM U	PL (t)	30.89
90% KM Percentile (z) 23.31 95% KM Percent	ile (z)	25.35
99% KM Percentile (z) 29.18 95% KM	USL	24.32
DL/2 Substitution Background Statistics Assuming Normal Distribution	0.5	
	SD	8.29
Mean 14.85		26.00
Mean 14.85 95% UTL95% Coverage 57.5 95% UT	PL (t)	36.66
Mean 14.85 95% UTL95% Coverage 57.5 95% U 90% Percentile (z) 25.47 95% Percentile	PL (t) ile (z)	36.66 28.49
Mean 14.85 95% UTL95% Coverage 57.5 90% Percentile (z) 25.47 99% Percentile (z) 34.14 95% DI (2 is not a meanmended method DI (2 is not a meanmended method	PL (t) ile (z)	36.66 28.49 26.97

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

	(hat (MLE)	10.78	k star (bias corre	ected MLE)	N/A
Theta	a hat (MLE)	1.682	Theta star (bias corre	ected MLE)	N/A
ทเ	u hat (MLE)	64.69	nu star (bias	corrected)	N/A
MLE Mean (bias	corrected)	N/A	· · · · · · · · · · · · · · · · · · ·		
MLE Sd (bias	corrected)	N/A	95% Percentile of Chisqua	are (2kstar)	N/A
· · · · · · · · · · · · · · · · · · ·	,		· · · · ·		
Ga	amma ROS	Statistics u	sing Imputed Non-Detects		
GROS may not be used v	vhen data se	et has > 50%	6 NDs with many tied observations at multiple DLs		
GROS may not be used when kstar or	f detects is s	mall such a	s <1.0, especially when the sample size is small (e.	.g., <15-20)	
For such situation	ns, GROS n	nethod may	yield incorrect values of UCLs and BTVs		
Tr	nis is especia	ally true whe	en the sample size is small.		
For gamma distributed detected d	ata, BTVs ar	nd UCLs ma	y be computed using gamma distribution on KM es	timates	
	Minimum	4.816		Mean	14.8
	Maximum	22.2		Median	16.1
	SD	8.363		CV	0.565
	(hat (MLE)	3.208	k star (bias corre	ected MLE)	0.969
Theta	a hat (MLE)	4.615	Theta star (bias corre	ected MLE)	15.28
nı	u hat (MLE)	25.66	nu star (bias	corrected)	7.748
MLE Mean (bias	corrected)	14.8	MLE Sd (bias	corrected)	15.04
95% Percentile of Chisqu	are (2kstar)	5.869	90%	Percentile	34.36
95%	Percentile	44.85	99%	Percentile	69.28
The following statis	stics are con	nputed usin	o Gamma ROS Statistics on Imputed Data		
Upper Limits u	sina Wilson	Hilferty (W	H) and Hawkins Wixley (HW) Methods		
	WH	HW		WH	HW
95% Approx Gamma UTL with 95% Coverage	131.9	162 7	95% Approx, Gamma UPL	53 28	57.8
95% Gamma USI	31 12	32.01		00.20	07.0
	01112	02.01			
Est	imates of Ga	amma Para	meters using KM Estimates		
	Mean (KM)	16 1		SD (KM)	5 622
Va	iance (KM)	31.61	SE of I	Mean (KM)	3 443
	k hat (KM)	82		k star (KM)	2 217
	nu hat (KM)	65.6		u star (KM)	17 73
the	ta hat (KM)	1 963	thet	a star (KM)	7 263
80% gamma perc	entile (KM)	23.81	90% gamma perce	entile (KM)	30.57
95% gamma perc	entile (KM)	36.98	99% gamma perce	entile (KM)	51 11
		00.00			01.11
The following stat	istics are co	mouted us	ing gamma distribution and KM estimates		
	sing Wilson	Hilferty (W	H) and Hawkins Wixley (HW) Methods		
	WH			WH	HW
95% Approx, Gamma LITL with 95% Coverage	65.9	71 26	95% Approx, Gamma UPL	35.35	36.2
95% KM Gamma Percentile	26.59	26.8	95% Gamma USI	25.15	25.28
	20.00	20.0		20.10	20.20
		F Test on D	etected Observations Only		
Shaniro Wilk T	est Statistic	0 700	Shaniro Wilk GOE Teet	-	
5% Shaniro Wilk Cr	itical Value	0 767	Detected Data annear Lognormal at 5% Sid	unificance l	evel
	est Statistic	0.767			0401
5% Lilliefore Or	itical Value	0.004	Detected Data annear Lognormal at 5% Sid	anificance	evel
	ted Data an	near Logro	rmal at 5% Significance Level		
Delec	iou Dala dh	poar Lugilu			
Background Lognormal PO	S Statistics	Assuming	ognormal Distribution Lising Imputed Non-Detect		
Buonground Lognornial NO		. sourning		-	

Maran in Original Ocale	15.00	Maan in Law Orale	0.000
Mean in Original Scale	15.22	Mean in Log Scale	2.606
	7.712		0.080
	2/5.3	95% BCA UTL95% Coverage	N/A
95% BOOLSTAP (%) UTE95% Coverage	N/A	95% OPL (t)	25.49
	20.00	95% Percentule (2)	30.48
	52.00	95% USL	31.00
Statistics using KM estimates	on Logged	Data and Assuming Lognormal Distribution	
KM Mean of Logged Data	2.714	95% KM UTL (Lognormal)95% Coverage	98.78
KM SD of Logged Data	0.365	95% KM UPL (Lognormal)	39.44
95% KM Percentile Lognormal (z)	27.51	95% KM USL (Lognormal)	25.74
Backaround DL/2 S	Statistics As	ssuming Lognormal Distribution	
Mean in Original Scale	14.85	Mean in Log Scale	2.54
SD in Original Scale	8.29	SD in Log Scale	0.699
95% UTL95% Coverage	461.2	95% UPL (t)	79.71
90% Percentile (z)	31.05	95% Percentile (z)	40.02
99% Percentile (z)	64.42	95% USL	35.23
DL/2 is not a Recommended Meth	od. DL/2 pr	ovided for comparisons and historical reasons.	
Nonparametric	Distribution	Free Background Statistics	
Data appear to follow a l	Discernible	Distribution at 5% Significance Level	
Nonparametric Upper Limits for B	TVs(no disti	inction made between detects and nondetects)	
Order of Statistic, r	4	95% UTL with95% Coverage	22.2
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185
Approximate Sample Size needed to achieve specified CC	59	95% UPL	22.2
95% USL	22.2	95% KM Chebyshev UPL	43.5
		· · · · · ·	
Note: The use of USL tends to yield a conservation	ve estimate	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV	only when th	ne data set represents a background data set free of outliers	
and consists of observa	tions collec	ted from clean unimpacted locations.	
The use of USL tends to provide a balan	ce between	false positives and false negatives provided the data	
represents a background data set and whether the set and whether t	nen many oi	nsite observations need to be compared with the BTV.	
mercury			
	General	Statistics	
Total Number of Observations	4	Number of Missing Observations	1
Number of Distinct Observations	1		
Number of Detects	0	Number of Non-Detects	4
Number of Distinct Detects	0	Number of Distinct Non-Detects	1
Minimum Detect	N/A	Minimum Non-Detect	0.2
Maximum Detect	N/A	Maximum Non-Detect	0.2
Variance Detected	N/A	Percent Non-Detects	100%
Mean Detected	N/A	SD Detected	N/A
Mean of Detected Logged Data	N/A	SD of Detected Logged Data	N/A
		· ł	
Warning: All observations are Non-Detects	s (NDs), the	erefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	d other stati	stics are also NDs lying below the largest detection limit!	

	The data set fo	or variable m	nercury was not processed!	
CKOI				
		General	Statistics	
	Total Number of Observations	4	Number of Missing Observations	1
	Number of Distinct Observations	3		
	Number of Detects	2	Number of Non-Detects	2
	Number of Distinct Detects	2	Number of Distinct Non-Detects	1
	Minimum Detect	0.29	Minimum Non-Detect	10
	Maximum Detect	0.33	Maximum Non-Detect	10
	Variance Detected	8.0000E-4	Percent Non-Detects	50%
	Mean Detected	0.31	SD Detected	0.028
	Mean of Detected Logged Data	-1.173	SD of Detected Logged Data	0.091
	Warning: D	ata set has	only 2 Detected Values.	
	This is not enough to comp	oute meaning	gful or reliable statistics and estimates.	
	Critical Values for	or Backgrou	nd Threshold Values (BTVs)	
	Tolerance Factor K (For UTL)	5.144	d2max (for USL)	1.46
		I		
	Norm	al GOF Tes	t on Detects Only	
	Not End	ough Data to	Perform GOF Test	
	Kaplan Meier (KM) Back	kground Sta	tistics Assuming Normal Distribution	
	KM Mean	0.31	KM SD	0.02
	95% UTL95% Coverage	0.413	95% KM UPL (t)	0.36
	90% KM Percentile (z)	0.336	95% KM Percentile (z)	0.343
	99% KM Percentile (z)	0.357	95% KM USL	0.339
	DL/2 Substitution Back			2 70
		2.000		2.70
	95% UTL95% Coverage	10.58	95% UPL (t)	9.78
	90% Percentile (z)	0.125	95% Percentile (z)	7.10
	99% Percentile (Z)	8.954	95% USL	0.01
		ου. DL/2 pro	งของ เอก เอกมุลกรอกร สกุน การเอกเวลา 1885005	
	Gamma GOE	Tests on De	atected Observations Only	
		Tests on De	Derform GOE Test	
	Gamma	Statistics or	Detected Data Only	
	k hat (MLF)	239.9	k star (bias corrected MLF)	N/A
	Theta hat (MLE)	0.00129	Theta star (bias corrected MLE)	N/A
	nu hat (MLE)	959.7	nu star (bias corrected)	N/A
	MI F Mean (bias corrected)	N/A		
	MIESd (bias corrected)	N/A	95% Percentile of Chicquare (2kstar)	Ν/Δ
	MLE Mean (bias corrected)	N/A	95% Percentile of Chicquare (2kstar)	

Esti	mates of G	amma Dara	meters using KM Estimates	
ESU				0.02
Var		0.31 4.0000E-4	SD (RW) SE of Mean (KM)	0.02
	k bat (KM)	2/0 3	SE OF Mean (KM)	60.23
r	w hat (KM)	1922	nu star (KM)	/81.8
the	ta hat (KM)	0.00129	theta star (KM)	0.00515
	ontilo (KM)	0.00123	00% gamma percentile (KM)	0.00010
	ontilo (KM)	0.378	00% gamma percentile (KM)	0.002
		0.578		0.41
The following stat	istics are o	omputed usi	ing gamma distribution and KM estimates	
		Hilferty (W	H) and Hawkins Wixley (HW) Methods	
	WH	HW		HW
95% Approx, Gamma LITL with 95% Coverage	0.424	0.426	95% Approx, Gamma LIPL 0.365	0 366
95% KM Gamma Percentile	0.344	0.420	95% Gamma USL 0.34	0.34
	0.344	0.044	93 % Gamma OSE 0.54	0.54
	normal GO	F Test on D	etected Observations Only	
Log	Not En		Perform GOE Test	
Background Lognormal BO	S Statistics	Assumina	ognormal Distribution Lising Imputed Non-Detects	
Mean in Ori	ainal Scale	0.31		-1 173
SD in Ori	ginal Scale	0.01	SD in Log Scale	0.0746
95% []][] 95%		0.0201	95% BCA LITL 95% Coverage	N/A
95% Bootstrap (%) UTI 95%		N/A	95% LIPL (t)	0.376
90% Peterson	ercentile (z)	0.34		0.35
90% Pc	$r_{centile}(z)$	0.04	95% USI	0.345
		0.000		0.040
Statistics using KM	estimates	on Logged I	Data and Assuming Lognormal Distribution	
KM Mean of Lo	and Data	-1 173	95% KM UTL (Lognormal)95% Coverage	0 431
KM SD of L	ogged Data	0.0646	95% KM UPL (Lognormal)	0.367
95% KM Percentile Log	normal (z)	0.344	95% KM USL (Lognormal)	0.34
	g(=)	0.0.1	00/01/01/00_(20g.101/10)	0.0.
Backor	ound DL/2	Statistics As	suming Lognormal Distribution	
Mean in Ori	ainal Scale	2.655	Mean in Log Scale	0.218
SD in Ori	ginal Scale	2.708	SD in Log Scale	1.607
95% UTL95%	Coverage	4851	95% UPL (t)	85.42
90% Pe	ercentile (z)	9.758	95% Percentile (z)	17.5
99% Pe	ercentile (z)	52.33	95% USL	13.05
DL/2 is not a Recomme	ended Meth	od. DL/2 pro	ovided for comparisons and historical reasons.	
		· ·	·	
Non	parametric	Distribution	Free Background Statistics	
Da	ata do not f	ollow a Disc	ernible Distribution (0.05)	
Nonparametric Upper I	Limits for B	TVs(no disti	nction made between detects and nondetects)	
Order of	f Statistic, r	4	95% UTL with95% Coverage	10
Approx, f used to compute ac	chieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185
Approximate Sample Size needed to achieve sp	pecified CC	59	95% UPL	10
· · · · · ·	95% USL	10	95% KM Chebyshev UPL	0.407

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.

Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. potassium General Statistics Total Number of Observations Number of Distinct Observations 0 0 Number of Missing Observations 5 Minimum N/A First Quartile N/A Second Largest N/A N/A Median Third Quartile Maximum N/A N/A Mean N/A SD N/A Coefficient of Variation N/A Skewness N/A Warning: This data set only has 0 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for variable potassium was not processed! It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results. selenium

	General	Statistics	
Total Number of Observations	4	Number of Missing Observations	1
Number of Distinct Observations	3		
Number of Detects	2	Number of Non-Detects	2
Number of Distinct Detects	2	Number of Distinct Non-Detects	1
Minimum Detect	0.096	Minimum Non-Detect	20
Maximum Detect	0.11	Maximum Non-Detect	20
Variance Detected	9.8000E-5	Percent Non-Detects	50%
Mean Detected	0.103	SD Detected	0.0099
Mean of Detected Logged Data	-2.275	SD of Detected Logged Data	0.0963
Warning: D	ata set has	only 2 Detected Values.	
This is not enough to com	pute meaning	gful or reliable statistics and estimates.	
Critical Values f	or Backgrou	nd Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	5.144	d2max (for USL)	1.462
		· · · · · · · · · · · · · · · · · · ·	
Norm	nal GOF Tes	t on Detects Only	
Not En	ough Data to	Perform GOF Test	
Kaplan Meier (KM) Bac	kground Stat	tistics Assuming Normal Distribution	
KM Mean	0.103	KM SD	0.007

90% KM Percen	tile (z)	0.112	95% KM Percentile (z	0.115
99% KM Percen	tile (z)	0.119	95% KM USL	0.113
				ļ
DL/2 Substitution	n Back	ground Stati	stics Assuming Normal Distribution	
	Mean	5.052	SE	5.714
95% UTL95% Cov	/erage	34.44	95% UPL (t	20.09
90% Percen	tile (z)	12.37	95% Percentile (z	14.45
99% Percen	tile (z)	18.34	95% USL	13.41
DL/2 is not a recommended	d meth	od. DL/2 pro	ovided for comparisons and historical reasons	
Gamma	a GOF	Tests on De	etected Observations Only	
1	Not End	ough Data to	Perform GOF Test	
G	amma	Statistics on	Detected Data Only	
k hat	(MLE)	216.2	k star (bias corrected MLE	N/A
Theta hat	(MLE)	4.7646E-4	Theta star (bias corrected MLE	N/A
nu hat	(MLE)	864.7	nu star (bias corrected	N/A
MLE Mean (bias corr	ected)	N/A	· · · · · · · · · · · · · · · · · · ·	
MLE Sd (bias corr	ected)	N/A	95% Percentile of Chisquare (2kstar)	N/A
	,			
Estimate	s of G	amma Parar	meters using KM Estimates	
Mear	ו (KM)	0.103	SD (KM	0.007
Variance	e (KM)	4.9000E-5	SE of Mean (KM	0.007
k ha	t (KM)	216.5	k star (KM	54.29
nu ha	t (KM)	1732	nu star (KM	434.4
theta ha	theta hat (KM) 4.7573E-4 theta star (KM)		0.0019	
80% gamma percentile	e (KM)	0.115	5 90% gamma percentile (KM)	
95% gamma percentile	e (KM)	0.127	99% gamma percentile (KM	0.138
	()			
The following statistics	s are co	omputed usi	ng gamma distribution and KM estimates	
Upper Limits using	Wilson	Hilferty (WI	H) and Hawkins Wixley (HW) Methods	
	н	HW	WH	НW
95% Approx Gamma LITL with 95% Coverage 0	143	0 144	95% Approx Gamma LIPI 0 122	0 123
95% KM Gamma Percentile 0	115	0 115	95% Gamma USI 0 113	0 113
		00		00
	nal GO	F Test on D	etected Observations Only	
	Not Enc	ugh Data to	Perform GOF Test	
Background Lognormal BOS St	atistics	Assumina l	ognormal Distribution Using Imputed Non-Detects	
Mean in Original	Scale	0 103	Mean in Log Scale	-2 275
SD in Original	Scale	0.00808	SD in Log Scale	0.0786
95% LITI 95% Cov	verage	0 154	95% BCA LITI 95% Coverage	N/A
95% Bootstran (%) LITI 95% Cov	verage	N/A	95% LIPL (t	0.126
90% Doolardp (%) 01200% 000	tile (7)	0 114	95% Percentile (z	0.120
90% Percen	tile (z)	0.114	95% [19]	0.115
	(<i>L</i>)	0.120	33% 031	0.115
Statiation using KM pati	matee		Data and Assuming Lognormal Distribution	
		_2 275		0 1/6
		-2.270		0.140
				0.123
95% KM Percentile Lognorr	nai (Z)	0.115	95% KM USL (Lognormal)	0.114

Background DL/2	Statistics As	ssuming Lognormal Distribution	
Mean in Original Scale	5.052	Mean in Log Scale	0.0136
SD in Original Scale	5.714	SD in Log Scale	2.644
95% UTL95% Coverage	816321	95% UPL (t)	1064
90% Percentile (z)	30.01	95% Percentile (z)	78.42
99% Percentile (z)	475.2	95% USL	48.42
DL/2 is not a Recommended Meth	od. DL/2 pr	ovided for comparisons and historical reasons.	
Nonparametric	Distribution	Free Background Statistics	
Data do not f	ollow a Disc	cernible Distribution (0.05)	
Nonparametric Upper Limits for B	TVs(no disti	inction made between detects and nondetects)	
Order of Statistic, r	4	95% UTL with95% Coverage	20
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185
Approximate Sample Size needed to achieve specified CC	59	95% UPL	20
95% USL	20	95% KM Chebyshev UPL	0.137
Note: The use of USL tends to yield a conservati	ve estimate	of BTV, especially when the sample size starts exceeding 20.	
Therefore, one may use USL to estimate a BTV	only when th	ne data set represents a background data set free of outliers	
and consists of observa	ations collect	ted from clean unimpacted locations.	
The use of USL tends to provide a balar	nce between	false positives and false negatives provided the data	
represents a background data set and w	hen many or	nsite observations need to be compared with the BTV.	
	, -		
strontium			
General Statistics			
Total Number of Observations	4	Number of Distinct Observations	3
		Number of Missing Observations	1
Minimum	85.3	First Quartile	85.45
Second Largest	100	Median	92.75
Maximum	100	Third Quartile	100
Mean	92.7	SD	8.43
Coefficient of Variation	0 0909	Skewness	-4 875F-4
Mean of logged Data	4 526	SD of logged Data	0.0911
			0.0011
Critical Values f	or Backgrou	Ind Threshold Values (BTVs)	
Tolerance Factor K (For LITL)	5 144	d2max (for USL)	1 462
	0		
	Normal	GOF Test	
Shaniro Wilk Test Statistic	0.737	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.748	Data Not Normal at 5% Significance Level	
Lilliafore Test Statistic	0.307	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level	
Data annear Ann	roximate No	Irmal at 5% Significance Level	
Rackaround 9	tatistice Acc	suming Normal Distribution	
	136 1		103 5
	11/ 0		106.6
55 % OFL (l)	105		112.0
95% USL	105		112.0

	Gamma				
	0.706	Anderson-Daning Gamma GOF Test	-1		
5% A-D Childal Value	0.007	Kalmagaray Smirnay Commo COE Tast	ei		
K-S Test Statistic	0.341	Kolmogorov-Smirnov Gamma GOF Test			
5% K-S Critical Value	0.394	Detected data appear Gamma Distributed at 5% Significant	ce Level		
Detected data follow App	or. Gamma	Distribution at 5% Significance Level			
	0	Outstand			
	Gamma	Statistics	40.00		
k hat (MLE)	160.9	k star (bias corrected MLE)	40.39		
I heta hat (MLE)	0.576	Theta star (bias corrected MLE)	2.295		
nu hat (MLE)	1287	nu star (bias corrected)	323.1		
MLE Mean (bias corrected)	92.7	MLE Sd (bias corrected)	14.59		
Background St	atistics Ass	uming Gamma Distribution			
95% Wilson Hilferty (WH) Approx, Camma LIPI	116 5		111 0		
95% Hawkins Wivley (HW) Approx. Gamma UPL	116.7	90% Percentile	117.0		
95% WH Approx Commo LITL with 95% Coverage	1/3		130		
95% HW Approx, Camma UTL with 95% Coverage	143	33% Feicentile	150		
	105.4		105 /		
55% WH USE	105.4	55% HW USL	103.4		
	Lognormo	I GOE Tost			
Shapiro Wilk Test Statistic	0 737	Shaniro Wilk Lognormal GOE Test			
5% Shapiro Wilk Critical Value	0.737	Data Not Lognormal at 5% Significance Level			
	0.740				
	0.307	Deta appear Lognormal et 5% Significance Lovel			
	vimate Loar	Data appear Loyionnar at 5 % Significance Lever			
Data appear Applo	kimate Logi				
Background Sta	tistics assu	ming Lognormal Distribution			
95% UTL with 95% Coverage	147.7	90% Percentile (z)	103.9		
95% UPL (t)	117.5	95% Percentile (z)	107.4		
95% USL	105.6	99% Percentile (z)	114.2		
Nonparametric	Distribution	Free Background Statistics			
Data appear Appr	oximate No	rmal at 5% Significance Level			
		·····			
Nonparametric Upp	er Limits fo	r Background Threshold Values			
Order of Statistic, r	4	95% UTL with 95% Coverage	100		
Approx, f used to compute achieved CC	0.211	Approximate Actual Confidence Coefficient achieved by UTL	0.185		
		Approximate Sample Size needed to achieve specified CC	59		
95% Percentile Bootstrap UTL with 95% Coverage	N/A	95% BCA Bootstrap UTL with 95% Coverage	N/A		
95% UPL	100	90% Percentile	100		
90% Chebvshev UPL	121	95% Percentile	100		
95% Chebyshev UPL	133.8	99% Percentile	100		
95% USL	100				
	-	1			
Note: The use of USL tends to vield a conservativ	ve estimate	of BTV, especially when the sample size starts exceeding 20.			
Therefore. one may use USL to estimate a BTV	only when th	ne data set represents a background data set free of outliers			
and consists of observa	tions collect	ted from clean unimpacted locations.			
The use of USL tends to provide a balan	The use of USL tends to provide a balance between false positives and false negatives provided the data				

represents a background data set and when many onsite observations need to be compared with the BTV. silver General Statistics Total Number of Observations 0 Number of Distinct Observations 0 Number of Missing Observations 5 Minimum N/A First Quartile N/A N/A Second Largest Median N/A Maximum N/A Third Quartile N/A N/A N/A Mean SD Coefficient of Variation N/A Skewness N/A Warning: This data set only has 0 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for variable silver was not processed! It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results. sodium General Statistics Total Number of Observations Number of Distinct Observations 0 0 Number of Missing Observations 5 Minimum N/A First Quartile N/A Second Largest N/A Median N/A N/A Third Quartile N/A Maximum Mean N/A SD N/A Coefficient of Variation N/A Skewness N/A Warning: This data set only has 0 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for variable sodium was not processed! It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results. thallium **General Statistics** Total Number of Observations 2 Number of Missing Observations 3 Number of Distinct Observations 1 0 2 Number of Detects Number of Non-Detects Number of Distinct Detects 0 Number of Distinct Non-Detects 1 Minimum Detect N/A Minimum Non-Detect 10

Maximum Detect

Variance Detected

N/A

N/A

Maximum Non-Detect

Percent Non-Detects

10

100%

Mean Detected	N/A	SD Detected	N/A					
Mean of Detected Logged Data	N/A	SD of Detected Logged Data	N/A					
Warning: Th	Warning: This data set only has 2 observations!							
Data set is too small to comp	ute reliable	and meaninoful statistics and estimates!						
The data set fo	r variable t	hallium was not processed!						
		······						
It is suggested to collect at least 8	to 10 obsei	vations before using these statistical methods						
If possible, compute and collect Data Qu	ality Object	ives (DOO) based sample size and analytical results						
Vanacium								
	0	Obstation						
Tatal Number of Observations	General	Statistics	2					
I otal Number of Observations	2	Number of Missing Observations	3					
Number of Distinct Observations	1							
Number of Detects	0	Number of Non-Detects	2					
Number of Distinct Detects	0	Number of Distinct Non-Detects	1					
Minimum Detect	N/A	Minimum Non-Detect	5					
Maximum Detect	N/A	Maximum Non-Detect	5					
Variance Detected	N/A	Percent Non-Detects	100%					
Mean Detected	N/A	SD Detected	N/A					
Mean of Detected Logged Data	N/A	SD of Detected Logged Data	N/A					
Warning: Th	is data set	only has 2 observations!						
Data set is too small to comp	ute reliable	and meaningful statistics and estimates!						
The data set for	variable va	anadium was not processed!						
It is suggested to collect at least 8	to 10 obsei	rvations before using these statistical methods!						
If possible, compute and collect Data Qu	ality Object	ives (DQO) based sample size and analytical results.						
zinc								
	General	Statistics						
Total Number of Observations	2	Number of Missing Observations	3					
Number of Distinct Observations	1							
Number of Detects	0	Number of Non-Detects	2					
Number of Distinct Detects	0	Number of Distinct Non-Detects	1					
Minimum Detect	N/A	Minimum Non-Detect	30					
Maximum Detect	N/A	Maximum Non-Detect	30					
Variance Detected	N/A	Percent Non-Detects	100%					
Mean Detected	N/A	SD Detected	N/A					
Mean of Detected Logged Data	N/A	SD of Detected Logged Data	N/A					
Warnina: Th	is data set	only has 2 observations!						
Data set is too small to com	ute reliable	and meaningful statistics and estimates!						
The data set	for variable	zinc was not processed!						
		· ·						
It is suggested to collect at least 8	to 10 obse	rvations before using these statistical methods						

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.			
Hardness			
General Statistics			
Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	3
Minimum	53600	First Quartile	53700
Second Largest	53600	Median	53800
Maximum	54000	Third Quartile	53900
Mean	53800	SD	282.8
Coefficient of Variation	0.00526	Skewness	N/A
Warning: This data set only has 2 observations!			
Data set is too small to compute reliable and meaningful statistics and estimates!			
The data set for variable Hardness was not processed!			
It is suggested to collect at least 8 to 10 observations before using these statistical methods!			
If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.			
Appendix C - DEQ Risk Calculator Documentation

Appendix C-1 Exposure Point Concentration Tables

Appendix C-2

Exposure Unit #1 – Resident and Non-Residential Worker (0-2 ft bgs soil samples, background concentrations included)

Appendix C-3

Exposure Unit #1 – Construction Worker (0-10 ft bgs soil samples, background concentrations included)

Appendix C-4

Exposure Unit #2 Trail – Greenway User and Construction Worker (soil samples, background concentrations included)

Appendix C-5

Exposure Unit $\frac{1}{42}$ Creek – Greenway User (sediment and surface water samples, background concentrations included)

Appendix C-6

Exposure Unit #3 – Resident, Non-Residential Worker, and Greenway User (0-2 ft bgs soil samples, background concentrations included)

Appendix C-7

Exposure Unit #3 - Construction Worker (0-10 ft bgs soil samples, background concentrations included)

Appendix C-8

Exposure Unit #1 – Resident and Non-Residential Worker (0-2 ft bgs soil samples, background concentrations excluded)

Appendix C-9

Exposure Unit #1 – Construction Worker (0-10 ft bgs soil samples, background concentrations excluded)

Appendix C-10

Exposure Unit #2 Trail – Greenway User and Construction Worker (soil samples, background concentrations excluded)

Appendix C-11

Exposure Unit #2 Creek – Greenway User (sediment and surface water samples, background concentrations excluded)

Appendix C-12

Exposure Unit #3 – Resident, Non-Residential Worker, and Greenway User (0-2 ft bgs soil samples, background concentrations excluded)

Appendix C-13

Exposure Unit #3 - Construction Worker (0-10 ft bgs soil samples, background concentrations excluded)

496 Appendix C-1 Exposure Point Concentration Tables Exposure Unit #1 Direct Contact to Soil Pathway 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina <u>H&H Job. No. TCH-009</u>

Sample ID	Sample Date	Material Sampled (Soil or CCP)	Sample Depth	arsenic	barium	beryllium	cadmium	hexavalent chromium	trivalent chromium	cobalt	copper	lead	manganese	mercury	nickel	selenium	strontium	thallium	vanadium	zinc
	Site-Spe	cific BSV		3.015	87.86	0.929	0.313	5.725	70.2	36.31	77.3	59.11	1,149	0.256	19.49	2.503	43.19	0.981	227	230
S-4	04/29/13	CCP	1 ft	14	24	ND	1.5	NA	NA	30	65	20	1,500	0.011	43	ND	NA	ND	21	120
S-5*	01/31/14	CCP	0-4 ft	37	2,800	NA	ND	1.3	19.7	NA	NA	10	NA	0.30	NA	3.2	NA	NA	NA	NA
S-6*	01/31/14	CCP	0-4 ft	43	3,200	NA	ND	2.7	19.3	NA	NA	12	NA	0.42	NA	6.1	NA	NA	NA	NA
GP-1	02/03/14	CCP	8-12 ft	3.5	86	NA	ND	ND	8.8	NA	NA	26	NA	0.083	NA	ND	NA	NA	NA	NA
GP-2	02/03/14	CCP	26-28 ft	41	1,100	NA	ND	ND	19	NA	NA	11	NA	0.24	NA	4.0	NA	NA	NA	NA
GP-3	02/03/14	CCP	10-12 ft	48	1,200	NA	ND	0.53	22.47	NA	NA	39	NA	0.42	NA	ND	NA	NA	NA	NA
GP-4	02/04/14	CCP	10-12 ft	59	2,900	NA	ND	ND	20	NA	NA	11	NA	0.51	NA	5.8	NA	NA	NA	NA
	02/04/14	CCP	4-6 ft	72	2,800	NA	ND	ND	19	NA	NA	9.5	NA	0.33	NA	2.6	NA	NA	NA	NA
GP-5	04/03/19	CCP	4-6 ft	95.9	2,350	5.46	<0.956	0.836 J	12.3	7.05	50.9	NA	34.7	1.2	11.1	12	325	NA	NA	NA
	04/03/19 ¹	CCP	4-6 ft	95.9	2,630	6.99	<0.931	0.712 J	16.2	10.3	62.5	NA	53.4	0.39	17.1	13	308	NA	NA	NA
	02/04/14	CCP	9-11 ft	65	850	NA	ND	ND	19	NA	NA	27	NA	11	NA	4.1	NA	NA	NA	NA
GP-0	04/04/19	CCP	9-10 ft	6.73	178	0.758	0.118 J	<1.11	10.0	5.18	11	NA	687	0.05	6.24	0.88	21.7	NA	NA	NA
GP-7	02/04/14	CCP	10-12 ft	55	1,700	NA	ND	ND	19	NA	NA	11	NA	0.26	NA	4.3	NA	NA	NA	NA
GP-8	02/04/14	CCP	11-15 ft	54	4,100	NA	ND	ND	20	NA	NA	9.2	NA	0.29	NA	4.5	NA	NA	NA	NA
GP-11	02/04/14	CCP	4-6 ft	16	450	NA	ND	ND	16	NA	NA	23	NA	0.35	NA	ND	NA	NA	NA	NA
GP-12	02/04/14	CCP	2-4 ft	52	2,000	NA	ND	ND	19	NA	NA	14	NA	0.28	NA	2.1	NA	NA	NA	NA
1111.4	11/03/16	Soil	0-1 ft	5.9	120	1.00	<0.29	0.45	20.55	7.9	25	27	350	0.052	8.8	0.69	31	<0.58	48	50
пп-1	11/03/16 ¹	Soil	0-1 ft	3.4	110	0.79	<0.35	0.54	19.46	8.4	17	18	360 BH	0.067	12	< 0.71	30	<0.71	41	35
HH-2	11/03/16	Soil	0-1 ft	4.9	140	0.93	<0.29	0.43	13.57	12	21	30	260	0.085	5.9	1.0	25	<0.58	48	43
HH-3	11/03/16	Soil	0-1 ft	9.9	200	1.30	< 0.33	0.46 J	17.54	7.8	31	24	350	0.076	8.9	2.4	36	<0.65	53	100
HH-4	11/03/16	Soil	0-1 ft	2.4	72	1.00	<0.28	0.50	44.5	16	37	2.3	630	< 0.023	33	<0.56	42	0.60	73	70
HH-5	11/03/16	Soil	0-1 ft	2.4	73	0.75	<0.30	<0.14	23	8.4	19	9.3	410	<0.025	14	1.2	23	<0.60	39	51
MW-7	11/01/16	Soil	0-1 ft	2.6	67	0.87	< 0.30	0.89	9.11	3.9	180	7.6	100	0.030	2.9	< 0.59	6.7	<0.59	61	46
	Maximum Concenti	rations - All Samples		95.9	4,100	6.99	1.5	2.7	44.5	30	180	39	1,500	11	43	13	325	0.60	73	120
Max	ximum Concentration	ns - Shallow (0-2') Inte	erval	14	200	1.30	1.5	0.89	44.5	30	180	30	1,500	0.085	43	2.4	42	0.60	73	120
Maximum	Concentrations - Con	struction Worker (0-	10') Interval	95.9	3,200	6.99	1.5	2.7	44.5	30	180	30	1,500	11	43	13	325	0.60	73	120

Notes:

Red indicates concentration is below recommended site-specific background screening value (BSV).

Orange shading indicates maximum concentration in all samples.

Blue shading indicated maximum concentrations in samples that include the shallow (0-2 ft) interval.

Purple shading indicates maximum concentrations in samples that include the 0-10 ft interval.

Grey shading indicates concentration is maximum concentration in all use scenarios.

¹ Duplicate sample taken.

CCP = Coal Combustion Product; ND = Not Detected; NA = Not Analyzed.

J = Detected above method detection limit but below laboratory reporting limit; therefore, result is an estimated concentration.

BH = Method blank greater than one-half laboratory reporting limit, but sample concentration greater than 10x the method blank.

*Location resampled at 0-1 ft interval (HH-2 and HH-5); 0-1 ft sample considered more representative of shallow interval.

Hart & Hickman, PC

Appendix C-1 Exposure Point Concentration Tables Exposure Unit #2 Direct Contact to Soil Pathway 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job. No. TCH-009

Sample ID	Sample Date	Material Sampled (Soil or CCP)	Sample Depth	arsenic	barium	beryllium	cadmium	hexavalent chromium	trivalent chromium	cobalt	copper	lead	manganese	mercury	nickel	selenium	strontium	thallium	vanadium	zinc
	Site	-Specific BSV		3.015	87.86	0.929	0.313	5.725	70.2	36.31	77.3	59.11	1,149	0.256	19.49	2.503	43.19	0.981	227	230
SS-7	02/18/16	Soil	2-12 in	3.1	84	0.60	ND	NA	NA	6.9	15	13	500	0.038	5.9	ND	31	ND	37	37
HH-8	10/27/16	Soil	0-1 ft	3.6	100	1.00	<0.30	<0.35	19	12	29	18	570	0.036	9.0	<0.60	28	<0.60	52	54
MW-6	11/02/16	Soil	0-1 ft	2.9	38	0.61	<0.26	0.21 J	9.79	9.5	23	12	570	0.082	8.2	1.0	22	0.81	31	77
SED-3A	04/05/19	Soil	0-1 ft	3.45	33.9	0.418 J	<0.582	<1.16	17.4	16.5	6.97	NA	560	<0.0054	5.82	0.237 J	9.6	NA	NA	NA
SED-5A	04/04/19	Soil	0-1 ft	1.25	13.5	0.156 J	<0.571	0.352 J	13.2	5.95	39.1	NA	243	0.0071	4.38	<0.571	10.9	NA	NA	NA
SED-8	04/05/19	Drainage Pathway Soil	2-6 in	2.41	49.1	0.313 J	0.122 J	<1.25	12.0	7.01	14.3	NA	423	0.063	4.66	1.01	15.2	NA	NA	NA
SED-9	04/05/19	Drainage Pathway Soil	2-6 in	1.16	33.8	0.199 J	<0.660	0.461 J	21.6	9.11	10.1	NA	431	0.013	6.68	<0.660	16.7	NA	NA	NA
SED-10	04/05/19	Drainage Pathway Soil	2-6 in	1.29	24.4	0.118 J	0.221 J	0.418 J	12.0	4.43	10.8	NA	195	0.037	4.03	0.273 J	8.1	NA	NA	NA
SED_12	08/27/19	Drainage Pathway Soil	0-2 in	4.73	102	0.765 J	0.214 J	<1.68	27.6	6.17	23.1	NA	341	0.042	7.69	0.961	25.4	NA	NA	NA
0LD-12	04/05/19	Drainage Pathway Soil	2-6 in	3.97	122	0.499 J	0.204 J	<1.74	9.45	6.04	19.7	NA	319	0.077	4.95	1.36	32.8	NA	NA	NA
SED_13	08/27/19	Drainage Pathway Soil	0-2 in	12.4	958	1.56	0.284 J	<2.03	29.4	13.9	38.9	NA	538	0.12	19.2	3.07	125	NA	NA	NA
3LD-13	04/05/19	Drainage Pathway Soil	2-6 in	14.5	724	1.1	0.171 J	<1.58	14.0	7.58	27.1	NA	563	0.075	8.73	1.69	70.5	NA	NA	NA
SED-18	04/05/19	Drainage Pathway Soil	2-6 in	4.53	137	0.534 J	<0.689	<1.38	18.7	11.1	28.2	NA	464	0.051	9	1.85	32.6	NA	NA	NA
SED-19	04/05/19	Drainage Pathway Soil	2-6 in	1.55	20	0.161 J	<0.588	0.435 J	21.7	7.98	8.38	NA	266	0.0073	4.94	0.334 J	15	NA	NA	NA
SED-20	04/05/19	Drainage Pathway Soil	2-6 in	0.792	31.4	0.152 J	<0.687	<1.37	5.76	4.5	9.1	NA	360	0.012	2.19	0.263 J	11.5	NA	NA	NA
SED-21	04/05/19	Drainage Pathway Soil	2-6 in	1.12	25.9	0.149 J	<0.591	<1.18	20.9	4.44	6.58	NA	221	0.011	2.7	0.286 J	12.8	NA	NA	NA
Excavation G-1	04/16/20	Soil	2-3 ft	3.68	58.8	<3.08	<1.23	0.478 J	20.0	5.73	14.5	NA	193	0.052	6.94	<3.08	6.2	NA	NA	NA
Excavation H-3	05/11/20	Soil	1-2 ft	2.41	71.0	<3.28	<1.31	0.410 J	40.2	14.1	43.4	NA	251	0.0485 J	12.5	1.46 J	58.1	NA	NA	NA
Excavation H-5	05/11/20	Soil	1-2 ft	1.10 J	74.5	<3.04	<1.22	0.497 J	21.1	8.25	16.9	NA	558	<0.0486	6.77	<3.04	32.2	NA	NA	NA
Excavation H-6	05/11/20	Soil	1-2 ft	1.02 J	96.0	<2.97	<1.19	<1.19	14.9	7.57	10.7	NA	557	0.0222 J	4.03	<2.97	20.5	NA	NA	NA
Excavation H-7	11/09/20	Soil	0-1 ft	1.10 J	73.7	0.767 J	<1.22	<1.22	8.04	3.68	15.0	NA	233	0.022	4.63	0.479 J	9.6	NA	NA	NA
Excavation I-1	04/08/20	Soil	1-2 ft	2.91	67.2	<2.77	<1.11	0.457 J	26.2	13.0	18.3	NA	594	0.042	8.25	<2.77	26.3	NA	NA	NA
Excavation I-2	04/08/20	Soil	1-2 ft	3.65	74.1	<2.85	<1.14	0.313 J	23.3	12.0	21.4	NA	544	0.022	8.70	<2.85	17.2	NA	NA	NA
Excavation I-3	04/08/20	Soil	1-2 ft	2.18	61.5	<2.88	<1.15	0.387 J	13.1	9.23	19.5	NA	419	0.019	6.02	<2.88	13.3	NA	NA	NA
	Maximur	m Concentrations*		14.5	958	1.56	0.284	0.497	40.2	16.5	43.4	18	594	0.12	19.2	3.07	125	0.81	52	77

Notes:

Red indicates concentration is below recommended site-specific background screening value (BSV).

Orange shading indicates maximum exposure unit concentration.

CCP = Coal Combustion Product; ND = Not Detected; NA = Not Analyzed.

J = Detected above method detection limit but below laboratory reporting limit; therefore, result is an estimated concentration.

Site-Specific Background Screening Value (BSV) represents 95% upper threshold level (UTL) with 95% coverage calculated using EPA ProUCL 5.1.

*Maximum concentration for samples collected in shallow (0-2 ft) soil interval are the same as maximum concentrations.

Appendix C-1 Exposure Point Concentration Tables Exposure Unit #2 Direct Contact to Sediment Pathway 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job. No. TCH-009

Sediment Sampling Point ID	Sample Date	arsenic	barium	beryllium	hexavalent chromium	trivalent chromium	cobalt	copper	manganese	mercury	nickel	selenium	strontium
Recommended S	Site-Specific BSV	2.74	38.4	0.48	0.79	69.5	16.388	13.8	759	0.0078	9.92	0.409	16.9
SED-3 (Adjacent)	04/05/19	1.36	16.4	0.111 J	0.670 J	13.5	5.18	20.2	225	0.0054 J	4.81	<0.607	9.2
SED-4 (Adjacent)	04/05/19	2.35	20.3	0.191 J	0.456 J	63.8	7.26	8.39	293	0.0080	10.5	0.344 J	30.7
SED-5 (Downstream)	04/04/19	1.82	24.3	0.233 J	0.595 J	16.8	5.9	8.86	399	<0.0035	4.86	<0.617	6.2
Maximum Co	oncentrations	2.35	24.3	0.233	0.670	63.8	7.26	20.2	399	0.0080	10.5	0.344	30.7

Notes:

Red indicates concentration is below recommended site-specific background screening value (BSV).

Orange shading indicates maximum exposure unit concentration.

J = Detected above method detection limit but below laboratory reporting limit; therefore, result is an estimated concentration.

Appendix C-1 Exposure Point Concentration Tables Exposure Unit #2 Direct Contact to Surface Water Pathway 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job. No. TCH-009

Surface Water Sampling Point ID	Sample Date	arsenic	barium	total chromium	cobalt	copper ²	manganese	nickel ²	selenium	strontium
Recommended S	Site-Specific BSV	0.44	27	0.53	0.16	1.2	22.2	0.33	0.11	100
	11/03/16	<10	27	<5.0	<5.0	<10	34	<10	<20	100
SW-3 (Adjacent)	11/03/16 ¹	<10	27	<5.0	<5.0	<10	33	<10	<20	110
	04/05/19	0.45	25.7	0.62	0.26	2.8	37.4	0.50	0.11 J	88.8
	11/03/16	<10	27	<5.0	<5.0	<10	25	<10	<20	110
SW-4 (Adjacent)	04/05/19	0.42	23.6	<0.50	0.14	1.0	24.6	0.26 J	0.10 J	89.1
	04/05/19 ¹	0.41	23.7	<0.50	0.14	0.98	24.8	0.26 J	0.088 J	87.7
SW-5 (Downstroam)	11/03/16	<10	26	<5.0	<5.0	<10	24	<10	<20	100
SW-5 (DOWIIStream)	04/04/19	0.40	16.9	<0.50	0.14	0.88	19.5	0.21 J	0.12 J	81.8
SW-21 (Drainage	04/05/19	0.40	32.1	0.73	0.36	3.2	29.5	0.62	0.11 J	69.9
Pathway)	04/05/19 ²	0.15	18.3	<0.50	0.094 J	3.1	9.3	0.43 J	<0.50	43.5
Maximum Co	oncentrations	0.45	32.1	0.73	0.36	3.2	37.4	0.62	0.12	110

Notes:

Red indicates concentration is below recommended site-specific background screening value (BSV).

Orange shading indicates maximum exposure unit concentration.

¹ Duplicate sample taken.

² Sample was field filtered.

J = Detected above method detection limit but below laboratory reporting limit; therefore, result is an estimated concentration.

500 Appendix C-1 Exposure Point Concentration Tables Exposure Unit #3 Direct Contact to Soil Pathway 828 Martin Luther King, Jr. Blvd. Chapel Hill, North Carolina H&H Job. No. TCH-009

Sample ID	Sample Date	Material Sampled (Soil or CCP)	Sample Depth	arsenic	barium	beryllium	cadmium	hexavalent chromium	trivalent chromium	cobalt	copper	manganese	mercury	nickel	selenium	strontium
Recom	mended Site	e-Specific BS	SV	3.015	87.86	0.929	0.313	5.725	70.2	36.31	77.3	1,149	0.256	19.49	2.503	43.19
HH-9	04/03/19	CCP	0-1 ft	3.37	131	0.398 J	0.178 J	<1.29	12.7	5.97	14.5	260	0.31	3.59	0.722	33.2
HH-10	04/03/19	CCP	0-1 ft	60.3	2,970	5.14	0.162 J	<1.60	13.8	9.84	51.3	73.3	0.22	17.1	5.04	269
HH-11	04/03/19	CCP	0-1 ft	42.5	3,260	5.9	0.220 J	0.467 J	18.7	13.4	55.3	113	0.43	23.5	9.05	234
S-7	01/31/14	CCP	0-4 ft	44	2,500	NA	ND	1.4	27.6	NA	NA	11	NA	0.44	NA	4.5
Excavation H-1	05/11/20	Soil	1-2 ft	1.16	37.2	<2.76	<1.10	<1.10	20.1	10.7	15.3	412	< 0.0442	5.80	<2.76	29.3
Excavation H-2	05/11/20	Soil	1-2 ft	1.93	100	<3.25	<1.30	0.578 J	43.8	19.1	59.2	265	0.0494 J	16.2	1.58 J	56.8
Excavation H-4	05/11/20	Soil	2-3 ft	2.03	67.1	<3.04	<1.22	0.388 J	25.8	20.8	24.0	1,480	0.0237 J	7.81	<3.04	38.1
Max	ximum Conc	centrations		60.3	3,260	5.9	0.220	1.4	43.8	20.8	59.2	1,480	0.43	23.5	9.05	269
Maximum Con	centrations -	- Shallow Int	erval Only	60.3	3,260	5.9	0.220	1.4	43.8	19.1	59.2	412	0.43	23.5	9.05	269

Notes:

Red indicates concentration is below recommended site-specific background screening value (BSV).

Orange shading indicates maximum exposure unit concentration.

CCP = Coal Combustion Product.

J = Detected above method detection limit but below laboratory reporting limit; therefore, result is an estimated concentration.

North Carolina Department of Environmental Quality Risk Calculator

Version Date:	June 2021
Basis:	May 2021 EPA RSL Table
Site Name:	828 MLK Jr. Blvd Property
Site Address:	828 MLK Jr Blvd, Chapel Hill, Orange County, North Carolina
DEQ Section:	Brownfields Program
Site ID:	BPN 21061-17-060
Exposure Unit ID:	EU #1 Resident & Non-Residential Worker
Submittal Date:	
Duonanad Due	Hart & Hickman, PC
г герагей бу:	3921 Sunset Ridge Rd, Suite 301, Raleigh, North Carolina
Reviewed By:	

Table of Contents		ТОС
Version Date: Jun	e 2021	
Basis: May 2021 F	PA RSL Table	
Site ID· BPN 2106	1-17-060	
5110 10. 0111 2100		
Exposure Unit ID:	EU #1 Resident & Non-Residential Worker	
Form No	Description	Check box
FORM NO.	Description	if included
	DATA INPUT SHEETS	
	Input Section 1 - Exposure Pathways & Parameters	
Input Form 1A	Complete Exposure Pathways	✓
Input Form 1B	Exposure Factors and Target Risks	✓
Input Form 1C	Contaminant Migration Parameters	
Input Form 1D	Sample Statistics	
	Input Section 2 - Exposure Point Concentrations	
Input Form 2A	Soil Exposure Point Concentration Table	\checkmark
Input Form 2B	Groundwater Exposure Point Concentration Table	
Input Form 2C	Surface Water Exposure Point Concentration Table	
Input Form 2D	Soil Gas Exposure Point Concentration Table	
Input Form 2E	Indoor Air Exposure Point Concentration Table	
	DATA OUTPUT SHEETS	
	Output Section 1 - Summary Output for All Calculators	
Output Form 1A	Risk for Individual Pathways	✓
Output Form 1B	Sitewide Risk	
	Output Section 2 - Direct Contact Soil and Groundwater Calculators	
Output Form 2A	Resident Soil	✓
Output Form 2B	Resident Groundwater Use	
Output Form 2C	Non-Residential Worker Soil	
Output Form 2D	Non-Residential Worker Groundwater Use	
Output Form 2E	Construction Worker Soil	\square
Output Form 2F	Recreator/Trespasser Soil	
Output Form 2G	Recreator/Trespasser Surface Water	
	Output Section 3 - Vapor Intrusion Calculators	
Output Form 3A	Resident Groundwater to Indoor Air	
Output Form 3B	Resident Soil Gas to Indoor Air	
Output Form 3C	Resident Indoor Air	
Output Form 3D	Non-Residential Worker Groundwater to Indoor Air	
Output Form 3E	Non-Residential Worker Soil Gas to Indoor Air	
Output Form 3F	Non-Residential Worker Indoor Air	
	Output Section 4 - Contaminant Migration Worksheets	
Output Form 4A	Soil to Groundwater - Forward Mode	
Output Form 4B	Groundwater to Groundwater - Forward Mode	
Output Form 4C	Soil to Surface Water - Forward Mode	
Output Form 4D	Groundwater to Surface Water - Forward Mode	
Output Form 4E	Soil to Groundwater - Backward Mode	
Output Form 4F	Groundwater to Groundwater - Backward Mode	
Output Form 4G	Soil to Surface Water - Backward Mode	
Output Form 4H	Groundwater to Surface Water - Backward Mode	

Complete Exposure Pathways		Input Form 1A
Version Date: June 2021 Basis: May 2021 EPA RSL T Site ID: BPN 21061-17-060	`able	
Exposure Unit ID: EU #1 Re	sident & Non-Residential Worker	
Note: Risk output will only be calc	ulated for complete exposure pathways.	
Receptor	Pathway	Check box if pathway complete
DIRECT CON	TACT SOIL AND WATER PATHWAYS	
Pasidant	Soil	✓
Resident	Groundwater Use	
Non Posidontial Worker	Soil	\checkmark
Non-Residential worker	Groundwater Use	
Construction Worker	Soil	
Decreator/Treaspasser	Soil	
Recreator/ Trespasser	Surface Water	
VAP	OR INTRUSION PATHWAYS	
	Groundwater to Indoor Air	
Resident	Soil Gas to Indoor Air	
	Indoor Air	
	Groundwater to Indoor Air	
Non-Residential Worker	Soil Gas to Indoor Air	
	Indoor Air	
CONTAN	IINANT MIGRATION PATHWAYS	
Groundwater	Source Soil	
Groundwater	Source Groundwater	
Surface Water	Source Soil	
Surrace Water	Source Groundwater	

Exposure Factors and Target Risks

Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #1 Resident & Non-Residential Worker

		Site Specific	
Exposure Parameter	Default Value	Value	Justification
	Genera	al	-
Target Cancer Risk (individual)	1.0E-06	1.0E-06	
Target Cancer Risk (cumulative)	1.0E-04	1.0E-04	
Target Hazard Index (individual)	2.0E-01	2.0E-01	
Target Hazard Index (cumulative)	1.0E+00	1.0E+00	
	Residential	Child	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	15	15	
Exposure Duration (ED) (yr)	6	6	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SAs) (cm2)	2373	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	200	
Skin Surface Area - Water Exposure (SA _w) (cm2)	6365	6365	
Water Ingestion Rate (IRW) (L/d)	0.78	0.78	
Water Exposure Time (ET _{event}) (hr/event)	0.54	0.54	
Water Event Frequency (EV) (events/day)	1	1	
	Residential	Adult	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr)	20	20	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	2.5	2.5	
Water Exposure Time (ET _{event}) (hr/event)	0.71	0.71	
Water Event Frequency (EV) (events/day)	1	1	
	Non-Residentia	al Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr)	25	25	
Exposure Frequency (EF) (d/yr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.12	0.12	
Soil Ingestion Rate (IR) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	0.83	0.83	
Water Exposure Time (ET _{event}) (hr/event)	0.67	0.67	
Water Event Frequency (EV) (events/day)	1	1	
	Construction	Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Working Weeks (EW) (wk/yr)	50	50	
Exposure Duration (ED) (yr)	1	1	
Exposure Frequency (EF) (d/yr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.3	0.3	
Soil Ingestion Rate (IR) (mg/day)	330	330	

Exposure Factors and Target Risks Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #1 Resident & Non-Residential Worker

Exposure Parameter	Defau	lt Value	Site Specific Value	Justification
	τ	Jser Define	d Child	
	Recreator	Trespasser		
Lifetime (LT) (years)	70	NA	70	
Averaging Time (AT) (days/yr)	365	NA	365	
Body Weight (BW) (kg)	15	NA	15	
Exposure Duration 0-2 (ED) (yr)	2	NA	2	
Exposure Duration 2-6 (ED) (yr)	4	NA	4	
Exposure Frequency (EF) (d/yr)	195	NA	195	
Exposure Time (ET) (hr)	2	NA	2	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	2373	NA	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	NA	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	NA	200	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	6365	NA	6365	
Water Ingestion Rate (IRW) (L/hr)	0.124	NA	0.124	
Water Exposure Time (ET _{event}) (hr/event)	2	NA	2	
Water Event Frequency (EV) (events/day)	1	NA	1	
	Ţ	Jser Defined	d Adult	
	Recreator	Trespasser		
Lifetime (LT) (years)	70	70	70	
Body Weight (BW) (kg)	80	45	80	
Exposure Duration 6-16 (ED) (yr)	10	10	10	
Exposure Duration 16-26 (ED) (yr)	10	0	10	
Exposure Frequency (EF) (d/yr)	195	90	195	
Exposure Time (ET) (hr)	2	2	2	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.2	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	200	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	19652	
Water Ingestion Rate (IRW) (L/hr)	0.0985	0.071	0.0985	
Water Exposure Time (ET _{event}) (hr/event)	2	2	2	
Water Event Frequency (EV) (events/day)	1	1	1	

Exposure Point Concentrations Version Date: June 2021

Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #1 Resident & Non-Residential Worker

Soil Exposure Point Concentration Table

Description of Exposure Point Concentration Selection:

Maximum detected constituent concentrations from shallow samples (0-2 ft) collected within the exposure unit.

NOTE: If the	e chemical list is changed from a p	prior calculator run,	remember to select "See All Chemicals" on the data output sheet or newly adde	d chemicals will	not be included	in risk calculatio	ns					
Exposure P Concentra (mg/kg)	oint ion Notes:	CAS Number	Chemical For the chemicals highlighted in blue, data entry notes are provided in the PSRG Table link on the Main Menu	Minimum Concentration (Qualifier)	Maximum Concentration (Qualifier)	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	S Tox (S Le
14	S-4	7440-38-2	Arsenic, Inorganic			mg/kg						
200	HH-3	7440-39-3	Barium			mg/kg						
1.3	HH-3	7440-41-7	Beryllium and compounds			mg/kg						
1.5	S-4	7440-43-9	Cadmium (Diet)			mg/kg						
44.5	HH-4	16065-83-1	Chromium(III), Insoluble Salts			mg/kg						/
0.89	MW-7	18540-29-9	Chromium(VI)			mg/kg						
30	S-4	7440-48-4	Cobalt			mg/kg						
180	MW-7	7440-50-8	Copper			mg/kg						
30	HH-2	7439-92-1	~Lead and Compounds			mg/kg						
1500	S-4	7439-96-5	Manganese (Non-diet)			mg/kg						/
0.085	HH-2	7439-97-6	~Mercury (elemental)			mg/kg						
43	S-4	7440-02-0	Nickel Soluble Salts			mg/kg						
2.4	HH-3	7782-49-2	Selenium			mg/kg						
42	HH-4	7440-24-6	Strontium, Stable			mg/kg						
0.6	HH-4	7440-28-0	Thallium (Soluble Salts)			mg/kg						
73	HH-4	7440-62-2	Vanadium and Compounds			mg/kg						
120	S-4	7440-66-6	Zine and Compounds			mg/kg						

506

					Input Form 2A
					1
creening icity Value creening wel) (n/c)	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion	
					-
					-
					J

Output Form 1A

Risk	for	Individual	Pathways
------	-----	------------	----------

Basis: May 2021 EPA RSL Table

Site ID: BPN 21061-17-060

Exposure Unit ID: EU #1 Resident & Non-Residential Worker

DIRECT CONTACT SOIL AND WATER CALCULATORS									
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?					
Resident	Soil	2.4E-05	3.6E+00	YES					
Resident	Groundwater Use*	NC	NC	NC					
Non Residential Worker	Soil	4.8E-06	2.4E-01	NO					
Non-Residential worker	Groundwater Use*	NC	NC	NC					
Construction Worker	Soil	NC	NC	NC					
B aaraatar/Tragpaggar	Soil	NC	NC	NC					
Recleator/ Hespasser	Surface Water*	NC	NC	NC					
	VAPOR INTRUSION CALCULATORS								
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?					
	Groundwater to Indoor Air	NC	NC	NC					
Resident	Soil Gas to Indoor Air	NC	NC	NC					
	Indoor Air	NC	NC	NC					
	Groundwater to Indoor Air	NC	NC	NC					
Non-Residential Worker	Soil Gas to Indoor Air	NC	NC	NC					
	Indoor Air	NC	NC	NC					
C	ONTAMINANT MIGRATION CA	LCULATORS							
Pathway	Source	Target Rec	eptor Concentratio	ns Exceeded?					
Groundwater	Source Soil	Exceedence of	2L at Receptor?	NC					
Gibundwater	Source Groundwater	Exceedence of	Exceedence of 2L at Receptor?						
Surface Water	Source Soil	Exceedence of	2B at Receptor?	NC					
Surface water	Source Groundwater	Exceedence of	Exceedence of 2B at Receptor?						

Notes:

1. If lead concentrations were entered in the exposure point concentration tables, see the individual calculator sheets for lead concentrations in comparison to screening levels. Note that lead is not included in cumulative risk calculations.

2. * = If concentrations in groundwater exceed the NC 2L Standards or IMAC, or concentrations in surface water exceed the NC 2B Standards, appropriate remediation and/or institutional control measures will be necessary to be eligible for a risk-based closure.

3. NM = Not Modeled

4. NC = Pathway not calculated

Output Form 2A

DEQ Risk Calculator - Direct Contact - Resident Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #1 Resident & Non-Residential Worker

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 400 mg/kg for residential soil.

CAS #	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk*	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient*	Calculated Non- Carcinogenic Hazard Quotient
7440-38-2	Arsenic, Inorganic	14	14	14	1.8E-05	2.5E-06	3.6E-10	2.1E-05	3.6E-01	4.2E-02	1.5E-05	4.0E-01
7440-39-3	Barium	200	200	200					1.3E-02		6.5E-06	1.3E-02
7440-41-7	Beryllium and compounds	1.3	1.3	1.3			1.9E-11	1.9E-11	8.3E-03		1.1E-06	8.3E-03
7440-43-9	Cadmium (Diet)	1.5	1.5	1.5			1.6E-11	1.6E-11	1.9E-02	1.8E-03	2.4E-06	2.1E-02
16065-83-1	Chromium(III), Insoluble Salts	44.5	44.5	44.5					3.8E-04			3.8E-04
18540-29-9	Chromium(VI)	0.89	0.89	0.89	2.9E-06		1.2E-09	2.9E-06	3.8E-03		1.4E-07	3.8E-03
7440-48-4	Cobalt	30	30	30			1.6E-09	1.6E-09	1.3E+00		8.1E-05	1.3E+00
7440-50-8	Copper	180	180	180					5.8E-02			5.8E-02
7439-92-1	~Lead and Compounds	30	30	30					<sl**< td=""><td><sl**< td=""><td><sl**< td=""><td></td></sl**<></td></sl**<></td></sl**<>	<sl**< td=""><td><sl**< td=""><td></td></sl**<></td></sl**<>	<sl**< td=""><td></td></sl**<>	
7439-96-5	Manganese (Non-diet)	1500	1500	1500					8.0E-01		4.8E-04	8.0E-01
7439-97-6	~Mercury (elemental)	0.085	0.085	0.085							7.3E-03	7.3E-03
7440-02-0	Nickel Soluble Salts	43	43	43			6.7E-11	6.7E-11	2.7E-02		7.7E-06	2.7E-02
7782-49-2	Selenium	2.4	2.4	2.4					6.1E-03		1.9E-09	6.1E-03
7440-24-6	Strontium, Stable	42	42	42					8.9E-04			8.9E-04
7440-28-0	Thallium (Soluble Salts)	0.6	0.6	0.6					7.7E-01			7.7E-01
7440-62-2	Vanadium and Compounds	73	73	73					1.9E-01		1.2E-05	1.9E-01
7440-66-6	Zinc and Compounds	120	120	120					5.1E-03			5.1E-03
						Cumulative:]	2.4E-05				3.6E+00

Output Form 2C

DEQ Risk Calculator - Direct Contact - Non-Residential Worker Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #1 Resident & Non-Residential Worker

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 800 mg/kg for commercial/industrial soil.

CAS #	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Quotient
7440-38-2	Arsenic, Inorganic	14	14	14	3.9E-06	8.2E-07	8.3E-11	4.7E-06	2.4E-02	5.1E-03	3.6E-06	2.9E-02
7440-39-3	Barium	200	200	200					8.6E-04		1.5E-06	8.6E-04
7440-41-7	Beryllium and compounds	1.3	1.3	1.3			4.3E-12	4.3E-12	5.6E-04		2.5E-07	5.6E-04
7440-43-9	Cadmium (Diet)	1.5	1.5	1.5			3.7E-12	3.7E-12	1.3E-03	2.2E-04	5.8E-07	1.5E-03
16065-83-1	Chromium(III), Insoluble Salts	44.5	44.5	44.5					2.5E-05			2.5E-05
18540-29-9	Chromium(VI)	0.89	0.89	0.89	1.4E-07		1.0E-10	1.4E-07	2.5E-04		3.4E-08	2.5E-04
7440-48-4	Cobalt	30	30	30			3.7E-10	3.7E-10	8.6E-02		1.9E-05	8.6E-02
7440-50-8	Copper	180	180	180					3.9E-03			3.9E-03
7439-92-1	~Lead and Compounds	30	30	30					<sl**< td=""><td><sl**< td=""><td><\$L**</td><td></td></sl**<></td></sl**<>	<sl**< td=""><td><\$L**</td><td></td></sl**<>	<\$L**	
7439-96-5	Manganese (Non-diet)	1500	1500	1500					5.4E-02		1.2E-04	5.4E-02
7439-97-6	~Mercury (elemental)	0.085	0.085	0.085							1.7E-03	1.7E-03
7440-02-0	Nickel Soluble Salts	43	43	43			1.5E-11	1.5E-11	1.8E-03		1.8E-06	1.8E-03
7782-49-2	Selenium	2.4	2.4	2.4					4.1E-04		4.6E-10	4.1E-04
7440-24-6	Strontium, Stable	42	42	42					6.0E-05			6.0E-05
7440-28-0	Thallium (Soluble Salts)	0.6	0.6	0.6					5.1E-02			5.1E-02
7440-62-2	Vanadium and Compounds	73	73	73					1.3E-02		2.8E-06	1.3E-02
7440-66-6	Zinc and Compounds	120	120	120					3.4E-04			3.4E-04
						Cumulative:]	4.8E-06				2.4E-01

North Carolina Department of Environmental Quality Risk Calculator

Version Date:	June 2021
Basis:	May 2021 EPA RSL Table
Site Name:	828 MLK Jr. Blvd Property
Site Address:	828 MLK Jr Blvd, Chapel Hill, Orange County, North Carolina
DEQ Section:	Brownfields Program
Site ID:	BPN 21061-17-060
Exposure Unit ID:	EU #1 Construction Worker
Submittal Date:	
Duonawad Duu	Hart & Hickman, PC
г герагей бу:	3921 Sunset Ridge Rd, Suite 301, Raleigh, North Carolina
Reviewed By:	

Table of Contents		ТОС					
Version Date: Jun	e 2021						
Basis: May 2021 F	PA RSL Table						
Site ID: BPN 2106	1-17-060						
SICID. DIN 2100							
Exposure Unit ID:	Exposure Unit ID: EU #1 Construction Worker						
Form No.	Description	Check box if included					
	DATA INPUT SHEETS						
	Input Section 1 - Exposure Pathways & Parameters						
Input Form 1A	Complete Exposure Pathways	~					
Input Form 1B	Exposure Factors and Target Risks	<i>у</i>					
Input Form 1C	Contaminant Migration Parameters						
Input Form 1D	Sample Statistics						
	Input Section 2 - Exposure Point Concentrations						
Input Form 2A	Soil Exposure Point Concentration Table						
Input Form 2B	Groundwater Exposure Point Concentration Table						
Input Form 2C	Surface Water Exposure Point Concentration Table						
Input Form 2D	Soil Gas Exposure Point Concentration Table						
Input Form 2E	Indoor Air Exposure Point Concentration Table						
	DATA OUTPUT SHEETS						
	Output Section 1 - Summary Output for All Calculators						
Output Form 1A	Risk for Individual Pathways	√					
Output Form 1B	Sitewide Risk						
•	Output Section 2 - Direct Contact Soil and Groundwater Calculators						
Output Form 2A	Resident Soil						
Output Form 2B	Resident Groundwater Use						
Output Form 2C	Non-Residential Worker Soil						
Output Form 2D	Non-Residential Worker Groundwater Use						
Output Form 2E	Construction Worker Soil	~					
Output Form 2F	Recreator/Trespasser Soil						
Output Form 2G	Recreator/Trespasser Surface Water						
	Output Section 3 - Vapor Intrusion Calculators						
Output Form 3A	Resident Groundwater to Indoor Air						
Output Form 3B	Resident Soil Gas to Indoor Air						
Output Form 3C	Resident Indoor Air						
Output Form 3D	Non-Residential Worker Groundwater to Indoor Air						
Output Form 3E	Non-Residential Worker Soil Gas to Indoor Air						
Output Form 3F	Non-Residential Worker Indoor Air						
	Output Section 4 - Contaminant Migration Worksheets						
Output Form 4A	Soil to Groundwater - Forward Mode						
Output Form 4B	Groundwater to Groundwater - Forward Mode						
Output Form 4C	Soil to Surface Water - Forward Mode						
Output Form 4D	Groundwater to Surface Water - Forward Mode						
Output Form 4E	Soil to Groundwater - Backward Mode						
Output Form 4F	Groundwater to Groundwater - Backward Mode						
Output Form 4G	Soil to Surface Water - Backward Mode						
Output Form 4H	Groundwater to Surface Water - Backward Mode						

Complete Exposure Pathways		Input Form 1A					
Version Date: June 2021 Basis: May 2021 EPA RSL T Site ID: BPN 21061-17-060	able						
Exposure Unit ID: EU #1 Co	nstruction Worker						
Note: Risk output will only be calc	ulated for complete exposure pathways.						
ReceptorPathwayCheck box if pathway complete							
DIRECT CON	TACT SOIL AND WATER PATHWAYS						
Desident	Soil						
Kesluent	Groundwater Use						
Non Decidential Worker	Soil						
INOII-RESIDENUAL WOLKEL	Groundwater Use						
Construction Worker	Soil						
Decision for "Theory of the	Soil						
Recreator/Trespasser	Surface Water						
VAP	OR INTRUSION PATHWAYS						
	Groundwater to Indoor Air						
Resident	Soil Gas to Indoor Air						
	Indoor Air						
	Groundwater to Indoor Air						
Non-Residential Worker	Soil Gas to Indoor Air						
	Indoor Air						
CONTAMINANT MIGRATION PATHWAYS							
Crowndwaton	Source Soil						
Oloulluwatel	Groundwater Source Groundwater						
Surface Water	Source Soil						
Surface water							

Source Groundwater

Exposure Factors and Target Risks Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #1 Construction Worker

Exposure Parameter	Default Value	Site Specific	Justification
	C-	Value	, as a state of the state of th
Target Cancer Dick (individual)	1 0E 06		
Target Cancer Risk (numulativa)	1.0E-00	1.0E-00	
Target Cancer Kisk (cumulative)	2.0E.01	1.0E-04	
Target Hazard Index (augustativa)	1.0E+00	2.0E-01	
Target Hazard Index (cumulative)	Residential	Child	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	15	15	
Exposure Duration (ED) (vr)	6	6	
Exposure Frequency (EF) (d/vr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA _s) (cm2)	2373	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	200	
Skin Surface Area - Water Exposure (SA _w) (cm2)	6365	6365	
Water Ingestion Rate (IRW) (L/d)	0.78	0.78	
Water Exposure Time (ET _{event}) (hr/event)	0.54	0.54	
Water Event Frequency (EV) (events/day)	1	1	
	Residential	Adult	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr)	20	20	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	2.5	2.5	
Water Exposure Time (ET _{event}) (hr/event)	0.71	0.71	
Water Event Frequency (EV) (events/day)	1	1	
	Non-Residentia	al Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr)	25	25	
Exposure Frequency (EF) (d/yr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.12	0.12	
Soil Ingestion Rate (IR) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	0.83	0.83	
Water Exposure Time (ET _{event}) (hr/event)	0.67	0.67	
Water Event Frequency (EV) (events/day)	1	1	
	Construction	Worker	
Lifetime (LT) (years)	/0	/0	
Body Weight (BW) (kg)	80 50	80	
Working Weeks (EW) (wk/yr)	50	50	
Exposure Duration (ED) (yr)	1	1	
Exposure Frequency (EF) (d/yr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.3	0.3	

Exposure Factors and Target Risks Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #1 Construction Worker

Exposure Parameter	Defau	lt Value	Site Specific Value	Justification
	1	User Defined	d Child	
	Recreator	Trespasser		
Lifetime (LT) (years)	70	NA	70	
Averaging Time (AT) (days/yr)	365	NA	365	
Body Weight (BW) (kg)	15	NA	15	
Exposure Duration 0-2 (ED) (yr)	2	NA	2	
Exposure Duration 2-6 (ED) (yr)	4	NA	4	
Exposure Frequency (EF) (d/yr)	195	NA	195	
Exposure Time (ET) (hr)	2	NA	2	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	2373	NA	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	NA	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	NA	200	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	6365	NA	6365	
Water Ingestion Rate (IRW) (L/hr)	0.124	NA	0.124	
Water Exposure Time (ET _{event}) (hr/event)	2	NA	2	
Water Event Frequency (EV) (events/day)	1	NA	1	
	. 1	User Defined	d Adult	
	Recreator	Trespasser		
Lifetime (LT) (years)	70	70	70	
Body Weight (BW) (kg)	80	45	80	
Exposure Duration 6-16 (ED) (yr)	10	10	10	
Exposure Duration 16-26 (ED) (yr)	10	0	10	
Exposure Frequency (EF) (d/yr)	195	90	195	
Exposure Time (ET) (hr)	2	2	2	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.2	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	200	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	19652	
Water Ingestion Rate (IRW) (L/hr)	0.0985	0.071	0.0985	
Water Exposure Time (ET _{event}) (hr/event)	2	2	2	
Water Event Frequency (EV) (events/day)	1	1	1	

Exposure Point Concentrations Version Date: June 2021

Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #1 Construction Worker

Soil Exposure Point Concentration Table

Description of Exposure Point Concentration Selection:

Maximum detected constituent concentrations from samples collected between 0 to 10 ft within the exposure unit.

NOTE: If the chemi	ical list is changed from a p	rior calculator run,	remember to select "See All Chemicals" on the data output sheet or newly adde	d chemicals will	not be included	in risk calculatio	ns					
Exposure Point Concentration (mg/kg)	Notes:	CAS Number	Chemical For the chemicals highlighted in blue, data entry notes are provided in the PSRG Table link on the Main Menu	Minimum Concentration (Qualifier)	Maximum Concentration (Qualifier)	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	5 Tox (1 L
95.9	GP-5	7440-38-2	Arsenic, Inorganic			mg/kg						
3200	S-6	7440-39-3	Barium			mg/kg						
6.99	GP-5	7440-41-7	Beryllium and compounds			mg/kg						
1.5	S-4	7440-43-9	Cadmium (Diet)			mg/kg						
44.5	HH-4	16065-83-1	Chromium(III), Insoluble Salts			mg/kg						
2.7	S-6	18540-29-9	Chromium(VI)			mg/kg						
30	S-4	7440-48-4	Cobalt			mg/kg						
180	MW-7	7440-50-8	Copper			mg/kg						
30	HH-2	7439-92-1	~Lead and Compounds			mg/kg						
1500	S-4	7439-96-5	Manganese (Non-diet)			mg/kg						
11	GP-6	7439-97-6	~Mercury (elemental)			mg/kg						
43	S-4	7440-02-0	Nickel Soluble Salts			mg/kg						
13	GP-5	7782-49-2	Selenium			mg/kg						
325	GP-5	7440-24-6	Strontium, Stable			mg/kg						
0.6	HH-4	7440-28-0	Thallium (Soluble Salts)			mg/kg						
73	HH-4	7440-62-2	Vanadium and Compounds			mg/kg						
120	S-4	7440-66-6	Zinc and Compounds			mg/kg						

					Input Form 2A
					1
creening icity Value creening wel) (n/c)	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion	
					-
					-
					J

Risk for Individual Pathways				Output Form 1A
Version Date: June 2021				
Basis: May 2021 EPA RSL Table				
Site ID: BPN 21061-17-060				
Exposure Unit ID: EU #1 Constru	iction Worker			
DIRE	CT CONTACT SOIL AND WATE	R CALCULATO	RS	
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?
Resident	Soil	NC	NC	NC
Kesident	Groundwater Use*	NC	NC	NC
Non Residential Worker	Soil	NC	NC	NC
	Groundwater Use*	NC	NC	NC
Construction Worker	Soil	7.0E-06	1.1E+01	YES
Recreator/Trespasser	Soil	NC	NC	NC
	Surface Water*	NC	NC	NC
	VAPOR INTRUSION CALCU	LATORS		
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?
	Groundwater to Indoor Air	NC	NC	NC
Resident	Soil Gas to Indoor Air	NC	NC	NC
	Indoor Air	NC	NC	NC
	Groundwater to Indoor Air	NC	NC	NC
Non-Residential Worker	Soil Gas to Indoor Air	NC	NC	NC
	Indoor Air	NC	NC	NC
	CONTAMINANT MIGRATION CA	LCULATORS		
Pathway	Source	Target Rec	eptor Concentratio	ns Exceeded?
Groundwater	Source Soil	Exceedence of	2L at Receptor?	NC
	Source Groundwater	Exceedence of	2L at Receptor?	NC
Surface Water	Source Soil	Exceedence of	2B at Receptor?	NC
	Source Groundwater	Exceedence of	2B at Receptor?	NC

Notes:

1. If lead concentrations were entered in the exposure point concentration tables, see the individual calculator sheets for lead concentrations in comparison to screening levels. Note that lead is not included in cumulative risk calculations.

2. * = If concentrations in groundwater exceed the NC 2L Standards or IMAC, or concentrations in surface water exceed the NC 2B Standards, appropriate remediation and/or institutional control measures will be necessary to be eligible for a risk-based closure.

3. NM = Not Modeled

4. NC = Pathway not calculated

Output Form 2E

DEQ Risk Calculator - Direct Contact - Construction Worker Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPX 21061-17-060 Exposure Unit ID: EU #1 Construction Worker

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 800 mg/kg for commercial/industrial soil.

CAS #	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Ouotient
7440-38-2	Arsenic, Inorganic	95.9	95.9	95.9	3.5E-06	5.6E-07	1.3E-06	5.3E-06	5.7E-01	9.1E-02	1.4E+00	2.1E+00
7440-39-3	Barium	3200	3200	3200					4.7E-02		1.4E-01	1.9E-01
7440-41-7	Beryllium and compounds	6.99	6.99	6.99			5.2E-08	5.2E-08	4.1E-03		7.9E-02	8.3E-02
7440-43-9	Cadmium (Diet)	1.5	1.5	1.5			8.3E-09	8.3E-09	8.8E-03	1.1E-03	3.4E-02	4.4E-02
16065-83-1	Chromium(III), Insoluble Salts	44.5	44.5	44.5					8.7E-05		2.0E-03	2.1E-03
18540-29-9	Chromium(VI)	2.7	2.7	2.7	5.4E-08		7.0E-07	7.5E-07	1.6E-03		2.0E-03	3.6E-03
7440-48-4	Cobalt	30	30	30			8.3E-07	8.3E-07	2.9E-02		3.4E-01	3.7E-01
7440-50-8	Copper	180	180	180					5.3E-02			5.3E-02
7439-92-1	~Lead and Compounds	30	30	30					<sl**< td=""><td><sl**< td=""><td><sl**< td=""><td></td></sl**<></td></sl**<></td></sl**<>	<sl**< td=""><td><sl**< td=""><td></td></sl**<></td></sl**<>	<sl**< td=""><td></td></sl**<>	
7439-96-5	Manganese (Non-diet)	1500	1500	1500					1.8E-01		6.7E+00	6.9E+00
7439-97-6	~Mercury (elemental)	11	11	11							1.1E+00	1.1E+00
7440-02-0	Nickel Soluble Salts	43	43	43			3.4E-08	3.4E-08	6.3E-03		4.8E-02	5.5E-02
7782-49-2	Selenium	13	13	13					7.7E-03		1.5E-04	7.8E-03
7440-24-6	Strontium, Stable	325	325	325					4.8E-04			4.8E-04
7440-28-0	Thallium (Soluble Salts)	0.6	0.6	0.6					4.4E-02			4.4E-02
7440-62-2	Vanadium and Compounds	73	73	73					2.2E-02		1.6E-01	1.9E-01
7440-66-6	Zinc and Compounds	120	120	120					1.2E-03			1.2E-03
						Cumulative:]	7.0E-06				1.1E+01

North Carolina Department of Environmental Quality Risk Calculator

Version Date:	June 2021
Basis:	May 2021 EPA RSL Table
Site Name:	828 MLK Jr. Blvd Property
Site Address:	828 MLK Jr Blvd, Chapel Hill, Orange County, North Carolina
DEQ Section:	Brownfields Program
Site ID:	BPN 21061-17-060
Exposure Unit ID:	EU #2 Lower Level Trail - Greenway User and Construction Worker
Submittal Date:	
Dronanad Due	Hart & Hickman, PC
г герагей бу:	3921 Sunset Ridge Rd, Suite 301, Raleigh, North Carolina
Reviewed By:	

Table of Contents		ТОС
Version Date: Jun	e 2021	
Basis: May 2021 E	CPA RSL Table	
Site ID: BPN 2106	1-17-060	
Exposure Unit ID:	EU #2 Lower Level Trail - Greenway User and Construction Worker	
Form No.	Description	Check box
	DATA INPUT SHFFTS	II IIIciudeu
	Input Section 1 - Exposure Pathways & Parameters	
Input Form 1A	Complete Exposure Pathways	7
Input Form 1R	Exposure Factors and Target Disks	
Input Form 1C	Contaminant Migration Parameters	
Input Form 1D	Samula Statistics	
	Input Section 2 - Exposure Point Concentrations	
Input Form 2A	Soil Exposure Point Concentration Table	7
Input Form 2P	Groundwater Evnoura Doint Concentration Table	
Input Form 2C	Surface Water Exposure Point Concentration Table	
Input Form 2D	Suilace water Exposure Foint Concentration Table	
Input Form 2E	Indeer Air Exposure Point Concentration Table	
Input Form 2E		
	Output Section 1 Summary Output for All Colouletors	
Oritinet Ermin 1A	Dide for Individual Defenses	
Output Form IB		
	Output Section 2 - Direct Contact Soil and Groundwater Calculators	
Output Form 2A	Resident Soil	
Output Form 2B	Resident Groundwater Use	
Output Form 2C	Non-Residential Worker Soil	
Output Form 2D	Non-Residential worker Groundwater Use	
Output Form 2E	Construction Worker Soll	
Output Form 2F	Recreator/Trespasser Soll	
Output Form 2G	Recreator/ Irespasser Surface water	
	Output Section 3 - vapor Intrusion Calculators	
Output Form 3A	Resident Groundwater to Indoor Air	
Output Form 3B	Resident Soil Gas to Indoor Air	
Output Form 3C	Resident Indoor Air	
Output Form 3D	Non-Residential Worker Groundwater to Indoor Air	
Output Form 3E	Non-Residential Worker Soil Gas to Indoor Air	
Output Form 3F	Non-Residential Worker Indoor Air	
0 T	Output Section 4 - Contaminant Migration Worksneets	
Output Form 4A	Soil to Groundwater - Forward Mode	
Output Form 4B	Groundwater to Groundwater - Forward Mode	
Output Form 4C	Soli to Surface Water - Forward Mode	
Output Form 4D	Groundwater to Surface Water - Forward Mode	
Output Form 4E	Soli to Groundwater - Backward Mode	
Output Form 4F	Groundwater to Groundwater - Backward Mode	
Output Form 4G	Soli to Surface Water - Backward Mode	
Output Form 4H	Groundwater to Surface Water - Backward Mode	

Complete Exposure Pathways		Input Form 1A
Version Date: June 2021		
Basis: May 2021 EPA RSL T	Cable	
Sile ID. BIN 21001-17-000	war I aval Trail Croonway Usar and C	onstruction Way
Note: Pisk output will only be cale	wei Level ITali - Greenway User and C	
Note: Risk output witt only be calc	ulalea for complete exposure painways.	Charle har if
Receptor	Pathway	complete
DIRECT CON	TACT SOIL AND WATER PATHWAYS	
Resident	Soil	
Kesident	Groundwater Use	
Non Residential Worker	Soil	
Non-Residential worker	Groundwater Use	
Construction Worker	Soil	\checkmark
Recreator/Traspasser	Soil	\checkmark
	Surface Water	
VAP	OR INTRUSION PATHWAYS	
	Groundwater to Indoor Air	
Resident	Soil Gas to Indoor Air	
	Indoor Air	
	Groundwater to Indoor Air	
Non-Residential Worker	Soil Gas to Indoor Air	
	Indoor Air	
CONTAM	IINANT MIGRATION PATHWAYS	
Groundwater	Source Soil	
	Source Groundwater	
Surface Water	Source Soil	
Surree (ruter	Source Groundwater	

Exposure Factors and Target Risks

Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #2 Lower Level Trail - Greenway User and Construction Worker

Exposure Parameter	Default Value	Site Specific	Justification
•	Gener	Value	
Target Cancer Risk (individual)	1.0E-06	1.0E-06	
Target Cancer Risk (nutridual)	1.0E-04	1.0E-00	
Target Hazard Index (individual)	2.0E-01	2.0E-01	
Target Hazard Index (cumulative)	1.0E+00	1.0E+00	
raiget mazard index (cumulative)	Residential	Child	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	15	15	
Exposure Duration (ED) (yr)	6	6	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SAs) (cm2)	2373	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	200	
Skin Surface Area - Water Exposure (SA _w) (cm2)	6365	6365	
Water Ingestion Rate (IRW) (L/d)	0.78	0.78	
Water Exposure Time (ET _{event}) (hr/event)	0.54	0.54	
Water Event Frequency (EV) (events/day)	1	1	
	Residential	Adult	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr)	20	20	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	2.5	2.5	
Water Exposure Time (ET _{event}) (hr/event)	0.71	0.71	
Water Event Frequency (EV) (events/day)	1	1	
	Non-Residentia	al Worker	•
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr)	25	25	
Exposure Frequency (EF) (d/yr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.12	0.12	
Soil Ingestion Rate (IR) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	0.83	0.83	
Water Exposure Time (ET _{event}) (hr/event)	0.67	0.67	
Water Event Frequency (EV) (events/day)	1	1	
	Construction	Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Working Weeks (EW) (wk/yr)	50	50	
Exposure Duration (ED) (yr)	1	1	
Exposure Frequency (EF) (d/yr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.3	0.3	

Input Form 1B

Exposure Factors and Target Risks Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #2 Lower Level Trail - Greenway User and Construction Worker

Exposure Parameter	Defau	lt Value	Site Specific Value	Justification
	J	User Defined	d Child	
	Recreator	Trespasser		1
Lifetime (LT) (years)	70	NA	70	
Averaging Time (AT) (days/yr)	365	NA	365	
Body Weight (BW) (kg)	15	NA	15	
Exposure Duration 0-2 (ED) (yr)	2	NA	2	
Exposure Duration 2-6 (ED) (yr)	4	NA	4	
Exposure Frequency (EF) (d/yr)	195	NA	52	98th percentile based on trail use polling data
Exposure Time (ET) (hr)	2	NA	0.5	98th percentile based on trail use polling data
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	2373	NA	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	NA	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	NA	200	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	6365	NA	6365	
Water Ingestion Rate (IRW) (L/hr)	0.124	NA	0.124	
Water Exposure Time (ET _{event}) (hr/event)	2	NA	0.5	98th percentile based on trail use polling data
Water Event Frequency (EV) (events/day)	1	NA	1	
	Ţ	User Defined	d Adult	
	Recreator	Trespasser		
Lifetime (LT) (years)	70	70	70	
Body Weight (BW) (kg)	80	45	80	
Exposure Duration 6-16 (ED) (yr)	10	10	10	
Exposure Duration 16-26 (ED) (yr)	10	0	10	
Exposure Frequency (EF) (d/yr)	195	90	364	98th percentile based on trail use polling data
Exposure Time (ET) (hr)	2	2	1	98th percentile based on trail use polling data
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.2	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	200	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	19652	
Water Ingestion Rate (IRW) (L/hr)	0.0985	0.071	0.0985	
Water Exposure Time (ET _{event}) (hr/event)	2	2	1	98th percentile based on trail use polling data
Water Event Frequency (EV) (events/day)	1	1	1	

Exposure Point Concentrations Version Date: June 2021

Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #2 Lower Level Trail - Greenway User and Construction Worker

Soil Exposure Point Concentration Table

Description of Exposure Point Concentration Selection:

Maximum detected constituent concentrations from all samples collected within the exposure unit. Note that all maximum concentrations were within the 0-2 ft bgs interval; therefore, both the construction worker and greenway user receptor were evaluated.

NOTE: If the chem	ical list is changed from a prio	r calculator run,	remember to select "See All Chemicals" on the data output sheet or newly adde	ed chemicals will	not be included	in risk calculatio	ns					
Exposure Point Concentration (mg/kg)	Notes:	CAS Number	Chemical For the chemicals highlighted in blue, data entry notes are provided in the PSRG Table link on the Main Menu	Minimum Concentration (Qualifier)	Maximum Concentration (Qualifier)	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	To (L
14.5	SED-13	7440-38-2	Arsenic, Inorganic			mg/kg						
958	SED-13	7440-39-3	Barium			mg/kg						
1.56	SED-13	7440-41-7	Beryllium and compounds			mg/kg						
0.284	SED-13	7440-43-9	Cadmium (Diet)			mg/kg						
40.2	Excavation H-3	16065-83-1	Chromium(III), Insoluble Salts			mg/kg						
0.497	Excavation H-5	18540-29-9	Chromium(VI)			mg/kg						
16.5	SED-3A	7440-48-4	Cobalt			mg/kg						
43.4	Excavation H-3	7440-50-8	Copper			mg/kg						
18	HH-8	7439-92-1	~Lead and Compounds			mg/kg						
594	Excavation I-1	7439-96-5	Manganese (Non-diet)			mg/kg						
0.12	SED-13	7439-97-6	~Mercury (elemental)			mg/kg						
19.2	SED-13	7440-02-0	Nickel Soluble Salts			mg/kg						
3.07	SED-13	7782-49-2	Selenium			mg/kg						
125	SED-13	7440-24-6	Strontium, Stable			mg/kg						
0.81	MW-6	7440-28-0	Thallium (Soluble Salts)			mg/kg						
52	HH-8	7440-62-2	Vanadium and Compounds			mg/kg						
77	MW-6	7440-66-6	Zinc and Compounds			mg/kg						

					Input Form 2A
					1
creening icity Value creening wel) (n/c)	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion	
					-
					-
					J

Risk for Individual Pathways				Output Form 1A	
Version Date: June 2021					
Basis: May 2021 EPA RSL Table					
Site ID: BPN 21061-17-060					
Exposure Unit ID: EU #2 Lower I	Level Trail - Greenway User and Co	nstruction Work	er		
^	Ĭ				
DIRE	CT CONTACT SOIL AND WATER	R CALCULATO	RS		
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?	
Resident	Soil	NC	NC	NC	
Resident	Groundwater Use*	NC	NC	NC	
Non-Residential Worker	Soil	NC	NC	NC	
Non-Residential Worker	Groundwater Use*	NC	NC	NC	
Construction Worker	Soil	1.4E-06	3.6E+00	YES	
Recreator/Trespasser	Soil	8.4E-06	4.1E-01	NO	
	Surface Water*	NC	NC		
	VAPOR INTRUSION CALCU	LATORS			
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?	
	Groundwater to Indoor Air	NC	NC	NC	
Resident	Soil Gas to Indoor Air	NC	NC	NC	
	Indoor Air	NC	NC	NC	
	Groundwater to Indoor Air	NC	NC	NC	
Non-Residential Worker	Soil Gas to Indoor Air	NC	NC	NC	
	Indoor Air	NC	NC	NC	
C	ONTAMINANT MIGRATION CA	LCULATORS			
Pathway	Source	Target Rec	eptor Concentratio	ns Exceeded?	
Groundwater	Source Soil	Exceedence of	2L at Receptor?	NC	
Groundwater	Source Groundwater	Exceedence of	Exceedence of 2L at Receptor?		
Surface Water	Source Soil	Exceedence of	Exceedence of 2B at Receptor?		
Surface Water	Source Groundwater	Exceedence of	NC		

Notes:

1. If lead concentrations were entered in the exposure point concentration tables, see the individual calculator sheets for lead concentrations in comparison to screening levels. Note that lead is not included in cumulative risk calculations.

2. * = If concentrations in groundwater exceed the NC 2L Standards or IMAC, or concentrations in surface water exceed the NC 2B Standards, appropriate remediation and/or institutional control measures will be necessary to be eligible for a risk-based closure.

3. NM = Not Modeled

4. NC = Pathway not calculated

Output Form 2E

DEQ Risk Calculator - Direct Contact - Construction Worker Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060 Exposure Unit ID: EU #2 Lower Level Trail - Greenway User and Construction Worker

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 800 mg/kg for commercial/industrial soil.

CAS #	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Ouotient
7440-38-2	Arsenic, Inorganic	14.5	14.5	14.5	5.3E-07	8.4E-08	1.9E-07	8.0E-07	8.5E-02	1.4E-02	2.2E-01	3.2E-01
7440-39-3	Barium	958	958	958					1.4E-02		4.3E-02	5.7E-02
7440-41-7	Bervllium and compounds	1.56	1.56	1.56			1.2E-08	1.2E-08	9.2E-04		1.8E-02	1.8E-02
7440-43-9	Cadmium (Diet)	0.284	0.284	0.284			1.6E-09	1.6E-09	1.7E-03	2.1E-04	6.4E-03	8.3E-03
16065-83-1	Chromium(III), Insoluble Salts	40.2	40.2	40.2					7.9E-05		1.8E-03	1.9E-03
18540-29-9	Chromium(VI)	0.497	0.497	0.497	1.0E-08		1.3E-07	1.4E-07	2.9E-04		3.7E-04	6.6E-04
7440-48-4	Cobalt	16.5	16.5	16.5			4.6E-07	4.6E-07	1.6E-02		1.9E-01	2.0E-01
7440-50-8	Copper	43.4	43.4	43.4					1.3E-02			1.3E-02
7439-92-1	~Lead and Compounds	18	18	18					<sl**< td=""><td><sl**< td=""><td><sl**< td=""><td></td></sl**<></td></sl**<></td></sl**<>	<sl**< td=""><td><sl**< td=""><td></td></sl**<></td></sl**<>	<sl**< td=""><td></td></sl**<>	
7439-96-5	Manganese (Non-diet)	594	594	594					7.3E-02		2.7E+00	2.7E+00
7439-97-6	~Mercury (elemental)	0.12	0.12	0.12							1.2E-02	1.2E-02
7440-02-0	Nickel Soluble Salts	19.2	19.2	19.2			1.5E-08	1.5E-08	2.8E-03		2.2E-02	2.4E-02
7782-49-2	Selenium	3.07	3.07	3.07					1.8E-03		3.4E-05	1.8E-03
7440-24-6	Strontium, Stable	125	125	125					1.8E-04			1.8E-04
7440-28-0	Thallium (Soluble Salts)	0.81	0.81	0.81					6.0E-02			6.0E-02
7440-62-2	Vanadium and Compounds	52	52	52					1.5E-02		1.2E-01	1.3E-01
7440-66-6	Zinc and Compounds	77	77	77					7.6E-04			7.6E-04
						Cumulative:]	1.4E-06				3.6E+00

Output Form 2F

DEQ Risk Calculator - Direct Contact - Recreator/Trespasser Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060 Exposure Unit ID: EU #2 Lower Level Trail - Greenway User and Construction Worker

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 400 mg/kg for residential soil. Receptor Type: Greenway user

CAS#	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Quotient
7440-38-2	Arsenic, Inorganic	14.5	14.5	14.5	6.8E-06	1.2E-06	1.6E-11	8.0E-06	5.5E-02	7.6E-03	6.8E-07	6.3E-02
7440-39-3	Barium	958	958	958					9.1E-03		1.3E-06	9.1E-03
7440-41-7	Beryllium and compounds	1.56	1.56	1.56			9.7E-13	9.7E-13	1.5E-03		5.5E-08	1.5E-03
7440-43-9	Cadmium (Diet)	0.284	0.284	0.284			1.3E-13	1.3E-13	5.4E-04	6.0E-05	2.0E-08	6.0E-04
16065-83-1	Chromium(III), Insoluble Salts	40.2	40.2	40.2					5.1E-05			5.1E-05
18540-29-9	Chromium(VI)	0.497	0.497	0.497	3.9E-07		3.0E-11	3.9E-07	3.1E-04		3.5E-09	3.1E-04
7440-48-4	Cobalt	16.5	16.5	16.5			3.9E-11	3.9E-11	1.0E-01		1.9E-06	1.0E-01
7440-50-8	Copper	43.4	43.4	43.4					2.1E-03			2.1E-03
7439-92-1	~Lead and Compounds	18	18	18					<sl**< td=""><td><sl**< td=""><td><sl**< td=""><td></td></sl**<></td></sl**<></td></sl**<>	<sl**< td=""><td><sl**< td=""><td></td></sl**<></td></sl**<>	<sl**< td=""><td></td></sl**<>	
7439-96-5	Manganese (Non-diet)	594	594	594					4.7E-02		8.3E-06	4.7E-02
7439-97-6	~Mercury (elemental)	0.12	0.12	0.12							4.5E-04	4.5E-04
7440-02-0	Nickel Soluble Salts	19.2	19.2	19.2			1.3E-12	1.3E-12	1.8E-03		1.5E-07	1.8E-03
7782-49-2	Selenium	3.07	3.07	3.07					1.2E-03		1.1E-10	1.2E-03
7440-24-6	Strontium, Stable	125	125	125					4.0E-04			4.0E-04
7440-28-0	Thallium (Soluble Salts)	0.81	0.81	0.81					1.5E-01			1.5E-01
7440-62-2	Vanadium and Compounds	52	52	52					2.0E-02		3.6E-07	2.0E-02
7440-66-6	Zinc and Compounds	77	77	77					4.9E-04			4.9E-04
						Cumulative:]	8.4E-06				4.1E-01

North Carolina Department of Environmental Quality Risk Calculator

Version Date:	June 2021
Basis:	May 2021 EPA RSL Table
Site Name:	828 MLK Jr. Blvd Property
Site Address:	828 MLK Jr Blvd, Chapel Hill, Orange County, North Carolina
DEQ Section:	Brownfields Program
Site ID:	BPN 21061-17-060
Exposure Unit ID:	EU #2 Lower Level Creek - Greenway User
Submittal Date:	
Duonanad Due	Hart & Hickman, PC
г герагей бу:	3921 Sunset Ridge Rd, Suite 301, Raleigh, North Carolina
Reviewed By:	

Table of Contents		TOC
Version Date: Jun	e 2021	
Basis: May 2021 E	CPA RSL Table	
Site ID: BPN 2106	1-17-060	
Exposure Unit ID.	EII #2 Lower Loval Crook Croonway Usar	
Exposure Unit ID.	EU #2 Lower Level Creek - Greenway User	
Form No.	Description	Check Dox if included
	DATA INPUT SHEETS	
	Innut Section 1 - Exposure Pathways & Parameters	
Input Form 1A	Complete Exposure Pathways	
Input Form 1B	Exposure Factors and Target Risks	
Input Form 1C	Contaminant Migration Parameters	
Input Form 1D	Sample Statistics	
	Junut Section 2 - Exposure Point Concentrations	
Innut Form 2A	Soil Exposure Doint Concentration Table	7
Input Form 2D	Soli Exposure Point Concentration Table	
Input Form 26	Groundwater Exposure Point Concentration Table	
Input Form 2C	Surface Water Exposure Point Concentration Table	
Input Form 2D	Soil Gas Exposure Point Concentration Table	
Input Form 2E	Indoor Air Exposure Point Concentration Table	
	DATA OUTPUT SHEETS	
	Output Section 1 - Summary Output for All Calculators	
Output Form 1A	Risk for Individual Pathways	
Output Form 1B	Sitewide Risk	
	Output Section 2 - Direct Contact Soil and Groundwater Calculators	
Output Form 2A	Resident Soil	
Output Form 2B	Resident Groundwater Use	
Output Form 2C	Non-Residential Worker Soil	
Output Form 2D	Non-Residential Worker Groundwater Use	
Output Form 2E	Construction Worker Soil	<u> </u>
Output Form 2F	Recreator/Trespasser Soil	
Output Form 2G	Recreator/Trespasser Surface Water	
	Output Section 3 - Vapor Intrusion Calculators	
Output Form 3A	Resident Groundwater to Indoor Air	
Output Form 3B	Resident Soil Gas to Indoor Air	
Output Form 3C	Resident Indoor Air	
Output Form 3D	Non Desidential Worker Groundwater to Indoor Air	<u> </u>
Output Form 3E	Non Desidential Worker Soil Gas to Indoor Air	
Output Form 3E	Non-Residential Worker Indeer Air	<u>L</u>
	Non-Residential worker indoor Air	
	Output Section 4 - Contaminant Migration worksheets	
Output Form 4A	Soil to Groundwater - Forward Mode	<u> </u>
Output Form 4B	Groundwater to Groundwater - Forward Mode	<u> </u>
Output Form 4C	Soil to Surface Water - Forward Mode	<u> </u>
Output Form 4D	Groundwater to Surface Water - Forward Mode	<u> </u>
Output Form 4E	Soil to Groundwater - Backward Mode	

Output Form 4F Groundwater to Groundwater - Backward Mode

Output Form 4H Groundwater to Surface Water - Backward Mode

Output Form 4G Soil to Surface Water - Backward Mode

Complete Exposure Pathways		Input Form 1A						
Version Date: June 2021 Basis: May 2021 EPA RSL T Site ID: BPN 21061-17-060	able							
Exposure Unit ID: EU #2 Lo	wer Level Creek - Greenway User							
Note: Risk output will only be calc	ulated for complete exposure pathways.							
Receptor	Pathway	Check box if pathway complete						
DIRECT CONTACT SOIL AND WATER PATHWAYS								
Recident	Soil							
Resident	Groundwater Use							
Non Residential Worker	Soil							
Non-Residential worker	Groundwater Use							
Construction Worker	Soil							
Decreator/Treeposer	Soil	\						
Recreator/ rrespasser	Surface Water	✓						
VAP	OR INTRUSION PATHWAYS							
	Groundwater to Indoor Air							
Resident	Soil Gas to Indoor Air							
	Indoor Air							
	Groundwater to Indoor Air							
Non-Residential Worker	Soil Gas to Indoor Air							
	Indoor Air							
CONTAMINANT MIGRATION PATHWAYS								
Groundwater	Source Soil							
Groundwater	Source Groundwater							
Surface Water	Source Soil							
	Source Groundwater	undwater						

Exposure Factors and Target Risks

Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #2 Lower Level Creek - Greenway User

Exposure Parameter	Default Value	Site Specific	Justification
Exposure i arameter	Comm	Value	Justification
	1 OF OC		
Target Cancer Risk (individual)	1.0E-00	1.0E-06	
	1.0E-04	1.0E-04	
Target Hazard Index (individual)	2.0E-01	2.0E-01	
larget Hazard Index (cumulative)			
Lifetime (LT) (veors)	70	70	
Body Weight (BW) (kg)	15	15	
Exposure Duration (ED) (vr)	6	6	
Exposure Erequency (EE) (d/ur)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA.) (cm?)	2373	2373	
Sail Adharanga Factor (AF) (mg/am ²)	0.2	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	200	
Son ingestion Rate (RG) (ingraay)	6365	6365	
Water Ingestion Rate (IRW) (L/d)	0.78	0.78	
Water Exposure Time (ET) (hr/event)	0.54	0.78	
Water Event Frequency (EV) (avents/day)	1	1	
water Event Frequency (EV) (events/day)	Residential	Adult	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (vr)	20	20	
Exposure Erequency (EE) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area Soil Exposure (SA.) (cm ²)	6032	6032	
Skill A dharanga Eastar (AE) (mg/am^2)	0.07	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	100	
Shin Surface Area Water Experience (SA) (am ²)	19652	10652	
Water Ingestion Pate (IPW) (L/d)	2.5	19052	
Water Exposure Time (ET) (hr/event)	0.71	0.71	
Water Exposure Time (ET _{event}) (in/event)	1	0.71	
water Event Frequency (EV) (events/day)	Non-Residenti	al Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (vr)	25	25	
Exposure Frequency (EF) (d/vr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA.) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.12	0.12	
Soil Ingestion Rate (IR) (mg/dav)	100	100	
Skin Surface Area - Water Exposure (SA) (cm^2)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	0.83	0.83	
Water Exposure Time (ET) (hr/event)	0.67	0.67	
Water Event Frequency (EV) (events/day)	1	1	
	Construction	Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Working Weeks (EW) (wk/vr)	50	50	
Exposure Duration (ED) (vr)	1	1	
Exposure Frequency (EF) (d/vr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA) (am^2)	3527	3527	
Soil Adherence Factor (AF) (ma/am^2)	03	0.3	
Soil Investion Rate (IR) (mg/dav)	330	330	
son ingestion Rate (IR) (mg/day)	330	330	
Input Form 1B

Exposure Factors and Target Risks Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #2 Lower Level Creek - Greenway User

Exposure Parameter	Defau	lt Value	Site Specific Value	Justification
	τ	Jser Defined	d Child	
	Recreator	Trespasser		
Lifetime (LT) (years)	70	NA	70	
Averaging Time (AT) (days/yr)	365	NA	365	
Body Weight (BW) (kg)	15	NA	15	
Exposure Duration 0-2 (ED) (yr)	2	NA	2	
Exposure Duration 2-6 (ED) (yr)	4	NA	4	
Exposure Frequency (EF) (d/yr)	195	NA	52	98th percentile based on trail polling data
Exposure Time (ET) (hr)	2	NA	0.5	98th percentile based on trail polling data
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	2373	NA	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	NA	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	NA	200	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	6365	NA	6365	
Water Ingestion Rate (IRW) (L/hr)	0.124	NA	0.124	
Water Exposure Time (ET _{event}) (hr/event)	2	NA	0.5	98th percentile based on trail polling data
Water Event Frequency (EV) (events/day)	1	NA	1	
	Ţ	Jser Defined	l Adult	÷
	Recreator	Trespasser		
Lifetime (LT) (years)	70	70	70	
Body Weight (BW) (kg)	80	45	80	
Exposure Duration 6-16 (ED) (yr)	10	10	10	
Exposure Duration 16-26 (ED) (yr)	10	0	10	
Exposure Frequency (EF) (d/yr)	195	90	364	98th percentile based on trail polling data
Exposure Time (ET) (hr)	2	2	1	98th percentile based on trail polling data
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.2	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	200	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	19652	
Water Ingestion Rate (IRW) (L/hr)	0.0985	0.071	0.0985	
Water Exposure Time (ET _{event}) (hr/event)	2	2	1	98th percentile based on trail polling data
Water Event Frequency (EV) (events/day)	1	1	1	

Exposure Point Concentrations Version Date: June 2021

Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #2 Lower Level Creek - Greenway User

Soil Exposure Point Concentration Table

Description of Exposure Point Concentration Selection:

Maximum detected constituent concentrations from sediment samples collected at the site during the most recent sampling event.

NOTE: If the chem	lical list is changed from a prio	r calculator run,	remember to select "See All Chemicals" on the data output sheet or newly adde	a chemicals will	not be included	in risk calculatio	115					
Exposure Point Concentration (mg/kg)	Notes:	CAS Number	Chemical For the chemicals highlighted in blue, data entry notes are provided in the PSRG Table link on the Main Menu	Minimum Concentration (Qualifier)	Maximum Concentration (Qualifier)	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	S Tos (I L
2.35	SED-4	7440-38-2	Arsenic, Inorganic			mg/kg						
24.3	SED-5	7440-39-3	Barium			mg/kg						
0.233	SED-5	7440-41-7	Beryllium and compounds			mg/kg						
63.8	SED-4	16065-83-1	Chromium(III), Insoluble Salts			mg/kg						
0.67	SED-3	18540-29-9	Chromium(VI)			mg/kg						
7.26	SED-4	7440-48-4	Cobalt			mg/kg						
20.2	SED-3	7440-50-8	Copper			mg/kg						
399	SED-5	7439-96-5	Manganese (Non-diet)			mg/kg						
0.008	SED-4	7439-97-6	~Mercury (elemental)			mg/kg						
10.5	SED-4	7440-02-0	Nickel Soluble Salts			mg/kg						
0.344	SED-4	7782-49-2	Selenium			mg/kg						
30.7	SED-4	7440-24-6	Strontium, Stable			mg/kg						

					Input Form 2/
					1
creening icity Value Screening evel) (n/c)	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion	
					J

Exposure Point Concentrations Version Date: June 2021

Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #2 Lower Level Creek - Greenway User

Surface Water Exposure Point Concentration Table

Description of Exposure Point Concentration Selection:

Maximum detected constituent concentrations detected in surface water samples over the last 5 years of sampling.

NOTE: If the chemi	ical list is changed from a pr	ior calculator run, ren	nember to select "See All Chemicals" on the data output sheet or n	ewly added chemicals will no	ot be included in 1	isk calculation	S									-
Exposure Point Concentration (ug/L)	Notes:	CAS Number	Chemical	Minimum Concentration (Qualifier)	Maximum Concentration (Qualifier)	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	Screening Toxicity Value (Screening Level) (n/c)	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion
0.45	SW-3	7440-38-2	Arsenic, Inorganic			ug/L										í
32.1	SW-21	7440-39-3	Barium			ug/L										1
0.73	SW-21	16065-83-1	Chromium(III), Insoluble Salts			ug/L										1
0.36	SW-21	7440-48-4	Cobalt			ug/L										1
3.2	SW-21	7440-50-8	Copper			ug/L										Í
37.4	SW-3	7439-96-5	Manganese (Non-diet)			ug/L										1
0.62	SW-21	7440-02-0	Nickel Soluble Salts			ug/L										(
0.12	SW-5	7782-49-2	Selenium			ug/L										(
110	SW-3 and SW-4	7440-24-6	Strontium, Stable			ug/L										1

533

Input Form 2C

Output Form 1A

Risk for Individual Pathways

Basis: May 2021 EPA RSL Table

Site ID: BPN 21061-17-060

Exposure Unit ID: EU #2 Lower Level Creek - Greenway User

DIREC	CT CONTACT SOIL AND WATE	R CALCULATO	RS		
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?	
Resident	Soil	NC	NC	NC	
Resident	Groundwater Use*	NC	NC	NC	
Non Pasidential Worker	Soil	NC	NC	NC	
Non-Residential Worker	Groundwater Use*	NC	NC	NC	
Construction Worker	Soil	NC	NC	NC	
Bacrostor/Tracrossor	Soil	1.8E-06	9.1E-02	NO	
Recreator/ rrespasser	Surface Water*	3.2E-07	1.7E-02	NO	
	VAPOR INTRUSION CALCU	LATORS			
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?	
	Groundwater to Indoor Air	NC	NC	NC	
Resident	Soil Gas to Indoor Air	NC	NC	NC	
	Indoor Air	NC	NC	NC	
	Groundwater to Indoor Air	NC	NC	NC	
Non-Residential Worker	Soil Gas to Indoor Air	NC	NC	NC	
	Indoor Air	NC	NC	NC	
C	ONTAMINANT MIGRATION CA	LCULATORS			
Pathway	Source	Target Rec	eptor Concentratio	ons Exceeded?	
Groundwater	Source Soil	Exceedence of	2L at Receptor?	NC	
Groundwater	Source Groundwater	Exceedence of	2L at Receptor?	NC	
Surface Water	Source Soil	Exceedence of	Exceedence of 2B at Receptor?		
	Source Groundwater	Exceedence of	2B at Receptor?	NC	

Notes:

1. If lead concentrations were entered in the exposure point concentration tables, see the individual calculator sheets for lead concentrations in comparison to screening levels. Note that lead is not included in cumulative risk calculations.

2. * = If concentrations in groundwater exceed the NC 2L Standards or IMAC, or concentrations in surface water exceed the NC 2B Standards, appropriate remediation and/or institutional control measures will be necessary to be eligible for a risk-based closure.

3. NM = Not Modeled

4. NC = Pathway not calculated

Output Form 2F

DEQ Risk Calculator - Direct Contact - Recreator/Trespasser Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060 Exposure Unit ID: EU #2 Lower Level Creek - Greenway User

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 400 mg/kg for residential soil. Receptor Type: Greenway user

CAS #	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Ouotient
7440-38-2	Arsenic, Inorganic	2.35	2.35	2.35	1.1E-06	2.0E-07	2.6E-12	1.3E-06	8.9E-03	1.2E-03	1.1E-07	1.0E-02
7440-39-3	Barium	24.3	24.3	24.3					2.3E-04		3.4E-08	2.3E-04
7440-41-7	Beryllium and compounds	0.233	0.233	0.233			1.5E-13	1.5E-13	2.2E-04		8.2E-09	2.2E-04
16065-83-1	Chromium(III), Insoluble Salts	63.8	63.8	63.8					8.1E-05			8.1E-05
18540-29-9	Chromium(VI)	0.67	0.67	0.67	5.3E-07		4.1E-11	5.3E-07	4.2E-04		4.7E-09	4.2E-04
7440-48-4	Cobalt	7.26	7.26	7.26			1.7E-11	1.7E-11	4.6E-02		8.5E-07	4.6E-02
7440-50-8	Copper	20.2	20.2	20.2					9.6E-04			9.6E-04
7439-96-5	Manganese (Non-diet)	399	399	399					3.2E-02		5.6E-06	3.2E-02
7439-97-6	~Mercury (elemental)	0.008	0.008	0.008							3.0E-05	3.0E-05
7440-02-0	Nickel Soluble Salts	10.5	10.5	10.5			7.1E-13	7.1E-13	1.0E-03		8.2E-08	1.0E-03
7782-49-2	Selenium	0.344	0.344	0.344					1.3E-04		1.2E-11	1.3E-04
7440-24-6	Strontium, Stable	30.7	30.7	30.7					9.7E-05			9.7E-05
						Cumulative:]	1.8E-06				9.1E-02

Q Risk Calculator - D	Direct Contact - Recreator/Trespasser Surfa	ce Water							Output Form 2
sion Date: June 202	21								
sis: May 2021 EPA l	RSL Table								
ID: BPN 21061-17	-060								
oosure Unit ID: EU	#2 Lower Level Creek - Greenway User								
D	Commence								
Receptor Type:	Greenway user								
		Ingestion	Dermal	Ingestion	Dermal Contact	Calculated	Ingestion	Dermal Contact	Calculated Non-
CAS #	Chemical Name:	Concentration	Concentration	Carcinogenic	Carcinogenic	Carcinogenic	Hazard	Hazard	Carcinogenic
		(ug/L)	(ug/L)	Risk	Risk	Risk	Quotient	Quotient	Hazard
7440-38-2	Arsenic, Inorganic	0.45	0.45	2.7E-07	4.5E-08	3.2E-07	1.8E-03	3.7E-04	2.2E-03
7440-39-3	Barium	32.1	32.1				2.0E-04	5.6E-04	7.6E-04
16065-83-1	Chromium(III), Insoluble Salts	0.73	0.73				6.0E-07	9.2E-06	9.8E-06
7440-48-4	Cobalt	0.36	0.36				1.5E-03	1.2E-04	1.6E-03
7440-50-8	Copper	3.2	3.2				9.8E-05	2.0E-05	1.2E-04
7439-96-5	Manganese (Non-diet)	37.4	37.4				1.9E-03	9.5E-03	1.1E-02
7440-02-0	Nickel Soluble Salts	0.62	0.62				3.8E-05	3.8E-05	7.6E-05
7782-49-2	Selenium	0.12	0.12				2.9E-05	5.9E-06	3.5E-05
7440-24-6	Strontium, Stable	110	110				2.3E-04	4.5E-05	2.7E-04
					Communications	2 25 07			1 75 02

North Carolina Department of Environmental Quality Risk Calculator

Version Date:	June 2021
Basis:	May 2021 EPA RSL Table
Site Name:	828 MLK Jr. Blvd Property
Site Address:	828 MLK Jr Blvd, Chapel Hill, Orange County, North Carolina
DEQ Section:	Brownfields Program
Site ID:	BPN 21061-17-060
Exposure Unit ID:	EU #3 Embankment - Resident, Non-Residential Worker, and Greenway
Submittal Date:	
Dronanad Dyr	Hart & Hickman, PC
г герагей бу:	3921 Sunset Ridge Rd, Suite 301, Raleigh, North Carolina
Reviewed By:	

Table of Contents		ТОС
Version Date: Jun	e 2021	
Basis: May 2021 F	CPA RSL Table	
Site ID: BPN 2106	51-17-060	
Exposure Unit ID:	EU #3 Embankment - Resident, Non-Residential Worker, and Greenway User	
		Check box
Form No.	Description	if included
	DATA INPUT SHEETS	
	Input Section 1 - Exposure Pathways & Parameters	
Input Form 1A	Complete Exposure Pathways	1
Input Form 1B	Exposure Factors and Target Risks	\checkmark
Input Form 1C	Contaminant Migration Parameters	
Input Form 1D	Sample Statistics	
	Input Section 2 - Exposure Point Concentrations	
Input Form 2A	Soil Exposure Point Concentration Table	<i>✓</i>
Input Form 2B	Groundwater Exposure Point Concentration Table	
Input Form 2C	Surface Water Exposure Point Concentration Table	
Input Form 2D	Soil Gas Exposure Point Concentration Table	
Input Form 2E	Indoor Air Exposure Point Concentration Table	
-	DATA OUTPUT SHEETS	
	Output Section 1 - Summary Output for All Calculators	
Output Form 1A	Risk for Individual Pathways	J
Output Form 1B	Sitewide Risk	
1	Output Section 2 - Direct Contact Soil and Groundwater Calculators	
Output Form 2A	Resident Soil	✓
Output Form 2B	Resident Groundwater Use	
Output Form 2C	Non-Residential Worker Soil	 ✓
Output Form 2D	Non-Residential Worker Groundwater Use	
Output Form 2E	Construction Worker Soil	\square
Output Form 2F	Recreator/Trespasser Soil	<u> </u>
Output Form 2G	Recreator/Trespasser Surface Water	
	Output Section 3 - Vapor Intrusion Calculators	
Output Form 3A	Resident Groundwater to Indoor Air	
Output Form 3B	Resident Soil Gas to Indoor Air	
Output Form 3C	Resident Indoor Air	
Output Form 3D	Non-Residential Worker Groundwater to Indoor Air	
Output Form 3E	Non-Residential Worker Soil Gas to Indoor Air	
Output Form 3F	Non-Residential Worker Indoor Air	
· · · · · · · · · · · · · · · · · · ·	Output Section 4 - Contaminant Migration Worksheets	
Output Form 4A	Soil to Groundwater - Forward Mode	
Output Form 4B	Groundwater to Groundwater - Forward Mode	
Output Form 4C	Soil to Surface Water - Forward Mode	
Output Form 4D	Groundwater to Surface Water - Forward Mode	
Output Form 4E	Soil to Groundwater - Backward Mode	
Output Form 4F	Groundwater to Groundwater - Backward Mode	
Output Form 4G	Soil to Surface Water - Backward Mode	
Output Form 4H	Groundwater to Surface Water - Backward Mode	

Complete Exposure Pathways		Input Form 1A
Version Date: June 2021 Basis: May 2021 EPA RSL T Site ID: BPN 21061-17-060	able	
Exposure Unit ID: EU #3 En	nbankment - Resident, Non-Residential	Worker, and Gr
Note: Risk output will only be calc	ulated for complete exposure pathways.	
Receptor	Pathway	Check box if pathway complete
DIRECT CON	TACT SOIL AND WATER PATHWAYS	
Resident	Soil	\checkmark
Resident	Groundwater Use	
Non Residential Worker	Soil	\checkmark
Non-Residential worker	Groundwater Use	
Construction Worker	Soil	
Decreator/Treeposer	Soil	v
Recreator/ rrespasser	Surface Water	
VAP	OR INTRUSION PATHWAYS	
	Groundwater to Indoor Air	
Resident	Soil Gas to Indoor Air	
	Indoor Air	
	Groundwater to Indoor Air	
Non-Residential Worker	Soil Gas to Indoor Air	
	Indoor Air	
CONTAM	IINANT MIGRATION PATHWAYS	
Groundwater	Source Soil	
Groundwater	Source Groundwater	
Surface Water	Source Soil	
Surface Water	Source Groundwater	

Exposure Factors and Target Risks

Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #3 Embankment - Resident, Non-Residential Worker, and Greenway User

Exposure Parameter	Default Value	Site Specific Value	Justification
	Gener	al	
Target Cancer Risk (individual)	1.0E-06	1.0E-06	
Target Cancer Risk (cumulative)	1.0E-04	1.0E-04	
Target Hazard Index (individual)	2.0E-01	2.0E-01	
Target Hazard Index (cumulative)	1.0E+00	1.0E+00	
	Residential	Child	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	15	15	
Exposure Duration (ED) (yr)	6	6	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA _s) (cm2)	2373	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	200	
Skin Surface Area - Water Exposure (SA _w) (cm2)	6365	6365	
Water Ingestion Rate (IRW) (L/d)	0.78	0.78	
Water Exposure Time (ET _{event}) (hr/event)	0.54	0.54	
Water Event Frequency (EV) (events/day)	1	1	
	Residential	Adult	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr)	20	20	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	2.5	2.5	
Water Exposure Time (ET _{event}) (hr/event)	0.71	0.71	
Water Event Frequency (EV) (events/day)	1	1	
	Non-Residentia	al Worker	
Lifetime (LT) (years)	70	/0	
Body Weight (BW) (kg)	30	80	
Exposure Duration (ED) (yr)	25	25	
Exposure Frequency (EF) (d/yr)	230	250	
Exposure time (E1) (nr) Shin Surface Area Sail E (SA) ($\frac{2}{3}$)	0 3527	8	
Skin Surface Area - Soil Exposure (SA_s) (cm ²)	0.12	3527	
Soil Ingestion Pate (IP) (mg/day)	100	0.12	
Shin Surfree Area Water E (CA.) (²)	19652	10(52	
Skin Surface Area - water Exposure (SA _w) (cm ⁻)	0.82	19652	
Water Exposure Time (ET) (hr/avent)	0.65	0.83	
Water Event Frequency (EV) (avents/day)	1	0.6/	
water Event Frequency (EV) (events/day)	Construction	Worker	
Lifetime (LT) (vegro)	70	70	
Body Weight (BW) (kg)	80	80	
Working Weeks (FW) (wk/vr)	50	50	
Exposure Duration (ED) (vr)	1	1	
Exposure Frequency (FF) (d/vr)	250	250	
Exposure Time (ET) (hr)	8	250	
Skin Surface Area Soil Experience (SA) (an ²)	3527	3527	
Skin Surface Area - Soll Exposure (SA_s) (cm)	0.3	0.2	
Soil Ingestion Rate (IR) (mg/day)	330	0.5	
son mgesuon rate (nr) (ng/uay)	550	330	

Input Form 1B

Exposure Factors and Target Risks Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #3 Embankment - Resident, Non-Residential Worker, and Greenway User

Exposure Parameter	Defau	lt Value	Site Specific Value	Justification
		User Defined	l Child	
	Recreator	Trespasser		
Lifetime (LT) (years)	70	NA	70	
Averaging Time (AT) (days/yr)	365	NA	365	
Body Weight (BW) (kg)	15	NA	15	
Exposure Duration 0-2 (ED) (yr)	2	NA	2	
Exposure Duration 2-6 (ED) (yr)	4	NA	4	
Exposure Frequency (EF) (d/yr)	195	NA	52	Based on 98% percentile of trail users
Exposure Time (ET) (hr)	2	NA	0.5	Based on 98% percentile of trail users
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	2373	NA	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	NA	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	NA	200	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	6365	NA	6365	
Water Ingestion Rate (IRW) (L/hr)	0.124	NA	0.124	
Water Exposure Time (ET _{event}) (hr/event)	2	NA	2	
Water Event Frequency (EV) (events/day)	1	NA	1	
	Ţ	User Defined	l Adult	
	Recreator	Trespasser		_
Lifetime (LT) (years)	70	70	70	
Body Weight (BW) (kg)	80	45	80	
Exposure Duration 6-16 (ED) (yr)	10	10	10	
Exposure Duration 16-26 (ED) (yr)	10	0	10	
Exposure Frequency (EF) (d/yr)	195	90	364	Based on 98% percentile of trail users
Exposure Time (ET) (hr)	2	2	1	Based on 98% percentile of trail users
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.2	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	200	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	19652	
Water Ingestion Rate (IRW) (L/hr)	0.0985	0.071	0.0985	
Water Exposure Time (ET _{event}) (hr/event)	2	2	2	
Water Event Frequency (EV) (events/day)	1	1	1	

Input Form 1B

Exposure Point Concentrations Version Date: June 2021

Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #3 Embankment - Resident, Non-Residential Worker, and Greenway User

Soil Exposure Point Concentration Table

Description of Exposure Point Concentration Selection:

Maximum detected constituent concentrations from samples collected from shallow (0-2 ft) soil within the exposure unit.

NOTE: If the chem	ical list is changed from a prio	r calculator run,	remember to select "See All Chemicals" on the data output sheet or newly adde	ed chemicals will	not be included	in risk calculation	ns					
Exposure Point Concentration (mg/kg)	Notes:	CAS Number	Chemical For the chemicals highlighted in blue, data entry notes are provided in the PSRG Table link on the Main Menu	Minimum Concentration (Qualifier)	Maximum Concentration (Qualifier)	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	To (L
60.3	HH-10	7440-38-2	Arsenic, Inorganic			mg/kg						
3260	HH-11	7440-39-3	Barium			mg/kg						
5.9	HH-11	7440-41-7	Beryllium and compounds			mg/kg						
0.22	HH-11	7440-43-9	Cadmium (Diet)			mg/kg						
43.8	Excavation H-2	16065-83-1	Chromium(III), Insoluble Salts			mg/kg						
1.4	S-7	18540-29-9	Chromium(VI)			mg/kg						
19.1	Excavation H-2	7440-48-4	Cobalt			mg/kg						
59.2	Excavation H-2	7440-50-8	Copper			mg/kg						
412	Excavation H-1	7439-96-5	Manganese (Non-diet)			mg/kg						
0.43	HH-11	7439-97-6	~Mercury (elemental)			mg/kg						
23.5	HH-11	7440-02-0	Nickel Soluble Salts			mg/kg						
9.05	HH-11	7782-49-2	Selenium			mg/kg						
269	HH-10	7440-24-6	Strontium, Stable			mg/kg						

					Input Form 2A
					1
	[[1		1
creening cicity Value Screening evel) (n/c)	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion	

Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060 Exposure Unit ID: EU #3 Embankment - Resident, Non-Residential Worker, and Greenway User DIRECT CONTACT SOIL AND WATER CALCULATORS Receptor Pathway Carcinogenic Risk Hazard Index Risk excent to the second secon	Risk for Individual Pathways				Output Form 1 A
Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060 Exposure Unit ID: EU #3 Embankment - Resident, Non-Residential Worker, and Greenway User DIRECT CONTACT SOIL AND WATER CALCULATORS DIRECT CONTACT SOIL AND WATER CALCULATORS Receptor Pathway Carcinogenic Risk Hazard Index Risk exec Risk Receptor Pathway Carcinogenic Risk Hazard Index Risk exec Risk Resident Groundwater Use* NC NC NC NC Non-Residential Worker Soil 2.0E-05 2.2E-01 NG Construction Worker Soil NC NC NC Receptor/Trespasser Soil NC NC NC Surface Water* NC NC NC NC Resident Groundwater to Indoor Air NC NC NC NC Non-Residential Worker Groundwater to Indoor Air NC NC NC NC NC NC Non-Residential Worker Groundwater to Indoor Air NC <t< td=""><td>Version Date: June 2021</td><td></td><td></td><td></td><td></td></t<>	Version Date: June 2021				
Site ID: BPN 21061-17-060 Exposure Unit ID: EU #3 Embankment - Resident, Non-Residential Worker, and Greenway User DIRECT CONTACT SOIL AND WATER CALCULATORS DIRECT CONTACT SOIL AND WATER CALCULATORS Carcinogenic Risk Hazard Index Risk exc Risk exc Risk Receptor Pathway Carcinogenic Risk Hazard Index Risk exc Risk Resident Soil 9.4E-05 3.1E+00 YE Soil 9.4E-05 3.1E+00 YE Mon-Residential Worker Soil 2.0E-05 2.2E-01 NG Non-Residential Worker Soil 2.0E-05 2.2E-01 NG Construction Worker Soil 3.4E-05 4.6E-01 NG Recreator/Trespasser Surface Water* NC NC NG Surface Water* NC NC NC NG Receptor Pathway Carcinogenic Risk Risk Risk Risk exc Mazard Index Soil Gas to Indoor Air NC NC NG Non-Residential Worker	Basis: May 2021 EPA RSL Table	2			
Exposure Unit ID: EU #3 Embankment - Resident, Non-Residential Worker, and Greenway User DIRECT CONTACT SOIL AND WATER CALCULATORS DIRECT CONTACT SOIL AND WATER CALCULATORS Receptor Pathway Carcinogenic Risk Hazard Index Risk exc Risk exc Risk Resident Soil 9.4E-05 3.1E+00 YE Groundwater Use* NC NC NC Non-Residential Worker Soil 2.0E-05 2.2E-01 NC Construction Worker Soil 2.0E-05 2.2E-01 NC Recreator/Trespasser Soil NC NC NC Soil 3.4E-05 4.6E-01 NC Receptor Soil 3.4E-05 4.6E-01 NC VAPOR INTRUSION CALCULATORS VAPOR INTRUSION CALCULATORS NC NC NC Resident Groundwater to Indoor Air NC NC NC NC Non-Residential Worker Groundwater to Indoor Air NC NC NC NC Non-Residential Worker Groundwater to Indoor Air	Site ID: BPN 21061-17-060				
DIRECT CONTACT SOIL AND WATER CALCULATORS Receptor Pathway Carcinogenic Risk Hazard Index Risk exc Risk exc Risk Resident Soil 9.4E-05 3.1E+00 YE Groundwater Use* NC NC NC Non-Residential Worker Soil 2.0E-05 2.2E-01 NC Construction Worker Soil NC NC NC Recreator/Trespasser Soil 3.4E-05 4.6E-01 NC Receptor Soil 3.4E-05 4.6E-01 NC Recreator/Trespasser Soil 3.4E-05 4.6E-01 NC Receptor Pathway Carcinogenic Risk Hazard Index Risk excention Resident Groundwater to Indoor Air NC NC NC Non-Residential Worker Groundwater to Indoor Air NC NC NC Resident Groundwater to Indoor Air NC NC NC Non-Residential Worker Groundwater to Indoor Air NC NC NC Non-Resid	Exposure Unit ID: EU #3 Emban	kment - Resident, Non-Residential V	Vorker, and Gree	enwav User	
DIRECT CONTACT SOIL AND WATER CALCULATORS Receptor Pathway Carcinogenic Risk Hazard Index Risk exc Risk exc Risk Resident Soil 9.4E-05 3.1E+00 YE Groundwater Use* NC NC NC Non-Residential Worker Soil 2.0E-05 2.2E-01 NC Construction Worker Soil NC NC NC Recreator/Trespasser Soil 3.4E-05 4.6E-01 NC Receptor Pathway Carcinogenic Risk Mazard Index Risk excents Receptor Pathway Soil 3.4E-05 4.6E-01 NC Resident Soil Cas to Indoor Air NC NC NC Resident Groundwater to Indoor Air NC NC NC Non-Residential Worker Groundwater to Indoor Air NC NC NC Resident Groundwater to Indoor Air NC NC NC Non-Residential Worker Groundwater to Indoor Air NC NC NC		,	,	v	
ReceptorPathwayCarcinogenic RiskHazard IndexRisk excResidentSoil9.4E-053.1E+00YEGroundwater Use*NCNCNCNon-Residential WorkerSoil2.0E-052.2E-01NCGroundwater Use*NCNCNCNCConstruction WorkerSoilNCNCNCRecreator/TrespasserSoil3.4E-054.6E-01NCSoil3.4E-054.6E-01NCNCVAPOR INTRUSION CALCULATORSVAPOR INTRUSION CALCULATORSNCNCReceptorPathwayCarcinogenic RiskRisk excResidentGroundwater to Indoor AirNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCNon-Residential WorkerSoil Gas to Indoor AirNCNCNCNon-Res	DIRI	ECT CONTACT SOIL AND WATE	R CALCULATO	RS	
$\begin{tabular}{ c c c c c c } \hline Soil & 9.4E-05 & 3.1E+00 & YE \\ \hline Groundwater Use* & NC & NC & NC \\ \hline Non-Residential Worker & Soil & 2.0E-05 & 2.2E-01 & NC \\ \hline Groundwater Use* & NC & NC & NC \\ \hline Groundwater Use* & NC & NC & NC \\ \hline Construction Worker & Soil & 3.4E-05 & 4.6E-01 & NC \\ \hline Recreator/Trespasser & Soil & 3.4E-05 & 4.6E-01 & NC \\ \hline Surface Water* & NC & NC & NC \\ \hline \hline VAPOR INTRUSION CALCULATORS & \\ \hline Receptor & Pathway & Carcinogenic Risk & Risk exceed \\ \hline Resident & Groundwater to Indoor Air & NC & NC & NC \\ \hline Resident & Groundwater to Indoor Air & NC & NC & NC \\ \hline Non-Residential Worker & Groundwater to Indoor Air & NC & NC & NC \\ \hline Non-Residential Worker & Groundwater to Indoor Air & NC & NC & NC \\ \hline Non-Residential Worker & Groundwater to Indoor Air & NC & NC & NC \\ \hline Non-Residential Worker & OI Indoor Air & NC & NC & NC \\ \hline Non-Residential Worker & OI Indoor Air & NC & NC & NC \\ \hline Hator & NC & NC & NC & NC & NC \\ \hline \hline Hator & NC & NC & NC & NC & NC \\ \hline \hline Hator & NC & NC & NC & NC & NC & NC \\ \hline \hline \hline Hator & NC \\ \hline \hline \hline \hline Hator & NC & N$	Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?
ResidentGroundwater Use*NCNCNCNon-Residential WorkerSoil2.0E-052.2E-01NCGroundwater Use*NCNCNCNCConstruction WorkerSoilNCNCNCRecreator/TrespasserSoil3.4E-054.6E-01NCSurface Water*NCNCNCNCVAPOR INTRUSION CALCULATORSVAPOR INTRUSION CALCULATORSRiskRisk exceeded and the second and the se	Resident	Soil	9.4E-05	3.1E+00	YES
Non-Residential WorkerSoil2.0E-052.2E-01NOGroundwater Use*NCNCNCNCConstruction WorkerSoilNCNCNCRecreator/TrespasserSoil3.4E-054.6E-01NCSurface Water*NCNCNCNCVAPOR INTRUSION CALCULATORSGroundwater to Indoor AirNCNCNCReceptorPathwayCarcinogenic RiskHazard IndexRisk excSoil Gas to Indoor AirNCNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCNon-Residential WorkerSoil Gas to Indoor AirNCNCNCIndoor AirNCNCNCNCNCIndoor AirNCNCNCNCNCNon-Residential WorkerSoil Gas to Indoor AirNCNCNCIndoor AirNCNCNCNCNCIndoor AirNCNCNCNCNC	Kesident	Groundwater Use*	NC	NC	NC
Non-Residential WorkerGroundwater Use*NCNCNCConstruction WorkerSoilSoilNCNCNCRecreator/TrespasserSoil3.4E-054.6E-01NCSurface Water*NCNCNCNCVAPOR INTRUSION CALCULATORSGroundwater to Indoor AirNCNCNCReceptorPathwayCarcinogenic RiskHazard IndexRisk excGroundwater to Indoor AirNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCNon-Residential WorkerSoil Gas to Indoor AirNCNCNCIndoor AirNCNCNCNCNCContamination CalicNCNCNCNCNCContamination CalicNCNCNCNCNC	Non Pasidential Worker	Soil	2.0E-05	2.2E-01	NO
Construction WorkerSoilNCNCNCRecreator/TrespasserSoil3.4E-054.6E-01NCSurface Water*NCNCNCNCVAPOR INTRUSION CALCULATORSCarcinogenic RiskHazard IndexRisk excReceptorPathwayCarcinogenic RiskHazard IndexRisk excResidentGroundwater to Indoor AirNCNCNCSoil Gas to Indoor AirNCNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCIndoor AirNCNCNCNCIndoor AirNCNCNCNCIndoor AirNCNCNCNCNon-Residential WorkerSoil Gas to Indoor AirNCNCIndoor AirNCNCNCNCIndoor AirNCNCNCNC	Non-Residential worker	Groundwater Use*	NC	NC	NC
Recreator/TrespasserSoil3.4E-054.6E-01NOSurface Water*NCNCNCNCVAPOR INTRUSION CALCULATORSCarcinogenic RiskHazard IndexRisk excReceptorPathwayCarcinogenic RiskHazard IndexRisk excResidentGroundwater to Indoor AirNCNCNCSoil Gas to Indoor AirNCNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCNon-Residential WorkerSoil Gas to Indoor AirNCNCNCIndoor AirNCNCNCNCIndoor AirNCNCNCNCOTAMINANT MIGRATION CALCULATORSNCNCNC	Construction Worker	Soil	NC	NC	NC
Keckelon/ nespasserSurface Water*NCNCNCVAPOR INTRUSION CALCULATORSReceptorPathwayCarcinogenic RiskHazard IndexRisk excentResidentGroundwater to Indoor AirNCNCNCSoil Gas to Indoor AirNCNCNCNCIndoor AirNCNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCIndoor AirNCNCNCNCIndoor AirNCNCNCNCIndoor AirNCNCNCNCIndoor AirNCNCNCNCIndoor AirNCNCNCNCCONTAMINANT MIGRATION CALCULATORSNCNCNC	Pagrantor/Traspassar	Soil	3.4E-05	4.6E-01	NO
VAPOR INTRUSION CALCULATORSReceptorPathwayCarcinogenic RiskHazard IndexRisk excGroundwater to Indoor AirNCNCNCResidentSoil Gas to Indoor AirNCNCNCIndoor AirNCNCNCNCMon-Residential WorkerGroundwater to Indoor AirNCNCNCIndoor AirNCNCNCNCIndoor AirNCNCNCNCMon-Residential WorkerSoil Gas to Indoor AirNCNCNCIndoor AirNCNCNCNCIndoor AirNCNCNCNC	Recreator/Trespasser	Surface Water*	NC	NC	NC
ReceptorPathwayCarcinogenic RiskHazard IndexRisk excResidentGroundwater to Indoor AirNCNCNCSoil Gas to Indoor AirNCNCNCNCIndoor AirNCNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCIndoor AirNCNCNCNCIndoor AirNCNCNCNCNon-Residential WorkerSoil Gas to Indoor AirNCNCNCIndoor AirNCNCNCNCIndoor AirNCNCNCNC		VAPOR INTRUSION CALCU	LATORS		
Resident Groundwater to Indoor Air NC NC NC Soil Gas to Indoor Air NC NC NC Indoor Air NC NC NC Non-Residential Worker Groundwater to Indoor Air NC NC Soil Gas to Indoor Air NC NC NC Indoor Air NC NC NC Soil Gas to Indoor Air NC NC NC Indoor Air NC NC NC	Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?
Resident Soil Gas to Indoor Air NC NC NO Indoor Air NC NC NO Mon-Residential Worker Groundwater to Indoor Air NC NC NO Soil Gas to Indoor Air NC NC NO Indoor Air NC NC NO CONTAMINANT MIGRATION CALCULATORS NO NO		Groundwater to Indoor Air	NC	NC	NC
Indoor Air NC NC Mon-Residential Worker Groundwater to Indoor Air NC NC Soil Gas to Indoor Air NC NC NC Indoor Air NC NC NC	Resident	Soil Gas to Indoor Air	NC	NC	NC
Image: Mon-Residential Worker Groundwater to Indoor Air NC NC NC Soil Gas to Indoor Air NC NC NC NC Indoor Air NC NC NC NC		Indoor Air	NC	NC	NC
Non-Residential Worker Soil Gas to Indoor Air NC NC NC Indoor Air NC NC NC NC		Groundwater to Indoor Air	NC	NC	NC
Indoor Air NC NC NC NC	Non-Residential Worker	Soil Gas to Indoor Air	NC	NC	NC
CONTAMINANT MIGRATION CALCULATORS		Indoor Air	NC	NC	NC
		CONTAMINANT MIGRATION CA	LCULATORS		
Pathway Source Target Receptor Concentrations Exceeded	Pathway	Source	Target Rec	eptor Concentration	ons Exceeded?
Groundwater Source Soil Exceedence of 2L at Receptor? NO	Groundwater	Source Soil	Exceedence of	2L at Receptor?	NC
Source Groundwater Exceedence of 2L at Receptor? NO	Gioundwater	Source Groundwater	Exceedence of	NC	
Surface Water Source Soil Exceedence of 2B at Receptor? NO	Surface Water	Source Soil	Exceedence of	2B at Receptor?	NC
Source Groundwater Exceedence of 2B at Receptor? NO		Source Groundwater	Exceedence of	2B at Receptor?	NC

Notes:

1. If lead concentrations were entered in the exposure point concentration tables, see the individual calculator sheets for lead concentrations in comparison to screening levels. Note that lead is not included in cumulative risk calculations.

2. * = If concentrations in groundwater exceed the NC 2L Standards or IMAC, or concentrations in surface water exceed the NC 2B Standards, appropriate remediation and/or institutional control measures will be necessary to be eligible for a risk-based closure.

3. NM = Not Modeled

4. NC = Pathway not calculated

Output Form 2A

DEQ Risk Calculator - Direct Contact - Resident Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #3 Embankment - Resident, Non-Residential Worker, and Greenway User

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 400 mg/kg for residential soil.

CAS #	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk*	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient*	Calculated Non- Carcinogenic Hazard Quotient
7440-38-2	Arsenic, Inorganic	60.3	60.3	60.3	7.8E-05	1.1E-05	1.6E-09	8.9E-05	1.5E+00	1.8E-01	6.5E-05	1.7E+00
7440-39-3	Barium	3260	3260	3260					2.1E-01		1.1E-04	2.1E-01
7440-41-7	Beryllium and compounds	5.9	5.9	5.9			8.5E-11	8.5E-11	3.8E-02		4.8E-06	3.8E-02
7440-43-9	Cadmium (Diet)	0.22	0.22	0.22			2.4E-12	2.4E-12	2.8E-03	2.7E-04	3.6E-07	3.1E-03
16065-83-1	Chromium(III), Insoluble Salts	43.8	43.8	43.8					3.7E-04			3.7E-04
18540-29-9	Chromium(VI)	1.4	1.4	1.4	4.6E-06		2.0E-09	4.6E-06	6.0E-03		2.3E-07	6.0E-03
7440-48-4	Cobalt	19.1	19.1	19.1			1.0E-09	1.0E-09	8.1E-01		5.1E-05	8.1E-01
7440-50-8	Copper	59.2	59.2	59.2					1.9E-02			1.9E-02
7439-96-5	Manganese (Non-diet)	412	412	412					2.2E-01		1.3E-04	2.2E-01
7439-97-6	~Mercury (elemental)	0.43	0.43	0.43							3.7E-02	3.7E-02
7440-02-0	Nickel Soluble Salts	23.5	23.5	23.5			3.7E-11	3.7E-11	1.5E-02		4.2E-06	1.5E-02
7782-49-2	Selenium	9.05	9.05	9.05					2.3E-02		7.3E-09	2.3E-02
7440-24-6	Strontium, Stable	269	269	269					5.7E-03			5.7E-03
							1					
						Cumulative:	J	9.4E-05				3.1E+00

Output Form 2C

DEQ Risk Calculator - Direct Contact - Non-Residential Worker Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #3 Embankment - Resident, Non-Residential Worker, and Greenway User

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 800 mg/kg for commercial/industrial soil.

CAS#	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Quotient
7440-38-2	Arsenic, Inorganic	60.3	60.3	60.3	1.7E-05	3.5E-06	3.6E-10	2.0E-05	1.0E-01	2.2E-02	1.5E-05	1.3E-01
7440-39-3	Barium	3260	3260	3260					1.4E-02		2.5E-05	1.4E-02
7440-41-7	Beryllium and compounds	5.9	5.9	5.9			1.9E-11	1.9E-11	2.5E-03		1.1E-06	2.5E-03
7440-43-9	Cadmium (Diet)	0.22	0.22	0.22			5.4E-13	5.4E-13	1.9E-04	3.2E-05	8.5E-08	2.2E-04
16065-83-1	Chromium(III), Insoluble Salts	43.8	43.8	43.8					2.5E-05			2.5E-05
18540-29-9	Chromium(VI)	1.4	1.4	1.4	2.1E-07		1.6E-10	2.1E-07	4.0E-04		5.4E-08	4.0E-04
7440-48-4	Cobalt	19.1	19.1	19.1			2.4E-10	2.4E-10	5.5E-02		1.2E-05	5.5E-02
7440-50-8	Copper	59.2	59.2	59.2					1.3E-03			1.3E-03
7439-96-5	Manganese (Non-diet)	412	412	412					1.5E-02		3.2E-05	1.5E-02
7439-97-6	~Mercury (elemental)	0.43	0.43	0.43							8.9E-03	8.9E-03
7440-02-0	Nickel Soluble Salts	23.5	23.5	23.5			8.4E-12	8.4E-12	1.0E-03		1.0E-06	1.0E-03
7782-49-2	Selenium	9.05	9.05	9.05					1.5E-03		1.7E-09	1.5E-03
7440-24-6	Strontium, Stable	269	269	269					3.8E-04			3.8E-04
						Cumulative:]	2.0E-05				2.2E-01

546

Output Form 2F

DEQ Risk Calculator - Direct Contact - Recreator/Trespasser Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060 Exposure Unit ID: EU #3 Embankment - Resident, Non-Residential Worker, and Greenway User

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 400 mg/kg for residential soil. Receptor Type: Greenway User

CAS #	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Quotient
7440-38-2	Arsenic, Inorganic	60.3	60.3	60.3	2.8E-05	5.1E-06	6.7E-11	3.3E-05	2.3E-01	3.2E-02	2.8E-06	2.6E-01
7440-39-3	Barium	3260	3260	3260					3.1E-02		4.6E-06	3.1E-02
7440-41-7	Beryllium and compounds	5.9	5.9	5.9			3.7E-12	3.7E-12	5.6E-03		2.1E-07	5.6E-03
7440-43-9	Cadmium (Diet)	0.22	0.22	0.22			1.0E-13	1.0E-13	4.2E-04	4.6E-05	1.5E-08	4.6E-04
16065-83-1	Chromium(III), Insoluble Salts	43.8	43.8	43.8					5.5E-05			5.5E-05
18540-29-9	Chromium(VI)	1.4	1.4	1.4	1.1E-06		8.5E-11	1.1E-06	8.9E-04		9.8E-09	8.9E-04
7440-48-4	Cobalt	19.1	19.1	19.1			4.5E-11	4.5E-11	1.2E-01		2.2E-06	1.2E-01
7440-50-8	Copper	59.2	59.2	59.2					2.8E-03			2.8E-03
7439-96-5	Manganese (Non-diet)	412	412	412					3.3E-02		5.8E-06	3.3E-02
7439-97-6	~Mercury (elemental)	0.43	0.43	0.43							1.6E-03	1.6E-03
7440-02-0	Nickel Soluble Salts	23.5	23.5	23.5			1.6E-12	1.6E-12	2.2E-03		1.8E-07	2.2E-03
7782-49-2	Selenium	9.05	9.05	9.05					3.4E-03		3.2E-10	3.4E-03
7440-24-6	Strontium, Stable	269	269	269					8.5E-04			8.5E-04
<u> </u>			•	•		Cumulative:]	3.4E-05				4.6E-01

North Carolina Department of Environmental Quality Risk Calculator

Version Date:	June 2021
Basis:	May 2021 EPA RSL Table
Site Name:	828 MLK Jr. Blvd Property
Site Address:	828 MLK Jr Blvd, Chapel Hill, Orange County, North Carolina
DEQ Section:	Brownfields Program
Site ID:	BPN 21061-17-060
Exposure Unit ID:	EU #3 Embankment - Construction Worker
Submittal Date:	
Dronawad Dur	Hart & Hickman, PC
г герагей бу:	3921 Sunset Ridge Rd, Suite 301, Raleigh, North Carolina
Reviewed By:	

Table of Contents		TOC
Version Date: Jun	e 2021	
Basis: May 2021 E	CPA RSL Table	
Site ID: BPN 2106	1-17-060	
Exposure Unit ID:	FII #3 Embankment - Construction Worker	
Exposure Onit ID.	EU #J Embankment - Construction worker	Chaok hov
Form No.	Description	if included
	DATA INPUT SHEETS	
	Input Section 1 - Exposure Pathways & Parameters	
Input Form 1A	Complete Exposure Pathways	
Input Form 1B	Exposure Factors and Target Risks	~
Input Form 1C	Contaminant Migration Parameters	
Input Form 1D	Sample Statistics	
input i onn 12	Input Section 2 - Exposure Point Concentrations	
Input Form 2A	Soil Exposure Point Concentration Table	
Input Form 2P	Groundwater Exposure Point Concentration Table	
Input Form 2C	Surface Water Exposure Doint Concentration Table	
Input Form 2C	Surface water Exposure Point Concentration Table	
Input Form 2D	Son Gas Exposure Point Concentration Table	
Input Form 2E	Indoor Air Exposure Point Concentration Table	
	DATA OUTPUT SHEETS	
	Output Section 1 - Summary Output for All Calculators	
Output Form 1A	Risk for Individual Pathways	<u>_</u>
Output Form 1B	Sitewide Risk	
	Output Section 2 - Direct Contact Soil and Groundwater Calculators	
Output Form 2A	Resident Soil	
Output Form 2B	Resident Groundwater Use	
Output Form 2C	Non-Residential Worker Soil	
Output Form 2D	Non-Residential Worker Groundwater Use	
Output Form 2E	Construction Worker Soil	✓
Output Form 2F	Recreator/Trespasser Soil	
Output Form 2G	Recreator/Trespasser Surface Water	
	Output Section 3 - Vapor Intrusion Calculators	
Output Form 3A	Resident Groundwater to Indoor Air	
Output Form 3B	Resident Soil Gas to Indoor Air	
Output Form 3C	Resident Indoor Air	
Output Form 3D	Non-Residential Worker Groundwater to Indoor Air	
Output Form 3E	Non-Residential Worker Soil Gas to Indoor Air	
Output Form 3F	Non-Residential Worker Indoor Air	
•	Output Section 4 - Contaminant Migration Worksheets	
Output Form 4A	Soil to Groundwater - Forward Mode	
Output Form 4B	Groundwater to Groundwater - Forward Mode	
Output Form 4C	Soil to Surface Water - Forward Mode	
Output Form 4D	Groundwater to Surface Water - Forward Mode	\square
Output Form 4F	Soil to Groundwater - Backward Mode	
Output Form 4F	Groundwater to Groundwater - Backward Mode	
Output Form 4G	Soil to Surface Water - Backward Mode	
Output Form /H	Groundwater to Surface Water - Backward Mode	
	Groundwater to Surface water - Dackward Mode	

Complete Exposure Pathways		Input Form 1A
Version Date: June 2021 Basis: May 2021 EPA RSL T Site ID: BPN 21061-17-060	able	
Exposure Unit ID: EU #3 En	bankment - Construction Worker	
Note: Risk output will only be calc	ulated for complete exposure pathways.	
Receptor	rsion Date: June 2021 rsion Date: June 2021 sis: May 2021 EPA RSL Table e ID: BPN 21061-17-060 posure Unit ID: EU #3 Embankment - Construction Worker e: Risk output will only be calculated for complete exposure pathways. Receptor Pathway BIRECT CONTACT SOIL AND WATER PATHWAY: DIRECT CONTACT SOIL AND WATER PATHWAY: Soil Resident Soil Non-Residential Worker Soil Recreator/Trespasser Soil Recreator/Trespasser Soil Resident Soil Gas to Indoor Air Resident Soil Gas to Indoor Air Non-Residential Worker Soil Gas to Indoor Air Non-Residential Worker Soil Gas to Indoor Air Resident Soil Gas to Indoor Air Indoor Air Non-Residential Worker Soil Gas to Indoor Air Resident Soil Gas to Indoor Air Non-Residential Worker Soil Gas to Indoor Air Source Soil	
DIRECT CON	TACT SOIL AND WATER PATHWAYS	1
Resident	Soil	
Kestdent	Groundwater Use	
Non Posidential Worker	Soil	
Non-Residential worker	Groundwater Use	
Construction Worker	Soil	\checkmark
Deemoton/Treesmosson	Soil	
Recreator/Trespasser	Surface Water	
VAP	OR INTRUSION PATHWAYS	
	Groundwater to Indoor Air	
Resident	Soil Gas to Indoor Air	
	Indoor Air	
	Groundwater to Indoor Air	
Non-Residential Worker	Soil Gas to Indoor Air	
	Indoor Air	
CONTAM	IINANT MIGRATION PATHWAYS	
Crowndwater	Source Soil	
Groundwater	Source Groundwater	
Curfood Weter	Source Soil	
Surface water	Source Groundwater	

Exposure Factors and Target Risks

Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #3 Embankment - Construction Worker

E B ·	D.C. L.Y.Y.	Site Specific	T 10 1
Exposure Parameter	Default Value	Value	Justification
	Gener	al	1
Target Cancer Risk (individual)	1.0E-06	1.0E-06	
Target Cancer Risk (cumulative)	1.0E-04	1.0E-04	
Target Hazard Index (individual)	2.0E-01	2.0E-01	
Target Hazard Index (cumulative)	1.0E+00	1.0E+00	
	Residential	Child	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	15	15	
Exposure Duration (ED) (yr)	6	6	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA _s) (cm2)	2373	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	200	
Skin Surface Area - Water Exposure (SA _w) (cm2)	6365	6365	
Water Ingestion Rate (IRW) (L/d)	0.78	0.78	
water Exposure Time (ET _{event}) (hr/event)	0.54	0.54	
Water Event Frequency (EV) (events/day)		1	
	Residential	Adult	
Lifetime (LT) (years)	70	70	
Body weight (Bw) (kg)	20	80	
Exposure Duration (ED) (yr)	20	20	
Exposure Frequency (EF) (d/yr)	330	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA _s) (cm ⁻)	0.07	6032	
Soil Adherence Factor (AF) (mg/cm ²)	100	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ⁻)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	0.71	2.5	
water Exposure Time (ET_{event}) (nr/event)	0.71	0.71	
water Event Frequency (EV) (events/day)	I Non Residenti	al Warkar	
Lifetime (LT) (veers)	70		
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (vr)	25	25	
Exposure Erequency (FF) (d/vr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA) (cm^2)	3527	3527	
Soil Adherence Factor (AF) (mg/am ²)	0.12	0.12	
Soil Ingestion Rate (IR) (mg/dav)	100	100	
Skin Surface Area - Water Exposure (SA) (am^2)	19652	19652	
Water Ingestion Rate (IRW) (1/d)	0.83	0.83	
Water Exposure Time (ET _) (hr/event)	0.67	0.65	
Water Event Frequency (FV) (events/day)	1	1	
(in the Event Frequency (EV) (events day)	Construction	Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Working Weeks (EW) (wk/yr)	50	50	
Exposure Duration (ED) (vr)	1	1	
Exposure Frequency (EF) (d/vr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA) (cm^2)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.3	0.3	
Soil Ingestion Data (ID) (mg/day)	330	330	
Fail Ingestion Data (ID) (mg/day)	330	330	

Input Form 1B

Input Form 1B

Exposure Factors and Target Risks Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #3 Embankment - Construction Worker

Exposure Parameter	Defau	lt Value	Site Specific Value	Justification
	τ	Jser Define	d Child	
	Recreator	Trespasser		
Lifetime (LT) (years)	70	NA	70	
Averaging Time (AT) (days/yr)	365	NA	365	
Body Weight (BW) (kg)	15	NA	15	
Exposure Duration 0-2 (ED) (yr)	2	NA	2	
Exposure Duration 2-6 (ED) (yr)	4	NA	4	
Exposure Frequency (EF) (d/yr)	195	NA	52	Based on 98% percentile of trail users
Exposure Time (ET) (hr)	2	NA	0.5	Based on 98% percentile of trail users
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	2373	NA	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	NA	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	NA	200	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	6365	NA	6365	
Water Ingestion Rate (IRW) (L/hr)	0.124	NA	0.124	
Water Exposure Time (ET _{event}) (hr/event)	2	NA	2	
Water Event Frequency (EV) (events/day)	1	NA	1	
	Ţ	Jser Define	d Adult	÷
	Recreator	Trespasser		
Lifetime (LT) (years)	70	70	70	
Body Weight (BW) (kg)	80	45	80	
Exposure Duration 6-16 (ED) (yr)	10	10	10	
Exposure Duration 16-26 (ED) (yr)	10	0	10	
Exposure Frequency (EF) (d/yr)	195	90	364	Based on 98% percentile of trail users
Exposure Time (ET) (hr)	2	2	1	Based on 98% percentile of trail users
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.2	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	200	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	19652	
Water Ingestion Rate (IRW) (L/hr)	0.0985	0.071	0.0985	
Water Exposure Time (ET _{event}) (hr/event)	2	2	2	
Water Event Frequency (EV) (events/day)	1	1	1	

Exposure Point Concentrations Version Date: June 2021

Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #3 Embankment - Construction Worker

Soil Exposure Point Concentration Table

Description of Exposure Point Concentration Selection:

Maximum detected constituent concentrations from all samples collected within the exposure unit.

NOTE: If the chemi	TE: If the chemical list is changed from a prior calculator run, remember to select "See All Chemicals" on the data output sheet or newly added chemicals will not be included in risk calculations													
Exposure Point Concentration (mg/kg)	Notes:	CAS Number	Chemical For the chemicals highlighted in blue, data entry notes are provided in the PSRG Table link on the Main Menu		Maximum Concentration (Qualifier)	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	5 Tox (3 L		
60.3	HH-10	7440-38-2	Arsenic, Inorganic			mg/kg								
3260	HH-11	7440-39-3	Barium			mg/kg								
5.9	HH-11	7440-41-7	Beryllium and compounds			mg/kg								
0.22	HH-11	7440-43-9	Cadmium (Diet)			mg/kg								
43.8	Excavation H-2	16065-83-1	Chromium(III), Insoluble Salts			mg/kg								
1.4	S-7	18540-29-9	Chromium(VI)			mg/kg								
20.8	Excavation H-4	7440-48-4	Cobalt			mg/kg								
59.2	Excavation H-2	7440-50-8	Copper			mg/kg								
1480	Excavation H-4	7439-96-5	Manganese (Non-diet)			mg/kg								
0.43	HH-11	7439-97-6	~Mercury (elemental)			mg/kg								
23.5	HH-11	7440-02-0	Nickel Soluble Salts			mg/kg								
9.05	HH-11	7782-49-2	Selenium			mg/kg								
269	HH-10	7440-24-6	Strontium, Stable			mg/kg								

					Input Form 2A
					1
	[[1		1
creening cicity Value Screening evel) (n/c)	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion	

Risk for Individual Pathways

Basis: May 2021 EPA RSL Table

Site ID: BPN 21061-17-060

Version Date: June 2021

Exposure Unit ID: EU #3 Embankment - Construction Worker

			-					
DIRE	CT CONTACT SOIL AND WATE	R CALCULATO	RS					
Receptor	Pathway	Carcinogenic	Hazard Index	Risk exceeded?				
	Soil	NC	NC	NC				
Resident	Groundwater Use*	NC	NC	NC				
		NC	NC NC	NC				
Non-Residential Worker	Soll	NC	NC	NC				
	Groundwater Use*	NC	NC	NC				
Construction Worker	Soil	4.4E-06	8.8E+00	YES				
Pagrantor/Traspassar	Soil	NC	NC	NC				
Recreator/Trespasser	Surface Water*	NC	NC	NC				
	VAPOR INTRUSION CALCULATORS							
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?				
	Groundwater to Indoor Air	NC	NC	NC				
Resident	Soil Gas to Indoor Air	NC	NC	NC				
	Indoor Air	NC	NC	NC				
	Groundwater to Indoor Air	NC	NC	NC				
Non-Residential Worker	Soil Gas to Indoor Air	NC	NC	NC				
	Indoor Air	NC	NC	NC				
(CONTAMINANT MIGRATION CA	LCULATORS						
Pathway	Source	Target Receptor Concentrations Exceeded?						
Crowndwatan	Source Soil	Exceedence of	2L at Receptor?	NC				
Groundwater	Source Groundwater	Exceedence of	2L at Receptor?	NC				
Surface Water	Source Soil	Exceedence of	2B at Receptor?	NC				
Surface water	Source Groundwater	Exceedence of	Exceedence of 2B at Receptor?					

Notes:

1. If lead concentrations were entered in the exposure point concentration tables, see the individual calculator sheets for lead concentrations in comparison to screening levels. Note that lead is not included in cumulative risk calculations.

2. * = If concentrations in groundwater exceed the NC 2L Standards or IMAC, or concentrations in surface water exceed the NC 2B Standards, appropriate remediation and/or institutional control measures will be necessary to be eligible for a risk-based closure.

3. NM = Not Modeled

4. NC = Pathway not calculated

Output Form 2E

DEQ Risk Calculator - Direct Contact - Construction Worker Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPX 21061-17-060 Exposure Unit ID: EU #3 Embankment - Construction Worker

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 800 mg/kg for commercial/industrial soil.

CAS #	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Ouotient
7440-38-2	Arsenic, Inorganic	60.3	60.3	60.3	2.2E-06	3.5E-07	8.0E-07	3.3E-06	3.6E-01	5.7E-02	9.0E-01	1.3E+00
7440-39-3	Barium	3260	3260	3260					4.8E-02		1.5E-01	1.9E-01
7440-41-7	Beryllium and compounds	5.9	5.9	5.9			4.4E-08	4.4E-08	3.5E-03		6.6E-02	7.0E-02
7440-43-9	Cadmium (Diet)	0.22	0.22	0.22			1.2E-09	1.2E-09	1.3E-03	1.7E-04	4.9E-03	6.4E-03
16065-83-1	Chromium(III), Insoluble Salts	43.8	43.8	43.8					8.6E-05		2.0E-03	2.1E-03
18540-29-9	Chromium(VI)	1.4	1.4	1.4	2.8E-08		3.6E-07	3.9E-07	8.3E-04		1.0E-03	1.9E-03
7440-48-4	Cobalt	20.8	20.8	20.8			5.8E-07	5.8E-07	2.0E-02		2.3E-01	2.5E-01
7440-50-8	Copper	59.2	59.2	59.2					1.7E-02			1.7E-02
7439-96-5	Manganese (Non-diet)	1480	1480	1480					1.8E-01		6.6E+00	6.8E+00
7439-97-6	~Mercury (elemental)	0.43	0.43	0.43							4.4E-02	4.4E-02
7440-02-0	Nickel Soluble Salts	23.5	23.5	23.5			1.9E-08	1.9E-08	3.5E-03		2.6E-02	3.0E-02
7782-49-2	Selenium	9.05	9.05	9.05					5.3E-03		1.0E-04	5.4E-03
7440-24-6	Strontium, Stable	269	269	269					4.0E-04			4.0E-04
						Cumulative:]	4.4E-06				8.8E+00

North Carolina Department of Environmental Quality Risk Calculator

Version Date:	June 2021
Basis:	May 2021 EPA RSL Table
Site Name:	828 MLK Jr. Blvd Property
Site Address:	828 MLK Jr Blvd, Chapel Hill, Orange County, North Carolina
DEQ Section:	Brownfields Program
Site ID:	BPN 21061-17-060
Exposure Unit ID:	EU#1 - Resident & Non-Residential Worker excluding Background
Submittal Date:	
Duonanad Due	Hart & Hickman, PC
г герагей бу:	3921 Sunset Ridge Rd, Suite 301, Raleigh, North Carolina
Reviewed By:	

Table of Contents		TOC
Version Date: Jun	e 2021	
Basis: May 2021 E	PA RSL Table	
Site ID: BPN 2106	1-17-060	
Exposure Unit ID:	EU#1 - Resident & Non-Residential Worker excluding Background	~
Form No.	Description	Check box if included
	DATA INPUT SHEETS	
	Input Section 1 - Exposure Pathways & Parameters	
Input Form 1A	Complete Exposure Pathways	1
Input Form 1B	Exposure Factors and Target Risks	✓
Input Form 1C	Contaminant Migration Parameters	
Input Form 1D	Sample Statistics	
	Input Section 2 - Exposure Point Concentrations	
Input Form 24	Soil Exposure Point Concentration Table	
Input Form 2R	Groundwater Exposure Point Concentration Table	
Input Form 2C	Surface Water Exposure Point Concentration Table	
Input Form 2D	Soil Gas Exposure Point Concentration Table	
Input Form 2E	Indoor Air Exposure Point Concentration Table	
	DATA OUTPUT SHEFTS	
	Output Section 1 - Summary Output for All Calculators	
Output Form 1A	Risk for Individual Pathways	7
Output Form 1R	Sitewide Risk	
	Output Section 2 - Direct Contact Soil and Groundwater Calculators	
Output Form 2A	Resident Soil	V
Output Form 2R	Resident Groundwater Use	
Output Form 2C	Non-Residential Worker Soil	
Output Form 2D	Non-Residential Worker Groundwater Use	
Output Form 2E	Construction Worker Soil	
Output Form 2E	Recreator/Trespasser Soil	
Output Form 2G	Recreator/Trespasser Surface Water	
0 00 00 00 00 20	Output Section 3 - Vapor Intrusion Calculators	
Output Form 3A	Resident Groundwater to Indoor Air	
Output Form 3B	Resident Sold Gas to Indoor Air	
Output Form 3C	Resident Indoor Air	\square
Output Form 3D	Non-Residential Worker Groundwater to Indoor Air	
Output Form 3E	Non-Residential Worker Soil Gas to Indoor Air	
Output Form 3E	Non-Residential Worker Indoor Air	
	Output Section 4 - Contaminant Migration Worksheets	
Output Form 4A	Soil to Groundwater - Forward Mode	
Output Form 4R	Groundwater to Groundwater - Forward Mode	\square
Output Form 4C	Soil to Surface Water - Forward Mode	
Output Form 4D	Groundwater to Surface Water - Forward Mode	
Output Form 4F	Soil to Groundwater - Backward Mode	
Output Form 4F	Groundwater to Groundwater - Backward Mode	
Output Form 4G	Soil to Surface Water - Backward Mode	
Output Form 4H	Groundwater to Surface Water - Backward Mode	
Output Form 4G Output Form 4H	Soil to Surface Water - Backward Mode Groundwater to Surface Water - Backward Mode	

	007	
Complete Exposure Path	ways	Input Form 1A
Version Date: June 202 Basis: May 2021 EPA F Site ID: BPN 21061-17-	1 SL Table 060	
Exposure Unit ID: EU#	1 - Resident & Non-Resi	dential Worker excluding Backgrou
Note: Risk output will only b	e calculated for complete ex	posure pathways.
_	_	Check box if

Receptor	Receptor Pathway							
DIRECT CON	DIRECT CONTACT SOIL AND WATER PATHWAYS							
Pasidant	Soil	$\overline{}$						
Kesident	Groundwater Use							
Non Desidential Worker	Soil	\checkmark						
Non-Residential worker	Groundwater Use							
Construction Worker	Soil							
Paaraatar/Traanagaar	Soil							
Recreator/Trespasser	Surface Water							
VAPOR INTRUSION PATHWAYS								
	Groundwater to Indoor Air							
Resident	Soil Gas to Indoor Air							
	Indoor Air							
	Groundwater to Indoor Air							
Non-Residential Worker	Soil Gas to Indoor Air							
	Indoor Air							
CONTAM	IINANT MIGRATION PATHWAYS							
Groundwater	Source Soil							
Groundwater	Source Groundwater							
Surface Water	Source Soil							
Surface water	Source Groundwater							

Exposure Factors and Target Risks

Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#1 - Resident & Non-Residential Worker excluding Background

		Site Specific	
Exposure Parameter	Default Value	Value	Justification
	Gener	al	-
Target Cancer Risk (individual)	1.0E-06	1.0E-06	
Target Cancer Risk (cumulative)	1.0E-04	1.0E-04	
Target Hazard Index (individual)	2.0E-01	2.0E-01	
Target Hazard Index (cumulative)	1.0E+00	1.0E+00	
	Residential	Child	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	15	15	
Exposure Duration (ED) (yr)	6	6	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA _s) (cm2)	2373	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	200	
Skin Surface Area - Water Exposure (SA _w) (cm2)	6365	6365	
Water Ingestion Rate (IRW) (L/d)	0.78	0.78	
Water Exposure Time (ET _{event}) (hr/event)	0.54	0.54	
Water Event Frequency (EV) (events/day)	1	1	
	Residential	Adult	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr)	20	20	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	2.5	2.5	
Water Exposure Time (ET _{event}) (hr/event)	0.71	0.71	
Water Event Frequency (EV) (events/day)	1	1	
	Non-Residentia	al Worker	
Lifetime (LT) (years)	/0	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr)	25	25	
Exposure Frequency (EF) (d/yr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA_s) (cm ²)	5527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.12	0.12	
Soil Ingestion Rate (IR) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	0.83	0.83	
Water Exposure Time (ET _{event}) (hr/event)	0.67	0.67	
Water Event Frequency (EV) (events/day)	1	1	
	Construction	Worker	
Lifetime (LT) (years)	/0	/0	
Body Weight (BW) (kg)	80 50	80	
Working Weeks (EW) (wk/yr)	50	50	
Exposure Duration (ED) (yr)	1	1	
Exposure Frequency (EF) (d/yr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.3	0.3	
Soil Ingestion Rate (IR) (mg/day)	330	330	

Input Form 1B

Input Form 1B

Exposure Factors and Target Risks Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#1 - Resident & Non-Residential Worker excluding Background

Exposure Parameter	Defau	lt Value	Site Specific Value	Justification			
User Defined Child							
Recreator Trespasser							
Lifetime (LT) (years)	70	NA	70				
Averaging Time (AT) (days/yr)	365	NA	365				
Body Weight (BW) (kg)	15	NA	15				
Exposure Duration 0-2 (ED) (yr)	2	NA	2				
Exposure Duration 2-6 (ED) (yr)	4	NA	4				
Exposure Frequency (EF) (d/yr)	195	NA	195				
Exposure Time (ET) (hr)	2	NA	2				
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	2373	NA	2373				
Soil Adherence Factor (AF) (mg/cm ²)	0.2	NA	0.2				
Soil Ingestion Rate (IRS) (mg/day)	200	NA	200				
Skin Surface Area - Water Exposure (SA _w) (cm ²)	6365	NA	6365				
Water Ingestion Rate (IRW) (L/hr)	0.124	NA	0.124				
Water Exposure Time (ET _{event}) (hr/event)	2	NA	2				
Water Event Frequency (EV) (events/day)	1	NA	1				
	τ	Jser Defined	l Adult				
	Recreator	Trespasser					
Lifetime (LT) (years)	70	70	70				
Body Weight (BW) (kg)	80	45	80				
Exposure Duration 6-16 (ED) (yr)	10	10	10				
Exposure Duration 16-26 (ED) (yr)	10	0	10				
Exposure Frequency (EF) (d/yr)	195	90	195				
Exposure Time (ET) (hr)	2	2	2				
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	6032				
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.2	0.07				
Soil Ingestion Rate (IRS) (mg/day)	100	200	100				
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	19652				
Water Ingestion Rate (IRW) (L/hr)	0.0985	0.071	0.0985				
Water Exposure Time (ET _{event}) (hr/event)	2	2	2				
Water Event Frequency (EV) (events/day)	1	1	1				

Exposure Point Concentrations Version Date: June 2021

Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#1 - Resident & Non-Residential Worker excluding Background

Soil Exposure Point Concentration Table

Description of Exposure Point Concentration Selection:

Maximum detected constituent concentrations from shallow samples (0-2 ft) collected within the exposure unit with background concentrations removed.

NOTE: If the chem	ical list is changed from a prior	calculator run,	remember to select "See All Chemicals" on the data output sheet or newly adde	ed chemicals will	not be included	in risk calculatio	ns					
Exposure Point Concentration (mg/kg)	Notes:	CAS Number	Chemical For the chemicals highlighted in blue, data entry notes are provided in the PSRG Table link on the Main Menu	Minimum Concentration (Qualifier)	Maximum Concentration (Qualifier)	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	To (L
14	S-4	7440-38-2	Arsenic, Inorganic			mg/kg						
200	HH-3	7440-39-3	Barium			mg/kg						
1.3	HH-3	7440-41-7	Beryllium and compounds			mg/kg						
1.5	S-4	7440-43-9	Cadmium (Diet)			mg/kg						
180	MW-7	7440-50-8	Copper			mg/kg						
1500	S-4	7439-96-5	Manganese (Non-diet)			mg/kg						
43	S-4	7440-02-0	Nickel Soluble Salts			mg/kg						

					Input Form 2A
creening icity Value Screening evel) (n/c)	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion	

Risk for Individual Pathways				Output Form 1A	
Version Date: June 2021					
Basis: May 2021 EPA RSL Table					
Site ID: BPN 21061-17-060					
Exposure Unit ID: EU#1 - Reside	nt & Non-Residential Worker exclu	ding Background	l		
DIRE	CT CONTACT SOIL AND WATE	R CALCULATO	RS		
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?	
Resident	Soil	2.1E-05	1.3E+00	YES	
Kesident	Groundwater Use*	NC	NC	NC	
Non Pesidential Worker	Soil	4.7E-06	9.1E-02	NO	
Non-Residential worker	Groundwater Use*	NC	NC	NC	
Construction Worker	Soil	NC	NC	NC	
B oorpotor/ T roopposor	Soil	NC	NC	NC	
Recreator/Trespasser	Surface Water*	NC	NC NC		
	VAPOR INTRUSION CALCU	LATORS			
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?	
	Groundwater to Indoor Air	NC	NC	NC	
Resident	Soil Gas to Indoor Air	NC	NC	NC	
	Indoor Air	NC	NC	NC	
	Groundwater to Indoor Air	NC	NC	NC	
Non-Residential Worker	Soil Gas to Indoor Air	NC	NC	NC	
	Indoor Air	NC	NC	NC	
	CONTAMINANT MIGRATION CA	LCULATORS			
Pathway	Source	Target Rec	eptor Concentratio	ons Exceeded?	
Groundwater	Source Soil	Exceedence of	2L at Receptor?	NC	
Groundwater	Source Groundwater	Exceedence of	2L at Receptor?	NC	
Surface Water	Source Soil	Exceedence of	2B at Receptor?	NC	
	Source Groundwater	Exceedence of	2B at Receptor?	NC	

Notes:

1. If lead concentrations were entered in the exposure point concentration tables, see the individual calculator sheets for lead concentrations in comparison to screening levels. Note that lead is not included in cumulative risk calculations.

2. * = If concentrations in groundwater exceed the NC 2L Standards or IMAC, or concentrations in surface water exceed the NC 2B Standards, appropriate remediation and/or institutional control measures will be necessary to be eligible for a risk-based closure.

3. NM = Not Modeled

4. NC = Pathway not calculated

Output Form 2A

DEQ Risk Calculator - Direct Contact - Resident Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#1 - Resident & Non-Residential Worker excluding Background

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 400 mg/kg for residential soil.

CAS #	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk*	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient*	Calculated Non- Carcinogenic Hazard Quotient
7440-38-2	Arsenic, Inorganic	14	14	14	1.8E-05	2.5E-06	3.6E-10	2.1E-05	3.6E-01	4.2E-02	1.5E-05	4.0E-01
7440-39-3	Barium	200	200	200					1.3E-02		6.5E-06	1.3E-02
7440-41-7	Beryllium and compounds	1.3	1.3	1.3			1.9E-11	1.9E-11	8.3E-03		1.1E-06	8.3E-03
7440-43-9	Cadmium (Diet)	1.5	1.5	1.5			1.6E-11	1.6E-11	1.9E-02	1.8E-03	2.4E-06	2.1E-02
7440-50-8	Copper	180	180	180					5.8E-02			5.8E-02
7439-96-5	Manganese (Non-diet)	1500	1500	1500					8.0E-01		4.8E-04	8.0E-01
7440-02-0	Nickel Soluble Salts	43	43	43			6.7E-11	6.7E-11	2.7E-02		7.7E-06	2.7E-02
						Cumulative:]	2.1E-05				1.3E+00

DEQ Risk Calculator - Direct Contact - Non-Residential Worker Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060 Exposure Unit ID: EU#1 - Resident & Non-Residential Worker excluding Background

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 800 mg/kg for commercial/industrial soil.

563

Output Form 2C

CAS#	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Quotient
7440-38-2	Arsenic, Inorganic	14	14	14	3.9E-06	8.2E-07	8.3E-11	4.7E-06	2.4E-02	5.1E-03	3.6E-06	2.9E-02
7440-39-3	Barium	200	200	200					8.6E-04		1.5E-06	8.6E-04
7440-41-7	Beryllium and compounds	1.3	1.3	1.3			4.3E-12	4.3E-12	5.6E-04		2.5E-07	5.6E-04
7440-43-9	Cadmium (Diet)	1.5	1.5	1.5			3.7E-12	3.7E-12	1.3E-03	2.2E-04	5.8E-07	1.5E-03
7440-50-8	Copper	180	180	180					3.9E-03			3.9E-03
7439-96-5	Manganese (Non-diet)	1500	1500	1500					5.4E-02		1.2E-04	5.4E-02
7440-02-0	Nickel Soluble Salts	43	43	43			1.5E-11	1.5E-11	1.8E-03		1.8E-06	1.8E-03
						Cumulative:]	4.7E-06				9.1E-02

North Carolina Department of Environmental Quality Risk Calculator

Version Date:	June 2021					
Basis:	May 2021 EPA RSL Table					
Site Name:	828 MLK Jr. Blvd Property					
Site Address:	828 MLK Jr Blvd, Chapel Hill, Orange County, North Carolina					
DEQ Section:	Brownfields Program					
Site ID:	BPN 21061-17-060					
Exposure Unit ID:	EU #1 - Construction Worker excluding Background					
Submittal Date:						
Duonawad Duu	Hart & Hickman, PC					
г герагей Бу:	3921 Sunset Ridge Rd, Suite 301, Raleigh, North Carolina					
Reviewed By:						

Table of Contents		ТОС					
Version Date: Jun	e 2021						
Basis: May 2021 H	CPA RSL Table						
Site ID: BPN 2106	1-17-060						
Exposure Unit ID: EU #1 - Construction Worker excluding Background							
		Check box					
Form No.	Description	if included					
	DATA INPUT SHEETS						
	Input Section 1 - Exposure Pathways & Parameters						
Input Form 1A	Complete Exposure Pathways	\checkmark					
Input Form 1B	Exposure Factors and Target Risks	\checkmark					
Input Form 1C	Contaminant Migration Parameters						
Input Form 1D	Sample Statistics						
	Input Section 2 - Exposure Point Concentrations						
Input Form 2A	Soil Exposure Point Concentration Table	<i>у</i>					
Input Form 2B	Groundwater Exposure Point Concentration Table						
Input Form 2C	Surface Water Exposure Point Concentration Table						
Input Form 2D	Soil Gas Exposure Point Concentration Table						
Input Form 2E	Indoor Air Exposure Point Concentration Table						
•	DATA OUTPUT SHEETS						
	Output Section 1 - Summary Output for All Calculators						
Output Form 1A	Risk for Individual Pathways	✓					
Output Form 1B	Sitewide Risk						
	Output Section 2 - Direct Contact Soil and Groundwater Calculators						
Output Form 2A	Resident Soil						
Output Form 2B	Resident Groundwater Use						
Output Form 2C	Non-Residential Worker Soil						
Output Form 2D	Non-Residential Worker Groundwater Use						
Output Form 2E	Construction Worker Soil						
Output Form 2E	Recreator/Trespasser Soil						
Output Form 2G	Recreator/Trespasser Surface Water						
	Output Section 3 - Vanor Intrusion Calculators						
Output Form 3A	Resident Groundwater to Indoor Air						
Output Form 3R	Resident Soil Gas to Indoor Air						
Output Form 3C	Resident Indoor Air						
Output Form 3D	Non-Residential Worker Groundwater to Indoor Air						
Output Form 3E	Non-Residential Worker Soil Gas to Indoor Air						
Output Form 3E	Non-Residential Worker Indoor Air						
	Output Section 4 - Contaminant Migration Worksheets						
Output Form 14	Sail to Groundwater Forward Mode						
Output Form 4A	Soli lo Giodidwater - Forward Mode						
Output Form 4B	Soil to Surface Water Forward Mode						
Output Form 4C	Chown dwater to Sunface Water - Forward Mode						
Output Form 4D	Soil to Crowndwater - Dodward Mode						
Output Form 4E	Soli to Groundwater - Backward Mode						
Output Form 4F	Groundwater to Groundwater - Backward Mode						
Output Form 4G	Soli to Surface Water - Backward Mode						
Output Form 4H	Groundwater to Surface Water - Backward Mode						

Complete Exposure Pathways Input F							
Version Date: June 2021 Basis: May 2021 EPA RSL T Site ID: BPN 21061-17-060	able						
Exposure Unit ID: EU #1 - Construction Worker excluding Background							
Note: Risk output will only be calculated for complete exposure pathways.							
Receptor	Pathway	Check box if pathway complete					
DIRECT CONTACT SOIL AND WATER PATHWAYS							
Resident	Soil						
Resident	Groundwater Use						
Non Posidontial Worker	Soil						
Non-Residential worker	Groundwater Use						
Construction Worker	Soil	√					
Decreator/Treeposer	Soil						
Recreator/ Trespasser	Surface Water						
VAP	OR INTRUSION PATHWAYS						
	Groundwater to Indoor Air						
Resident	Soil Gas to Indoor Air						
	Indoor Air						
	Groundwater to Indoor Air						
Non-Residential Worker	Soil Gas to Indoor Air						
	Indoor Air						
CONTAMINANT MIGRATION PATHWAYS							
Groundwater	Source Soil						
Groundwater	Source Groundwater						
Surface Water	Source Soil						
Surface Water	Source Groundwater						
Exposure Factors and Target Risks

Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #1 - Construction Worker excluding Background

apporterDefault atma ControlValueAuthoritionTarget Cancer Risk (individual)1.0E-041.0E-06Target Cancer Risk (individual)2.0E-012.0E-01Target Cancer Risk (individual)2.0E-011.0E-041.0E-04Target Cancer Risk (individual)1.0E0Target Cancer Risk (individual)1.0E1.0E-041.0E-04Target Cancer Risk (individual)1.0E0Target Cancer Risk (individual)1.0E1.0ESposure Frequency (ED) (Ayr)666Sposure Frequency (ED) (Ayr)3.503.50Sposure Frequency (ED) (Ayr)2.020.20.2Sposure Frequency (ED) (Ayr)2.020.20.2Sposure Frequency (ED) (Ayr)0.20.20.2Sposure Frequency (ES) (Ayr)0.20.20Nater Exposure Finder (SAs) (rm2)0.540.54Mater Exposure Finder (SAs) (rm2)0.540.54Avaer Exposure Finder (ET) (ryn)2.02.0Sposure Frequency (EP) (events/day)11Liftem (ET) (ryn)0.77.0Sposure Frequency (EP) (events/day)1.01Liftem (ET) (ryn)2.02.0Sposure Frequency (EP) (events/day)1.01Sposure Frequency (EP) (events/day)1.01Sposure Frequency (EP) (events/day)1.01Sposure Frequency (EP) (events/day)1.01Sposure Frequency (EP) (events/day)<	Exposure Parameter	Default Value	Site Specific	Instification
Content Content Target Cancer Risk (undividual) 1.0E-06 1.0E-04 Target Anzar Index (undividual) 2.0E-01 2.0E-01 Cancer Risk (undividual) 2.0E-01 2.0E-01 Target Anzar Index (undividual) 2.0E-01 2.0E-01 System Charino (DD) (yr) 6 6 System Charino (DD) (yr) 6 6 System Charino (DD) (yr) 6 6 System Charino (DD) (yr) 70 20 System Charino (DD) (yr) 6 6 System Charino (DD) (yr) 70 20 System Charino (DD) (yr) 70 20 System Charino (DD) (yr) 70 20 System Charino (SA) (m2) 70 20 System Charino (SA) (m2) 70 20 System Charino (SW) (MQ) 1 1 Alter Exposure Size (SA) (m2) 70 70 System Charino (SA) (MC) 70 70 System Charino (SA) (MC) 70 70 System Charino (ED) (yr) 20 20	Exposure r aranteer	Delaun value	Value	Justification
align classer, Sol. (number) 1.00-00 1.00-00 Image Lancer, Sol. (comulative) 1.00-00 2.00-01 Target Hazard Index (individual) 2.00-01 2.00-01 Target Hazard Index (individual) 1.00-00 1.00-00 Target Hazard Index (individual) 1.00-00 1.00-00 Target Hazard Index (individual) 1.00-00 1.00-00 Status (Individual) 1.00-00 1.00-00 Status (Individual) 0.0 0 0 Status (Individual) 1.00-00 1.00-00 1.00-00 Status (Individual) 0.21 0.21 0.21 0.21 Sposter Frequency (EF) (dyr) 0.0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.01 2.	Target Concer Dick (individual)	1 OF OF		
angle Cardinal (calify and the set of the	Target Cancer Risk (unulativa)	1.02-00	1.0E-06	
align Taget Hazari Rose (cumulativ) 1.0E-00 1.0E-00 Residential Child Residential Child 1.0E-00 Signer Dention (ED) (yr) 6 6 Spoure Dention (ED) (yr) 50 350 Sin Sufface Area - Soil Expoure (SA) (cm2) 2373 2373 Sin Adherence Faster (AF) (ng/enf) 0.2 0.2 Sin Adherence Faster (AF) (ng/enf) 0.2 0.2 Sin Adherence Faster (AF) (ng/enf) 0.78 0.78 Water Exposure (KF) ((x/g)) 0.70 20 Sin Marcence Faster (AF) (ng/enf) 0.54 0.54 Water Exposure (KF) ((x/g)) 1 1 Mater Exposure (Term) 0.54 0.54 Water Exposure (Term) 0.54 0.54 Sysser Dention (EF) (yr) 20 20 Sysser Dention (ED) (yr) 20 20	Target Cancer Risk (cumulative)	2.0E.01	1.0E-04	
Lager and mode (cumulative) 1.00°00 100°00 Lifetime (L.T) (cars) 70 70 Sody Weigh (MV) (bg) 15 15 Seposare Duration (ED) (yr) 6 6 Seposare Time (ET) (hy) 24 24 Sin Surface Area - Soil Exposure (SA,) (cm2) 2373 2373 Sin Marciae Area - Soil Exposure (SA,) (cm2) 6365 6365 Sin Marciae Area - Soil Exposure (SA,) (cm2) 6365 6365 Sin Marciae Area - Water Exposure (SA,) (cm2) 6365 6365 Mare Exposure Time (ET-ma) (hr/vent) 0.54 0.54 Mare Exposure Time (ET-ma) (hr/vent) 0.70 70 Nater Exposure Time (ET) (hr) 24 24 System Frequency (EV) (ventsiday) 1 1 Iftime (LT) (years) 70 70 20 System Frequency (EF) (dyr) 350 350 20 System Frequency (EF) (dyr) 350 350 20 System Frequency (EF) (dyr) 25 2.5 2.5 System Frequency (EF) (dyr) 0.07	Target Hazard Index (individual)	2.0E-01	2.0E-01	
ifetime (LT) (years) 70 70 body Weigh (BW) (kg) 15 15 sposure Draino (ED) (yr) 6 6 sposure Draino (ED) (yr) 350 350 sposure Time (ET) (mg/m ²) 0.2 2373 siol Atherence Factor (AF) (mg/m ²) 0.2 0.2 siol Atherence Factor (AF) (mg/m ²) 0.65 6365 water Lapoaue Time (ET) (with (Weint)) 0.54 0.54 water Exposure Time (ET) (with (Weint)) 0.54 0.54 water Exposure Time (ET) (with (Weint)) 0.54 0.54 water Exposure Time (ET) (with (Wint)) 1 1 Lifetime (LT) (years) 70 70 ody Weight (Wy) (g) 80 80 Sapoauer Duration (ED) (yr) 20 20 sposure Time (ET) (hr) 350 350 Sapoauer Charl (KF) (Id(yr) 25 2.5 Water Exposure (AF) (mg/m ²) 0.07 0.07	larget Hazard Index (cumulative)	1.0E+00 Residential	Child	
Model (BW) (kg) 15 15 Sposure Duration (ED) (yr) 6 6 Sposure Toquancy (EF) (4yr) 350 350 Sposure Toquancy (EF) (4yr) 24 24 skin Surface Area - Soil Exposure (SA,) (cm2) 2373 2373 Siol Ingestion Rate (IRS) (mg/ap) 0.2 0.2 Siol Ingestion Rate (IRS) (mg/ap) 0.65 665 Siol Surface Area - Nate Exposure (SA,) (cm2) 0.54 0.54 Water Exposure Time (ET, qm) (Inversat) 0.54 0.54 Water Exposure Time (ET, qm) (Inversat) 0.54 0.54 Water Exposure Time (ET, qm) (Inversat) 70 70 Stady Weight (BW) (kg) 80 80 80 Stady Weight (BW) (kg) 80 80 20 Stady Weight (BW) (kg) 603 20 20 Stady Weight (BW) (kg) 10 10 100 Stady Stady (ET) (Myr) 20 20 20 Stady Stady (ET) (Myr) 20 20 20 Stady Stady (ET) (Myr) 20 20	Lifetime (IT) (years)	70	70	
Description Description Description Seposare Drankino (ED) (yr) 6 6 Seposare Trace (FE) (dy) 350 350 Sin Surface Area - Soil Exposure (SA,) (cm2) 2373 2373 Soil Adherence Factor (AF) (mg/cm ³) 0.2 0.2 Soil Adherence Factor (AF) (mg/cm ³) 0.2 0.2 Soil Adherence Factor (AF) (mg/cm ³) 0.2 0.2 Soil Adherence Factor (AF) (mg/cm ³) 0.4 0.4 Water Exposure Time (FF), (dy) (dy) 0.78 0.78 Water Exposure Time (FF), (dy) (dy) 0.54 0.54 Soly Weight (BW) (kg) 80 80 Sposure Durino (ED) (yr) 20 20 Sposure Durino (ED) (yr) 20 20 Sposure Durino (ED) (yr) 350 350 Sin Surface Area - Soil Exposure (SA,) (cm ²) 6032 6032 Soil Adherence Factor (AF) (mg/cm ³) 0.07 0.07 Sin Surface Area - Water Exposure (SA,) (cm ²) 19652 19652 Soil Adherence Factor (AF) (mg/cm ³) 0.71 0.71	Body Weight (BW) (kg)	15	15	
Approx Distance (Dy) 350 350 Seposer Trance (ET) (hr) 24 24 Seposer Trance (ET) (hr) 0.2 0.2 Soil Absence Factor (AF) (ang/on) 0.78 0.78 Water Exposer Time (ET_m) (hr/vent) 0.54 0.54 Water Exposer Time (ET_m) (hr/vent) 0.54 0.54 Josser Trance 0.78 0.78 Water Exposer Time (ET) (hr) 0.54 0.54 Josser Trance 0.54 0.54 Josser Trance 0.70 0 Sposer Trance 0.71 0.71 Sposer Trance 0.71 0.71 Sposer Trance 0.71 0.07 Sool Absence Factor (AF) (ang/on) 0.00 100 Sool Absence Factor (AF) (ang/on) 0.01 0.00 Sool Absence Factor (AF) (ang/on) 0.71 0.71 Water Exposer Trance (ET) (Exposure Duration (ED) (vr)	6	6	
Image of the second	Exposure Frequency (EF) (d/yr)	350	350	
April Startice Visits (Grif) Visits (SA) (cm2) 2373 2373 Soli Atherence Factor (AF) (mg(mr) 0.2 0.2 Soli Atherence Factor (AF) (mg(mr) 0.2 0.2 Soli Atherence Factor (AF) (mg(mr) 0.2 0.2 Soli Atherence Factor (AF) (mg(mr) 0.4 0.5 Water Exposure (ISA) (drivent) 0.54 0.54 Water Exposure (ICV) (events/day) 1 1 Titterine (LT) (years) 70 70 Soguer Duration (ED) (yr) 20 20 Sposure Time (ET) (hr) 24 24 Skin Surface Area - Soil Exposure (SA ₄) (cm ²) 6032 6032 Siol Atherence Factor (AF) (mg(mr) 0.07 0.07 Siol Atherence Factor (AF) (mg(mr) 0.07 0.07 Siol Indexion Rate (IRW) (L/d) 2.5 2.5 Water Ingestion Rate (IRW) (L/d) 2.5 2.5 Water Exposure Time (TT_m_a) (hr/event) 0.71 0.71 Water Exposure Time (TT_m_a) (hr/event) 0.71 0.71 Water Exposure Time (TT_m_a) (hr/event) 0.71 0.71 <	Exposure Time (ET) (br)	24	24	
Soil Adherence Factor (AF) (mg/Gu ²) 0.2 0.2 Soil Ingestion Rate (IRS) (mg/day) 200 200 Soil Ingestion Rate (IRW) (L/d) 0.78 0.78 Water Exposure Time (EF, mg) (hr/event) 0.54 0.54 Water Exposure Time (EF, mg) (hr/event) 0.54 0.54 Water Exposure Time (EF, mg) (hr/event) 0.54 0.54 Water Event Frequency (EV) (events/day) 1 1 Ititime (LT) (years) 70 70 70 Soly Weight (BW) (kg) 80 80 80 Sposure Time (ET) (hr) 24 24 24 Sposure Time (ET) (hr) 24 24 24 Soil Adversence Factor (AF) (mg/Gn ²) 6032 6032 6032 Soil Ingestion Rate (IRS) (mg/day) 100 100 100 Soil Ingestion Rate (IRW) (L/d) 2.5 2.5 2.5 Water Exposure Time (EF, mg) (hr/event) 0.71 0.71 0.71 Soil Ingestion Rate (IRW) (L/d) 2.5 2.5 2.5 Water Exposure Time (EF, mg) (hr/event) 0.71 0.71 0.71 Soil Macher Exposure (SA,)	Skin Surface Area - Soil Exposure (SA.) (cm2)	2373	2373	
Section Rate (RS) (mg/ds) 200 200 Skin Surface Ara - Water Exposure (SA ₀) (cm2) 6365 6365 Water Exposure Time (ET _{conf}) (hr/vent) 0.54 0.54 Water Exposure Time (ET _{conf}) (hr/vent) 0.54 0.54 Water Exposure Time (ET _{conf}) (hr/vent) 0.54 0.54 Water Exposure Time (ET) (vers) 70 70 Sposure Diration (ED) (yr) 20 20 Sposure Time (ET) (hr) 24 24 Skin Surface Ara - Soli Exposure (SA ₀) (cm ²) 6032 6032 Soli Aberence Factor (AF) (mg/cm ²) 0.07 0.07 Soli Restine Rate (IRW) (L/d) 2.5 2.5 Water Exposure (SA ₀) (cm ²) 100 100 Kin Surface Ara - Soli Exposure (SA ₀) (cm ²) 1 1 Water Exposure Time (ET _{conf}) (hr/vent) 0.71 0.71 Water Exposure (FV) (vents/day) 1 1 Water Exposure (FV) (vents/day) 1 1 Water Exposure (FV) (V) (vents/day) 1 1 Water Exposure (FV) (V) (vents/day) 1 1	Soil Adherence Factor (AF) (mg/cm ²)	0.2	0.2	
kin Surface Area - Water Exposure (SA _u) (cm2) 6365 6365 Water Ingestion Rate (IRW) (L4) 0.78 0.78 Water Exposure Time (ET _{couc}) (hr/event) 0.54 0.54 Water Event Frequency (EV) (events/day) 1 1 Inferime (LT) (years) 70 70 3ody Weight (BW) (kg) 80 80 Sposure Time (ET) (hr) 24 24 Sposure Time (ET) (hr) 24 24 Sposure Time (ET) (hr) 24 24 Sid Adherence Factor (AF) (mg/cm ³) 0.07 0.07 Sid I Adherence Factor (AF) (mg/cm ³) 0.07 0.07 Water Ingestion Rate (IRW) (L/d) 2.5 2.5 Water Exposure Time (ET couc) (hr/event) 0.71 0.71 Sposure Time (ET) (hr) 25 25 Sposure Time (ET) (hr) 8 8 Sin Surface	Soil Ingestion Rate (IRS) (mg/day)	200	200	
Water Ingestion Rate (IRW) (L/d) 0.78 0.78 Water Exposure Time (EF _{eque}) (herevent) 0.54 0.54 Water Event Frequency (EV) (events/day) 1 1 Iterime (LT) (years) 70 70 Sody Weight (RW) (kg) 80 80 Signour Duration (ED) (yr) 20 20 Syposure Time (EF _{equen}) (EF) (dyr) 350 350 Syposure Time (RS) (mg/day) 0.07 0.07 Siol Adhrence Factor (AF) (mg/cm ³) 0.07 0.07 Siol Ingestion Rate (IRS) (mg/day) 100 100 Skin Surface Area - Water Exposure (SA _a) (cm ³) 19652 19652 Water Exposure Time (ET _{equen}) (hre/event) 0.71 0.71 Water Exposure Time (ET _{equen}) (hre/event) 0.71 0.71 Water Exposure Time (ET _{equen}) (hre/event) 0.71 0.71 Water Event Frequency (EV) (events/day) 1 1 1 Water Event Frequency (EV) (events/day) 0.71 0.71 0.71 Stapsare Time (ET _{equen}) (hre/event) 0.71 0.71 0.71 Stapsare Time (ET _{equen}) (hre/event) 0.72 25 25	Skin Surface Area - Water Exposure (SA _w) (cm2)	6365	6365	
Water Exposure Time (ET $_{equal}$) (hrévent) 0.54 0.54 Water Exposure Time (ET $_{equal}$) (hrévent) 1 1 Ideime (LT) (years) 70 70 3ody Weight (BW) (kg) 80 80 Exposure Duration (ED) (yr) 20 20 Sposure Time (ET) (hr) 24 24 Skin Surface Area - Soil Exposure (SA _a) (cm ²) 6032 6032 Soil Adherence Factor (AF) (mg/cm ²) 0.07 0.07 Soil Adherence Factor (AF) (mg/cm ²) 0.652 19652 Water Exposure (SA _a) (cm ²) 19652 19652 Water Exposure (SA _a) (cm ²) 0.71 0.71 Water Exposure (SA _a) (cm ²) 1 1 Mater Exposure (SA _a) (cm ²) 1 1 Mater Exposure (SA _a) (cm ²) 25 2.5 Water Exposure (SA _a) (cm ²) 1 1 Mater Exposure (SA _a) (cm ²) 25 2.5 Sposure Time (ET) (kyr) 25 2.5 Sposure Time (ET) (kyr) 25 2.5 Sposure Time (ET) (kyr) 25	Water Ingestion Rate (IRW) (L/d)	0.78	0,78	
what F Event Frequency (EV) (events/day) 1 ifetime (LT) (years) 70 36dy Weight (BW) (kg) 80 isposure Duration (ED) (yr) 20 2xposure Trequency (EF) (dyr) 350 35posure Trequency (EF) (dyr) 350 35uol (Berner, Frequency (EF) (dyr) 6032 6031 Agestion Ret (RS) (mg/day) 100 1006 100 skin Surface Area - Soil Exposure (SA _a) (cm ²) 6652 101 Agestion Rate (RS) (mg/day) 100 100 100 skin Surface Area - Water Exposure (SA _a) (cm ²) 19652 19652 19652 Water Ingestion Rate (RW) (L/d) 2.5 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.70 70 0.70 70 0.70 70 0.71 0.71 0.71 0.71 0.72 250 250 250	Water Exposure Time (ET _{atiant}) (hr/event)	0.54	0.54	
Interface Residential Adult .ifetime (LT) (years) 70 70 3ody Weight (BW) (kg) 80 80 Sposure Dration (ED) (yr) 20 20 Sposure Frequency (EF) (dyr) 350 350 Sin Surface Area - Soil Exposure (SA.) (cm ²) 6032 6032 Soil Adherence Factor (AF) (mg/cm ²) 0.07 0.07 Soil Adherence Factor (AF) (mg/cm ²) 100 100 Sin Surface Area - Wate Exposure (SA) (cm ²) 19652 19652 Wate Ingestion Rate (IRW) (L/d) 2.5 2.5 Wate Event Frequency (EV) (events/day) 1 1 Vate Event Frequency (EV) (events/day) 1 1 Vate Event Frequency (EV) (events/day) 70 70 Sody Weight (BW) (kg) 80 80 Szposure Frequency (EF) (dyr) 25 25 Szposure Frequency (EF) (dyr) 250 250 Szposure Frequency (EF) (dyr) 250 250 Szposure Frequency (EF) (dyr) 251 3527 Siol Adherence Factor (AF) (mg/cm ²) 0.12 0.12 Siol Ingestion Rate (RW) (L/d) 0.83	Water Event Frequency (EV) (events/dav)	1	1	
ifetime (LT) (years) 70 70 3ody Weight (BW) (kg) 80 80 Exposure Duration (ED) (yr) 20 20 Styposure Frequency (EF) (dyr) 350 350 Styposure Frequency (EF) (dyr) 24 24 Stin Surface Area - Soil Exposure (SA ₄) (cm ²) 6032 6032 Soil Adherence Factor (AF) (mg/cm ²) 0.07 0.07 Soil Ingestion Rate (IRS) (mg/day) 100 100 Stin Surface Area - Water Exposure (SA ₄) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 2.5 2.5 Water Exposure Time (ET_mg/day) 0.71 0.71 Water Exposure Time (ET_mg/day) 1 1 Non-Residential Worker		Residential	Adult	
body Weight (BW) (kg) 80 80 Sposure Duration (ED) (yr) 20 20 Sposure Trequency (EF) (d/yr) 350 350 Skin Surface Area - Soil Exposure (SA.) (cm ²) 6032 6032 Soil Adherence Factor (AP) (mg/cm ³) 0.07 0.07 Soil Adherence Factor (AP) (mg/cm ³) 0.07 0.07 Soil Adherence Factor (AP) (mg/cm ³) 100 100 Skin Surface Area - Water Exposure (SA.) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 2.5 2.5 Water Exposure Time (ET) (m) 0.71 0.71 Water Exposure Time (ET) (wr) 0.71 0.71 Water Exposure Time (ET) (wr) 2.5 2.5 Water Exposure Time (ET) (wr) 2.5 2.5 Stopsure Time (ET) (wr) 2.5 2.5 Stopsure Time (ET) (wr) 2.5 2.5 Stopsure Time (ET) (m) 8 8 Skin Surface Area - Soil Exposure (SA.) (cm ²) 3.527 Soil Adherence Factor (AF) (mg/cm ³) 0.12 0.12 Soil Adherence Factor (AF) (mg	Lifetime (LT) (years)	70	70	
Exposure Duration (ED) (yr) 20 20 Sposure Frequency (EP) (d/yr) 350 350 Six Burfice Area - Soil Exposure (SA ₄) (cm ²) 6032 6032 Soil Adherence Factor (AF) (mg/cm ²) 0.07 0.07 Soil Adherence Factor (AF) (mg/cm ²) 0.07 0.07 Soil Adherence Factor (AF) (mg/cm ²) 0.07 0.07 Soil Adherence Factor (AF) (mg/cm ²) 100 100 Skin Surface Area - Water Exposure (SA ₄) (cm ²) 19652 2.5 Water Exposure Time (ET _{code}) (hr/event) 0.71 0.71 Water Exposure (EV) (events/day) 1 1 Vater Exposure (EV) (events/day) 1 1 Stposure Time (ET) (pg/s) 70 70 Sody Weight (BW) (kg) 80 80 Stposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA ₄) (cm ²) 0.12 0.12 Soil Adherence Factor (AF) (mg/cm ³) 0.12 0.12 Soil Adherence Time (ET) (mg/m ³) 0.12 0.12 Soil Adherence Time (ET) (mg/m ³) 0.12 0.12	Body Weight (BW) (kg)	80	80	
Exposure Frequency (EF) (d/yr) 350 350 Sposure Time (ET) (hr) 24 24 Skin Surface Area - Soil Exposure (SA _v) (cm ²) 6032 6032 Soil Adherence Factor (AF) (mg/cm ²) 0.07 0.07 Soil Ingestion Rate (IRS) (mg/day) 100 100 Skin Surface Area - Water Exposure (SA _w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 2.5 2.5 Water Exposure Time (ET_cough (In/event) 0.71 0.71 Water Exposure (In/event) 0.71 0.71 Water Exposure Time (ET_cough (In/event) 0.71 0.71 Water Exposure Time (ET_cough (In/event) 0.71 0.71 Water Exposure Time (ET_(lyr) 25 2.5 Soid Weight (BW) (kg) 80 80 Sopsure Prequency (EF) (dyr) 250 250 Sposure Time (ET_cough (CA)) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Adherence Factor (AF) (mg/cm ²) 1 1	Exposure Duration (ED) (yr)	20	20	
Exposure Time (ET) (hr) 24 24 skin Surface Area - Soil Exposure (SA.,) (cm ²) 6032 6032 Soil Adherence Factor (AF) (mg/cm ²) 0.07 0.07 Soil Adherence Factor (AF) (mg/cm ²) 0.07 0.07 Soil Adherence Factor (AF) (mg/cm ²) 0.07 0.07 Soil Adherence Factor (AF) (mg/cm ²) 100 100 Soil Adherence Factor (AF) (mg/cm ²) 10652 19652 Water Exposure Time (ET _{exm}) (hr/event) 0.71 0.71 0.71 Water Exposure Time (ET exm) (hr/event) 0.71 0.71 0.71 Water Exposure (EV) (events/day) 1 1 1 Non-Residential Worker	Exposure Frequency (EF) (d/yr)	350	350	
kin Surface Area - Soil Exposure (SA_u) (cm ²) 6032 6032 Soil Alberence Factor (AF) (mg/cm ²) 0.07 0.07 Soil Ingestion Rate (IRS) (mg/day) 100 100 Skin Surface Area - Water Exposure (SA_u) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 2.5 2.5 Water Exposure Time (ET _{eveal}) (hr/event) 0.71 0.71 Water Event Frequency (EV) (events/day) 1 1 Water Strent Frequency (EV) (events/day) 1 1 Supsure Duration (ED) (yr) 25 2.5 Staposure Duration (ED) (yr) 250 250 Sxposure Frequency (EF) (d/yr) 250 250 Sysoure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA_u) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Ingestion Rate (IRW) (L/d) 0.83 0.83 Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Skin Surface Area - Water Exposure (SA_w) (cm ²) 1 1 Construction Worker Construc	Exposure Time (ET) (hr)	24	24	
Soil Adherence Factor (AF) (mg/cm ³) 0.07 0.07 Soil Ingestion Rate (IRS) (mg/day) 100 100 Skin Surface Area - Water Exposure (SA _w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 2.5 2.5 Water Exposure Time (ET _{cwal}) (hr/event) 0.71 0.71 Water Exposure Time (ET _{cwal}) (hr/event) 0.71 0.71 Water Exposure Time (ET _{cwal}) (hr/event) 70 70 Soldy Weight (BW) (kg) 80 80 Szposure Prequency (EF) (d/yr) 255 25 Szposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _a) (cm ²) 3527 3527 Soil Alberence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Algerence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Algerence Factor (AF) (mg/cm ²) 100 100 Skin Surface Area - Water Exposure (SA _w) (cm ²) 19652 19652 Soil Algerence Factor (AF) (mg/cm ²) 0.67 0.67 Water Exposure Time (ET (mg/cm) 0.67 0.67 Water Exposure Time (ET (WW) (kg) </td <td>Skin Surface Area - Soil Exposure (SA_s) (cm²)</td> <td>6032</td> <td>6032</td> <td></td>	Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	
Soil Ingestion Rate (IRS) (mg/day) 100 100 skin Surface Area - Water Exposure (SA _w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 2.5 2.5 Water Exposure Time (ET _{cout}) (hr/event) 0.71 0.71 Water Event Frequency (EV) (events/day) 1 1 Non-Residential Worker	Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.07	
Skin Surface Area - Water Exposure (SA_w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 2.5 2.5 Water Exposure Time (ET _{cweal}) (hr/event) 0.71 0.71 Water Exponent Time (ET _{cweal}) (hr/event) 1 1 Non-Residential Worker Non-Residential Worker 1 Lifetime (LT) (years) 70 70 70 3ody Weight (BW) (kg) 80 80 80 Exposure Duration (ED) (yr) 25 25 25 Exposure Frequency (EF) (d/yr) 250 250 250 Signosure Time (ET) (hr) 8 8 8 Sil Surface Area - Soil Exposure (SA _a) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 0.12 Soil Ingestion Rate (IRW) (L/d) 0.83 0.83 0.83 Water Exposure Time (ET cweal) (hr/event) 0.67 0.67 0.67 Water Exposure Time (ET cweal) (hr/event) 0.67 0.67 0.67 Water Exposure Time (ET cweal) (hr/event) 0.67 0.67 0.67 <	Soil Ingestion Rate (IRS) (mg/day)	100	100	
Water Ingestion Rate (IRW) (L/d) 2.5 2.5 Water Exposure Time (ET _{event}) (hr/event) 0.71 0.71 Water Event Frequency (EV) (events/day) 1 1 Non-Residential Worker Lifetime (LT) (years) 30dy Weight (BW) (kg) 80 80 80 Exposure Duration (ED) (yr) 25 25 Exposure Frequency (EF) (d/yr) 250 250 Synsure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _a) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 100 100 Skin Surface Area - Water Exposure (SA _w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Water Exposure Time (ET (verat)) 0.67 0.67 Water Exposure (EV) (events/day) 1 1 Construction Worker Lifetime (LT) (years) 70 70 70 70 70 30dy Weight (BW) (kg) 80 80 80 Working Weeks (EW) (wk/yr) 50 50 50	Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Exposure Time (ET $_{evenl}$) (hr/event) 0.71 0.71 Water Event Frequency (EV) (events/day) 1 1 Non-Residential Worker 70 70 Sody Weight (BW) (kg) 80 80 Szposure Duration (ED) (yr) 25 25 Exposure Frequency (EF) (d/yr) 250 250 Szposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _a) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Ingestion Rate (IR) (m/day) 100 100 Skin Surface Area - Water Exposure (SA _a) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Water Exposure Time (ET) (vents/day) 1 1 Lifetime (LT) (years) 70 70 Soil Adherence Frequency (EV) (events/day) 1 1 Soil Mater Exposure Time (ET) (m/cvent) 0.67 0.67 Water Exposure Time (LT) (years) 70 70 70 Soil Water Strept (BW) (kg) 80 80 80	Water Ingestion Rate (IRW) (L/d)	2.5	2.5	
Water Event Frequency (EV) (events/day) 1 1 Non-Residential Worker .ifetime (LT) (years) 70 70 3ody Weight (BW) (kg) 80 80 80 Exposure Duration (ED) (yr) 25 25 Exposure Frequency (EF) (d/yr) 2500 2500 Signosure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _w) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Ingestion Rate (IR) (mg/day) 100 100 Swarface Area - Water Exposure (SA _w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Water Exposure Time (ET-vem) (hr/event) 0.67 0.67 Water Exposure Time (ET-vem) (hr/event) 0.67 0.67 Water Event Frequency (EV) (events/day) 1 1 Construction Worker Construction Worker Lifetime (LT) (years) 70 70 3ody Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 <td>Water Exposure Time (ET_{event}) (hr/event)</td> <td>0.71</td> <td>0.71</td> <td></td>	Water Exposure Time (ET _{event}) (hr/event)	0.71	0.71	
Non-Residential Worker Lifetime (LT) (years) 70 70 3ody Weight (BW) (kg) 80 80 Exposure Duration (ED) (yr) 25 25 Exposure Frequency (EF) (d/yr) 250 250 Szposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _a) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Ingestion Rate (IR) (mg/day) 100 100 Skin Surface Area - Water Exposure (SA _w) (cm ²) 19652 19652 Vater Lexposure Time (ET _{event}) (hr/event) 0.67 0.67 Water Exposure Time (ET _{event}) (hr/event) 0.67 0.67 Water Exposure Time (ET _{event}) (hr/event) 0.67 0.67 Water Exposure Time (ET _{event}) (hr/event) 0.67 0.67 Soil Mignesion Rate (IRW) (Lg) 80 80 Water Exposure Time (ET _{event}) 1 1 Construction Worker 2 2 Lifetime (LT) (years) 70 70 2 Body Weight (BW) (kg) 80	Water Event Frequency (EV) (events/day)	1	1	
Total Total Body Weight (BW) (kg) 80 80 Szposure Duration (ED) (yr) 25 25 Szposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA ₄) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Ingestion Rate (IR) (mg/day) 100 100 Skin Surface Area - Soil Exposure (SA _w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Water Exposure Time (ET) (versi) 0.67 0.67 Water Exposure (SV) (events/day) 1 1 Construction Worker Construction Worker Lifetime (LT) (years) 70 70 Sold Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Szposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _a) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 0.3		Non-Residentia	al Worker	
Body Weight (BW) (kg) 80 80 Exposure Duration (ED) (yr) 25 25 Exposure Frequency (EF) (d/yr) 250 250 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _u) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Ingestion Rate (IR) (mg/day) 100 100 Skin Surface Area - Water Exposure (SA _w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Vater Exposure Time (ET _{event}) (hr/event) 0.67 0.67 Vater Exposure Time (EV) (events/day) 1 1 Construction Worker 1 1 Lifetime (LT) (years) 70 70 3ody Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _a) (cm ²) 3527 3527 Side Adherence Factor (AF) (mg/cm ²) 0.3 0.3 0.3 Skin Surface	Lifetime (LT) (years)	70	70	
Exposure Duration (ED) (yr) 25 25 Exposure Frequency (EF) (d'yr) 250 250 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _u) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Ingestion Rate (IR) (mg/day) 100 100 Skin Surface Area - Water Exposure (SA _w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Water Exposure Time (ET _{event}) (hr/event) 0.67 0.67 Water Exposure Time (EV) (events/day) 1 1 Construction Worker Construction Worker Lifetime (LT) (years) 70 70 3ody Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _u) (cm ²) 3527 Skin Surface Area - Soil Exposure (SA _u) (cm ²) 3527 Skin Surface Area - Soil Exposure (SA _u) (cm ²) 3527 Soil Adherence Factor (AF) (mg/cm ²) 0	Body Weight (BW) (kg)	80	80	
Exposure Frequency (EF) (d/yr) 250 250 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA_s) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Ingestion Rate (IR) (mg/day) 100 100 Skin Surface Area - Water Exposure (SA_w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Water Exposure Time (ET event) (hr/event) 0.67 0.67 Water Event Frequency (EV) (events/day) 1 1 Construction Worker Lifetime (LT) (years) 70 70 Sold Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _s) (cm ²) 3527 3527 Soid Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Skin Surface Area - Soil Exposure (SA _s) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 0.3	Exposure Duration (ED) (yr)	25	25	
Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _x) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Ingestion Rate (IR) (mg/day) 100 100 Skin Surface Area - Water Exposure (SA _w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Water Exposure Time (ET _{event}) (hr/event) 0.67 0.67 Water Event Frequency (EV) (events/day) 1 1 Construction Worker Lifetime (LT) (years) Body Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _w) (cm ²) 3527 3527 Skin Surface Area - Soil Exposure (SA _w) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Adherence Factor (AF) (mg/cm ²) 330 330	Exposure Frequency (EF) (d/yr)	250	250	
Skin Surface Area - Soil Exposure (SA_s) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 Soil Ingestion Rate (IR) (mg/day) 100 100 Skin Surface Area - Water Exposure (SA_w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Water Exposure Time (ET _{event}) (hr/event) 0.67 0.67 Water Event Frequency (EV) (events/day) 1 1 Construction Worker Lifetime (LT) (years) Body Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Exposure Duration (ED) (yr) 1 1 Staposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _w) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 300	Exposure Time (ET) (hr)	8	8	
Soil Adherence Factor (AF) (mg/cm ²) 0.12 0.12 0.12 Soil Ingestion Rate (IR) (mg/day) 100 100 Skin Surface Area - Water Exposure (SA _w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Water Exposure Time (ET _{event}) (hr/event) 0.67 0.67 Water Event Frequency (EV) (events/day) 1 1 Construction Worker Lifetime (LT) (years) Body Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 50 Exposure Traine (ET) (hr) 8 8 6 Skin Surface Area - Soil Exposure (SA _w) (cm ²) 3527 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 330 330	Skin Surface Area - Soil Exposure (SA _s) (cm ²)	3527	3527	
Soil Ingestion Rate (IR) (mg/day) 100 100 Skin Surface Area - Water Exposure (SA_w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Water Exposure Time (ET_event) (hr/event) 0.67 0.67 Water Event Frequency (EV) (events/day) 1 1 Construction Vorker Construction Worker Lifetime (LT) (years) 70 70 Body Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Exposure Duration (ED) (yr) 1 1 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _w) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330	Soil Adherence Factor (AF) (mg/cm ²)	0.12	0.12	
Skin Surface Area - Water Exposure (SA_w) (cm ²) 19652 19652 Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Water Exposure Time (ET_event) (hr/event) 0.67 0.67 Water Event Frequency (EV) (events/day) 1 1 Construction Worker Construction Worker Lifetime (LT) (years) 70 70 Body Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Exposure Duration (ED) (yr) 1 1 Exposure Frequency (EF) (d/yr) 250 250 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _w) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330	Soil Ingestion Rate (IR) (mg/day)	100	100	
Water Ingestion Rate (IRW) (L/d) 0.83 0.83 Water Exposure Time (ET _{event}) (hr/event) 0.67 0.67 Water Event Frequency (EV) (events/day) 1 1 Construction Worker Construction Worker Lifetime (LT) (years) 70 70 Body Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Exposure Duration (ED) (yr) 1 1 Exposure Frequency (EF) (d/yr) 250 250 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _k) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330	Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Exposure Time (ET _{event}) (hr/event) 0.67 0.67 Water Event Frequency (EV) (events/day) 1 1 Construction Worker Construction Worker Lifetime (LT) (years) 70 70 Body Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Exposure Duration (ED) (yr) 1 1 Exposure Frequency (EF) (d/yr) 250 250 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _s) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330	Water Ingestion Rate (IRW) (L/d)	0.83	0.83	
Water Event Frequency (EV) (events/day) 1 1 Construction Worker Lifetime (LT) (years) 70 70 Body Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Exposure Duration (ED) (yr) 1 1 Exposure Frequency (EF) (d/yr) 250 250 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _s) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330	Water Exposure Time (ET _{event}) (hr/event)	0.67	0.67	
Construction Worker Lifetime (LT) (years) 70 70 Body Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Exposure Duration (ED) (yr) 1 1 Exposure Frequency (EF) (d/yr) 250 250 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _s) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330	Water Event Frequency (EV) (events/day)	1	1	
Lifetime (LT) (years) 70 70 Body Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Exposure Duration (ED) (yr) 1 1 Exposure Frequency (EF) (d/yr) 250 250 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _s) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330		Construction	Worker	
Body Weight (BW) (kg) 80 80 Working Weeks (EW) (wk/yr) 50 50 Exposure Duration (ED) (yr) 1 1 1 1 1 Exposure Frequency (EF) (d/yr) 250 250 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _s) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330	Lifetime (LT) (years)	70	70	
Working Weeks (EW) (wk/yr) 50 50 Exposure Duration (ED) (yr) 1 1 Exposure Frequency (EF) (d/yr) 250 250 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _s) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330	Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr) 1 1 Exposure Frequency (EF) (d/yr) 250 250 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _s) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330	Working Weeks (EW) (wk/yr)	50	50	
Exposure Frequency (EF) (d/yr) 250 250 Exposure Time (ET) (hr) 8 8 Skin Surface Area - Soil Exposure (SA _s) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330	Exposure Duration (ED) (yr)	1	1	
8 8 Skin Surface Area - Soil Exposure (SA _s) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330	Exposure Frequency (EF) (d/yr)	250	250	
Skin Surface Area - Soil Exposure (SA _s) (cm ²) 3527 3527 Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330	Exposure Time (ET) (hr)	8	8	
Soil Adherence Factor (AF) (mg/cm ²) 0.3 0.3 Soil Ingestion Rate (IR) (mg/day) 330 330	Skin Surface Area - Soil Exposure (SA _s) (cm ²)	3527	3527	
Soil Ingestion Rate (IR) (mg/day) 330 330	Soil Adherence Factor (AF) (mg/cm ²)	0.3	0.3	
	Soil Ingestion Rate (IR) (mg/day)	330	330	

Input Form 1B

Exposure Factors and Target Risks Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #1 - Construction Worker excluding Background

Exposure Parameter	Defau	lt Value	Site Specific Value	Justification
	ι	Jser Define	d Child	
	Recreator	Trespasser		
Lifetime (LT) (years)	70	NA	70	
Averaging Time (AT) (days/yr)	365	NA	365	
Body Weight (BW) (kg)	15	NA	15	
Exposure Duration 0-2 (ED) (yr)	2	NA	2	
Exposure Duration 2-6 (ED) (yr)	4	NA	4	
Exposure Frequency (EF) (d/yr)	195	NA	195	
Exposure Time (ET) (hr)	2	NA	2	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	2373	NA	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	NA	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	NA	200	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	6365	NA	6365	
Water Ingestion Rate (IRW) (L/hr)	0.124	NA	0.124	
Water Exposure Time (ET _{event}) (hr/event)	2	NA	2	
Water Event Frequency (EV) (events/day)	1	NA	1	
	Ţ	Jser Define	d Adult	
	Recreator	Trespasser		
Lifetime (LT) (years)	70	70	70	
Body Weight (BW) (kg)	80	45	80	
Exposure Duration 6-16 (ED) (yr)	10	10	10	
Exposure Duration 16-26 (ED) (yr)	10	0	10	
Exposure Frequency (EF) (d/yr)	195	90	195	
Exposure Time (ET) (hr)	2	2	2	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.2	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	200	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	19652	
Water Ingestion Rate (IRW) (L/hr)	0.0985	0.071	0.0985	
Water Exposure Time (ET _{event}) (hr/event)	2	2	2	
Water Event Frequency (EV) (events/day)	1	1	1	

Input Form 1B

Exposure Point Concentrations Version Date: June 2021

Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU #1 - Construction Worker excluding Background

Soil Exposure Point Concentration Table

Description of Exposure Point Concentration Selection:

Maximum detected constituent concentrations from samples collected between 0 to 10 ft within the exposure unit, excluding background levels.

NOTE: If the chemi	cal list is changed from a prio	r calculator run,	remember to select "See All Chemicals" on the data output sheet or newly adde	d chemicals will	not be included i	in risk calculatio	18					
Exposure Point Concentration (mg/kg)	Notes:	CAS Number	Chemical For the chemicals highlighted in blue, data entry notes are provided in the PSRG Table link on the Main Menu	Minimum Concentration (Qualifier)	Maximum Concentration (Qualifier)	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	To (I
95.9	GP-5	7440-38-2	Arsenic, Inorganic			mg/kg						
3200	S-6	7440-39-3	Barium			mg/kg						
6.99	GP-5	7440-41-7	Beryllium and compounds			mg/kg						
1.5	S-4	7440-43-9	Cadmium (Diet)			mg/kg						
180	MW-7	7440-50-8	Copper			mg/kg						
1500	S-4	7439-96-5	Manganese (Non-diet)			mg/kg						
11	GP-6	7439-97-6	~Mercury (elemental)			mg/kg						
43	S-4	7440-02-0	Nickel Soluble Salts			mg/kg						
13	GP-5	7782-49-2	Selenium			mg/kg						
325	GP-5	7440-24-6	Strontium, Stable			mg/kg						

569

					Input Form 2A
	1				
creening ficity Value Screening evel) (n/c)	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion	

Risk	for	Individual	Pathways
------	-----	------------	----------

Version Date: June 2021				
Basis: May 2021 EPA RSL Table				
Site ID: BPN 21061-17-060				
Exposure Unit ID: EU #1 - Const	ruction Worker excluding Backgrou	ınd		
	× ×			
DIRE	CT CONTACT SOIL AND WATE	R CALCULATO	RS	
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?
Resident	Soil	NC	NC	NC
Kesident	Groundwater Use*	NC	NC	NC
Non Residential Worker	Soil	NC	NC	NC
Non-Residential worker	Groundwater Use*	NC	NC	NC
Construction Worker	Soil	5.4E-06	1.1E+01	YES
Pagrantor/Traspassar	Soil	NC	NC	NC
Recreator/Trespasser	Surface Water*	NC	NC	NC
	VAPOR INTRUSION CALCU	LATORS		
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?
	Groundwater to Indoor Air	NC	NC	NC
Resident	Soil Gas to Indoor Air	NC	NC	NC
	Indoor Air	NC	NC	NC
	Groundwater to Indoor Air	NC	NC	NC
Non-Residential Worker	Soil Gas to Indoor Air	NC	NC	NC
	Indoor Air	NC	NC	NC
(CONTAMINANT MIGRATION CA	ALCULATORS		
Pathway	Source	Target Rec	eptor Concentratio	ns Exceeded?
Groundwater	Source Soil	Exceedence of	2L at Receptor?	NC
Groundwater	Source Groundwater	Exceedence of	2L at Receptor?	NC
Surface Water	Source Soil	Exceedence of	2B at Receptor?	NC
	Source Groundwater	Exceedence of	2B at Receptor?	NC

Notes:

1. If lead concentrations were entered in the exposure point concentration tables, see the individual calculator sheets for lead concentrations in comparison to screening levels. Note that lead is not included in cumulative risk calculations.

2. * = If concentrations in groundwater exceed the NC 2L Standards or IMAC, or concentrations in surface water exceed the NC 2B Standards, appropriate remediation and/or institutional control measures will be necessary to be eligible for a risk-based closure.

3. NM = Not Modeled

4. NC = Pathway not calculated

Output Form 2E

DEQ Risk Calculator - Direct Contact - Construction Worker Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060 Exposure Unit ID: EU#1 - Construction Worker excluding Background

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 800 mg/kg for commercial/industrial soil.

CAS #	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Quotient
7440-38-2	Arsenic, Inorganic	95.9	95.9	95.9	3.5E-06	5.6E-07	1.3E-06	5.3E-06	5.7E-01	9.1E-02	1.4E+00	2.1E+00
7440-39-3	Barium	3200	3200	3200					4.7E-02		1.4E-01	1.9E-01
7440-41-7	Beryllium and compounds	6.99	6.99	6.99			5.2E-08	5.2E-08	4.1E-03		7.9E-02	8.3E-02
7440-43-9	Cadmium (Diet)	1.5	1.5	1.5			8.3E-09	8.3E-09	8.8E-03	1.1E-03	3.4E-02	4.4E-02
7440-50-8	Copper	180	180	180					5.3E-02			5.3E-02
7439-96-5	Manganese (Non-diet)	1500	1500	1500					1.8E-01		6.7E+00	6.9E+00
7439-97-6	~Mercury (elemental)	11	11	11							1.1E+00	1.1E+00
7440-02-0	Nickel Soluble Salts	43	43	43			3.4E-08	3.4E-08	6.3E-03		4.8E-02	5.5E-02
7782-49-2	Selenium	13	13	13					7.7E-03		1.5E-04	7.8E-03
7440-24-6	Strontium, Stable	325	325	325					4.8E-04			4.8E-04
					-	Cumulative:]	5.4E-06				1.1E+01

North Carolina Department of Environmental Quality Risk Calculator

Version Date:	June 2021
Basis:	May 2021 EPA RSL Table
Site Name:	828 MLK Jr. Blvd Property
Site Address:	828 MLK Jr Blvd, Chapel Hill, Orange County, North Carolina
DEQ Section:	Brownfields Program
Site ID:	BPN 21061-17-060
Exposure Unit ID:	EU#2 Trail - Greenway User & Construction Worker excluding Backgro
Submittal Date:	
Dronowod Dyr	Hart & Hickman, PC
г герагей Бу:	3921 Sunset Ridge Rd, Suite 301, Raleigh, North Carolina
Reviewed By:	

Table of Contents		TOC
Version Date: Jun	e 2021	
Basis: May 2021 E	PA RSL Table	
Site ID: BPN 2106	1-17-060	
Exposure Unit ID:	EU#2 Trail - Greenway User & Construction Worker excluding Background	
Form No.	Description	Check box if included
	DATA INPUT SHEETS	
	Input Section 1 - Exposure Pathways & Parameters	
Input Form 1A	Complete Exposure Pathways	\checkmark
Input Form 1B	Exposure Factors and Target Risks	\checkmark
Input Form 1C	Contaminant Migration Parameters	
Input Form 1D	Sample Statistics	
	Input Section 2 - Exposure Point Concentrations	
Input Form 2A	Soil Exposure Point Concentration Table	✓
Input Form 2B	Groundwater Exposure Point Concentration Table	
Input Form 2C	Surface Water Exposure Point Concentration Table	
Input Form 2D	Soil Gas Exposure Point Concentration Table	
Input Form 2E	Indoor Air Exposure Point Concentration Table	
	DATA OUTPUT SHEETS	
	Output Section 1 - Summary Output for All Calculators	
Output Form 1A	Risk for Individual Pathways	
Output Form 1B	Sitewide Risk	
	Output Section 2 - Direct Contact Soil and Groundwater Calculators	
Output Form 2A	Resident Soil	
Output Form 2B	Resident Groundwater Use	
Output Form 2C	Non-Residential Worker Soil	
Output Form 2D	Non-Residential Worker Groundwater Use	
Output Form 2E	Construction Worker Soil	\checkmark
Output Form 2F	Recreator/Trespasser Soil	✓
Output Form 2G	Recreator/Trespasser Surface Water	
	Output Section 3 - Vapor Intrusion Calculators	
Output Form 3A	Resident Groundwater to Indoor Air	
Output Form 3B	Resident Soil Gas to Indoor Air	
Output Form 3C	Resident Indoor Air	
Output Form 3D	Non-Residential Worker Groundwater to Indoor Air	
Output Form 3E	Non-Residential Worker Soil Gas to Indoor Air	
Output Form 3F	Non-Residential Worker Indoor Air	
	Output Section 4 - Contaminant Migration Worksheets	
Output Form 4A	Soil to Groundwater - Forward Mode	
Output Form 4B	Groundwater to Groundwater - Forward Mode	
Output Form 4C	Soil to Surface Water - Forward Mode	
Output Form 4D	Groundwater to Surface Water - Forward Mode	
Output Form 4E	Soil to Groundwater - Backward Mode	
Output Form 4F	Groundwater to Groundwater - Backward Mode	
Output Form 4G	Soil to Surface Water - Backward Mode	
Output Form 4H	Groundwater to Surface Water - Backward Mode	\Box

Complete Exposure Pathways		Input Form 1A
Version Date: June 2021		
Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060		
Site ID: BPN 21061-17-060		
Exposure Unit ID: EU#2 Tra	il - Greenway User & Construction Wo	orker excluding F
Note: Risk output will only be calc	ulated for complete exposure pathways.	
Receptor	Pathway	Check box if pathway complete
DIRECT CON	TACT SOIL AND WATER PATHWAYS	
Resident	Soil	
Keshent	Groundwater Use	
Non-Residential Worker	Soil	
	Groundwater Use	
Construction Worker	Soil	
Decreator/Trespasser	Soil	
	Surface Water	
VAP	OR INTRUSION PATHWAYS	
	Groundwater to Indoor Air	
Resident	Soil Gas to Indoor Air	
	Indoor Air	
	Groundwater to Indoor Air	
Non-Residential Worker	Soil Gas to Indoor Air	
	Indoor Air	
CONTAM	IINANT MIGRATION PATHWAYS	
Groundwater	Source Soil	
Groundwater	Source Groundwater	
Surface Water	Source Soil	
Surface Water	Source Groundwater	

Input Form 1B

Exposure Factors and Target Risks Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#2 Trail - Greenway User & Construction Worker excluding Background

Exposure Parameter	Default Value	Site Specific Value	Justification
	Genera	al	
Target Cancer Risk (individual)	1.0E-06	1.0E-06	
Target Cancer Risk (cumulative)	1.0E-04	1.0E-04	
Target Hazard Index (individual)	2.0E-01	2.0E-01	
Target Hazard Index (cumulative)	1.0E+00	1.0E+00	
	Residential	Child	
Lifetime (LT) (years)	/0	70	
Body Weight (BW) (kg)	15	15	
Exposure Duration (ED) (yr)	6	6	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA _s) (cm2)	2373	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	200	
Skin Surface Area - Water Exposure (SA _w) (cm2)	6365	6365	
Water Ingestion Rate (IRW) (L/d)	0.78	0.78	
Water Exposure Time (ET _{event}) (hr/event)	0.54	0.54	
Water Event Frequency (EV) (events/day)	1	1	
	Residential	Adult	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr)	20	20	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	2.5	2.5	
Water Exposure Time (ET _{event}) (hr/event)	0.71	0.71	
Water Event Frequency (EV) (events/day)	1	1	
	Non-Residentia	al Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr)	25	25	
Exposure Frequency (EF) (d/yr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.12	0.12	
Soil Ingestion Rate (IR) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	0.83	0.83	
Water Exposure Time (ET _{event}) (hr/event)	0.67	0.67	
Water Event Frequency (EV) (events/day)	1	1	
	Construction	Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Working Weeks (EW) (wk/yr)	50	50	
Exposure Duration (ED) (yr)	1	1	
Exposure Frequency (EF) (d/yr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.3	0.3	
Soil Ingestion Rate (IR) (mg/day)	330	330	

Input Form 1B

Exposure Factors and Target Risks Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#2 Trail - Greenway User & Construction Worker excluding Background

Exposure Parameter	Defau	lt Value	Site Specific Value	Justification
	1	User Defined	d Child	
	Recreator	Trespasser		
Lifetime (LT) (years)	70	NA	70	
Averaging Time (AT) (days/yr)	365	NA	365	
Body Weight (BW) (kg)	15	NA	15	
Exposure Duration 0-2 (ED) (yr)	2	NA	2	
Exposure Duration 2-6 (ED) (yr)	4	NA	4	
Exposure Frequency (EF) (d/yr)	195	NA	52	Based on 98th pecrentile of trail user polling data
Exposure Time (ET) (hr)	2	NA	0.5	Based on 98th pecrentile of trail user polling data
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	2373	NA	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	NA	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	NA	200	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	6365	NA	6365	
Water Ingestion Rate (IRW) (L/hr)	0.124	NA	0.124	
Water Exposure Time (ET _{event}) (hr/event)	2	NA	0.5	Based on 98th pecrentile of trail user polling data
Water Event Frequency (EV) (events/day)	1	NA	1	
		User Defined	d Adult	·
	Recreator	Trespasser		
Lifetime (LT) (years)	70	70	70	
Body Weight (BW) (kg)	80	45	80	
Exposure Duration 6-16 (ED) (yr)	10	10	10	
Exposure Duration 16-26 (ED) (yr)	10	0	10	
Exposure Frequency (EF) (d/yr)	195	90	364	Based on 98th pecrentile of trail user polling data
Exposure Time (ET) (hr)	2	2	1	Based on 98th pecrentile of trail user polling data
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.2	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	200	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	19652	
Water Ingestion Rate (IRW) (L/hr)	0.0985	0.071	0.0985	
Water Exposure Time (ET _{event}) (hr/event)	2	2	1	Based on 98th pecrentile of trail user polling data
Water Event Frequency (EV) (events/day)	1	1	1	

Exposure Point Concentrations Version Date: June 2021

Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#2 Trail - Greenway User & Construction Worker excluding Background

Soil Exposure Point Concentration Table

Description of Exposure Point Concentration Selection:

Maximum detected constituent concentrations from all soil samples collected within the exposure unit, exleuding background concentrations

	NOTE: If the chem	ical list is changed from a prior	· calculator run,	remember to select "See All Chemicals" on the data output sheet or newly adde	d chemicals will	not be included	in risk calculatio	18					
	Exposure Point Concentration (mg/kg)	Notes:	CAS Number	Chemical For the chemicals highlighted in blue, data entry notes are provided in the PSRG Table link on the Main Menu	Minimum Concentration (Qualifier)	Maximum Concentration (Qualifier)	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	To: (L
	14.5	SED-13	7440-38-2	Arsenic, Inorganic			mg/kg						
	958	SED-13	7440-39-3	Barium			mg/kg						
	1.56	SED-13	7440-41-7	Beryllium and compounds			mg/kg						
ſ	3.07	SED-13	7782-49-2	Selenium			mg/kg						
	125	SED-13	7440-24-6	Strontium, Stable			mg/kg						

creening icity Value kereening vvel) (n/c) Potential ARAR/TBC Value Potential ARAR/TBC Source Potential ARAR/TBC Source (Y/N) Potential COPC Flag Selection or Deletion	

Risk for Individual Pathways				Output Form 1 A						
Version Date: June 2021										
Basis: May 2021 EPA RSL Table										
Site ID: BPN 21061-17-060										
Exposure Unit ID: EU#2 Trail - C	Greenway User & Construction Wor	ker excluding Ba	ckground							
DIRE	ECT CONTACT SOIL AND WATE	R CALCULATO	RS							
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?						
Resident	Soil	NC	NC	NC						
Resident	Groundwater Use*	NC	NC	NC						
Non Pesidential Worker	Soil	NC	NC	NC						
Non-Residential Worker	Groundwater Use*	NC	NC	NC						
Construction Worker	Soil	8.1E-07	3.9E-01	NO						
Pagragtor/Traspassor	Soil	8.0E-06	7.5E-02	NO						
Recreator/ rrespasser	Surface Water*	NC	NC	NC						
	VAPOR INTRUSION CALCU	LATORS								
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?						
	Groundwater to Indoor Air	NC	NC	NC						
Resident	Soil Gas to Indoor Air	NC	NC	NC						
	Indoor Air	NC	NC	NC						
	Groundwater to Indoor Air	NC	NC	NC						
Non-Residential Worker	Soil Gas to Indoor Air	NC	NC	NC						
	Indoor Air	NC	NC	NC						
ReceptorPathwayRiskHazard IndexRisk exceeded?ResidentSoilNCNCNCMon-Residential WorkerSoilNCNCNCConstruction WorkerSoil8.1E-073.9E-01NOConstruction WorkerSoil8.0E-067.5E-02NORecreator/TrespasserSurface Water*NCNCNCRecreator/TrespasserSurface Water*NCNCNCReceptorPathwayCarcinogenic RiskHazard IndexRisk exceeded?ReceptorGroundwater to Indoor AirNCNCNCResidentGroundwater to Indoor AirNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCResidentGroundwater to Indoor AirNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCNon-Residential WorkerSoil Gas to Indoor AirNCNCNCIndoor AirNCNCNCNCNCNon-Residential WorkerGroundwater to Indoor AirNCNCNCIndoor AirNCNCNCNCNCNon-Residential WorkerSoil Gas to Indoor AirNCNCNCPathwaySourceTarget Receptor Concentrations Exceeded?NCReceptorSourceTarget Receptor Concentrations Exceeded?										
Pathway	Source	Target Rec	eptor Concentratio	ns Exceeded?						
Groundwater	Source Soil	Exceedence of	2L at Receptor?	NC						
Groundwater	Source Groundwater	Exceedence of	2L at Receptor?	NC						
Surface Water	Source Soil	Exceedence of	2B at Receptor?	NC						
Surface water	Source Groundwater	Exceedence of	2B at Receptor?	NC						

Notes:

1. If lead concentrations were entered in the exposure point concentration tables, see the individual calculator sheets for lead concentrations in comparison to screening levels. Note that lead is not included in cumulative risk calculations.

2. * = If concentrations in groundwater exceed the NC 2L Standards or IMAC, or concentrations in surface water exceed the NC 2B Standards, appropriate remediation and/or institutional control measures will be necessary to be eligible for a risk-based closure.

3. NM = Not Modeled

4. NC = Pathway not calculated

DEC) Risk Calculator - E	Direct Contact - Construction Worker Soil											Output Form 2E
Vers	sion Date: June 202	21											
Basi	is: May 2021 EPA RSL Table												
Site	ID: BPN 21061-17-060												
Expo	posure Unit ID: EU#2 Trail - Greenway User & Construction Worker excluding Background												
	* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. **- Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 800 mg/kg for commercial/industrial soil.												
	CAS #	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Ouotient
7	7440-38-2	Arsenic, Inorganic	14.5	14.5	14.5	5.3E-07	8.4E-08	1.9E-07	8.0E-07	8.5E-02	1.4E-02	2.2E-01	3.2E-01
7	7440-39-3	Barium	958	958	958					1.4E-02		4.3E-02	5.7E-02
7	7440-41-7	Beryllium and compounds	1.56	1.56	1.56			1.2E-08	1.2E-08	9.2E-04		1.8E-02	1.8E-02
7	7782-49-2	Selenium	3.07	3.07	3.07					1.8E-03		3.4E-05	1.8E-03
7	7440-24-6	Strontium, Stable	125	125	125					1.8E-04			1.8E-04
							Cumulative:]	8.1E-07]			3.9E-01

Output Form 2F

DEQ Risk Calculator - Direct Contact - Recreator/Trespasser Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060 Exposure Unit ID: EU#2 Trail - Greenway User & Construction Worker excluding Background

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 400 mg/kg for residential soil. Receptor Type: Greenway user

		Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Calculated	Ingestion	Dermal	Inhalation	Calculated Non-
CAS #	Chemical Name:	Concentration	Concentration	Concentration	Carcinogenic	Carcinogenic	Carcinogenic	Carcinogenic	Hazard	Hazard	Hazard	Carcinogenic
		(mg/kg)	(mg/kg)	(mg/kg)*	Risk	Risk	Risk	Risk	Quotient	Quotient	Quotient	Hazard
										-	-	Quotient
440-38-2	Arsenic, Inorganic	14.5	14.5	14.5	6.8E-06	1.2E-06	1.6E-11	8.0E-06	5.5E-02	7.6E-03	6.8E-07	6.3E-02
440-39-3	Barium	958	958	958					9.1E-03		1.3E-06	9.1E-03
440-41-7	Beryllium and compounds	1.56	1.56	1.56			9.7E-13	9.7E-13	1.5E-03		5.5E-08	1.5E-03
782-49-2	Selenium	3.07	3.07	3.07					1.2E-03		1.1E-10	1.2E-03
440-24-6	Strontium, Stable	125	125	125					4.0E-04			4.0E-04
						Cumulative:]	8.0E-06				7.5E-02

North Carolina Department of Environmental Quality Risk Calculator

Version Date:	June 2021
Basis:	May 2021 EPA RSL Table
Site Name:	828 MLK Jr. Blvd Property
Site Address:	828 MLK Jr Blvd, Chapel Hill, Orange County, North Carolina
DEQ Section:	Brownfields Program
Site ID:	BPN 21061-17-060
Exposure Unit ID:	EU#2 Creek - Greenway User exlcuding Background
Submittal Date:	
Dronawad Dur	Hart & Hickman, PC
г герагей бу:	3921 Sunset Ridge Rd, Suite 301, Raleigh, North Carolina
Reviewed By:	

Table of Contents		TOC
Version Date: Jun	e 2021	
Basis: May 2021 H	CPA RSL Table	
Site ID: BPN 2106	1-17-060	
Exposure Unit ID:	EU#2 Creek - Greenway User exlcuding Background	
		Check box
Form No.	Description	if included
	DATA INPUT SHEETS	
	Input Section 1 - Exposure Pathways & Parameters	
Input Form 1A	Complete Exposure Pathways	~
Input Form 1B	Exposure Factors and Target Risks	✓
Input Form 1C	Contaminant Migration Parameters	
Input Form 1D	Sample Statistics	
	Input Section 2 - Exposure Point Concentrations	
Input Form 2A	Soil Exposure Point Concentration Table	✓
Input Form 2R	Groundwater Exposure Point Concentration Table	
Input Form 2C	Surface Water Exposure Point Concentration Table	
Input Form 2D	Soil Gas Exposure Point Concentration Table	
Input Form 2E	Indoor Air Exposure Point Concentration Table	
Input Form 215		
	Output Section 1 - Summary Output for All Calculators	
Output Form 1A	Pick for Individual Dathwaya	
Output Form IA	Risk for Individual Pathways	
Output Form IB	Silewide Risk Output Section 2 Direct Contact Soil and Croundwater Colculators	
Outrust Essue 24	Desident Section 2 - Direct Contact Soil and Groundwater Calculators	
Output Form 2A		
Output Form 2B	N D i l ci l W l C i l	
Output Form 2C	Non-Residential Worker Soil	
Output Form 2D	Non-Residential Worker Groundwater Use	
Output Form 2E	Construction Worker Soil	
Output Form 2F	Recreator/Trespasser Soil	✓
Output Form 2G	Recreator/Trespasser Surface Water	✓
	Output Section 3 - Vapor Intrusion Calculators	
Output Form 3A	Resident Groundwater to Indoor Air	
Output Form 3B	Resident Soil Gas to Indoor Air	
Output Form 3C	Resident Indoor Air	
Output Form 3D	Non-Residential Worker Groundwater to Indoor Air	
Output Form 3E	Non-Residential Worker Soil Gas to Indoor Air	
Output Form 3F	Non-Residential Worker Indoor Air	
	Output Section 4 - Contaminant Migration Worksheets	
Output Form 4A	Soil to Groundwater - Forward Mode	
Output Form 4B	Groundwater to Groundwater - Forward Mode	
Output Form 4C	Soil to Surface Water - Forward Mode	
Output Form 4D	Groundwater to Surface Water - Forward Mode	
Output Form 4E	Soil to Groundwater - Backward Mode	
Output Form 4F	Groundwater to Groundwater - Backward Mode	
Output Form 4G	Soil to Surface Water - Backward Mode	
Output Form 4H	Groundwater to Surface Water - Backward Mode	

Complete Exposure Pathways		Input Form 1A									
Version Date: June 2021 Basis: May 2021 EPA RSL T Site ID: BPN 21061-17-060	able										
Exposure Unit ID: EU#2 Creek - Greenway User exlcuding Background											
Note: Risk output will only be calc	ulated for complete exposure pathways.										
Receptor	Pathway	Check box if pathway complete									
DIRECT CONTACT SOIL AND WATER PATHWAYS											
Resident	Soil										
	Groundwater Use										
Non-Residential Worker	Soil										
Non-Residential worker	Groundwater Use										
Construction Worker	Soil										
Recreator/Trespasser	Soil	✓									
	Surface Water										
VAP	OR INTRUSION PATHWAYS										
	Groundwater to Indoor Air										
Resident	Soil Gas to Indoor Air										
	Indoor Air										
	Groundwater to Indoor Air										
Non-Residential Worker	Soil Gas to Indoor Air										
	Indoor Air										
CONTAN	IINANT MIGRATION PATHWAYS										
Groundwater	Source Soil										
	Source Groundwater										
Surface Water	Source Soil										
Surree Water	Source Groundwater										

Exposure Factors and Target Risks

Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#2 Creek - Greenway User exlcuding Background

Exposure Parameter	Default Value	Site Specific Value	Justification
	Genera	al	
Target Cancer Risk (individual)	1.0E-06	1.0E-06	
Target Cancer Risk (cumulative)	1.0E-04	1.0E-04	
Target Hazard Index (individual)	2.0E-01	2.0E-01	
Target Hazard Index (cumulative)	1.0E+00	1.0E+00	
	70	70	
Lifetime (L1) (years)	15	15	
Every weight (Bw) (kg)	6	15	-
Exposure Duration (ED) (yr)	350	250	-
Exposure Frequency (EF) (d/yr)	24	330	-
Skin Surface Area Soil Exposure (SA) (cm2)	24	24	
Skin surface Area - Son Exposure (SA_s) (cm2)	0.2	2373	
Soil Adherence Factor (AF) (mg/cm)	200	0.2	-
Son ingestion Rate (IRS) (ing/day)	6365	200	-
Skin Surface Area - water Exposure (SA_w) (cm2)	0.78	0.79	-
Water Exposure Time (ET) (hr/avent)	0.78	0.78	
water Exposure Time (ET_{event}) ($m/event$)	1	0.54	
water Event Frequency (EV) (events/day)	I Pasidontial	Adult	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (vr)	20	20	
Exposure Erequency (EE) (d/yr)	350	20	
Exposure Time (ET) (hr)	24	24	
Shin Surface Area Sail Experience (SA) (am ²)	6032	6032	
Skill Sufface Area - Soff Exposure (SA_s) (cm)	0.07	0.07	
Soil Ingestion Pate (IPS) (mg/day)	100	100	
Son nigestion Rate (IRS) (ing/day)	19652	10652	
Skin Surface Area - water Exposure (SA_w) (cm) Water Ingestion Pate (IPW) (L/d)	2.5	2.5	
Water Exposure Time (ET) (hr/event)	0.71	0.71	
Water Exposure Time (ET _{event}) (in/event)	1	0.71	
water Event Frequency (EV) (events/day)	Non-Residentis	l Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (vr)	25	25	
Exposure Frequency (EF) (d/vr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA.) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.12	0.12	
Soil Ingestion Rate (IR) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	0.83	0.83	
Water Exposure Time (ET) (hr/event)	0.67	0.67	
Water Event Frequency (EV) (events/dav)	1	1	
1	Construction	Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Working Weeks (EW) (wk/yr)	50	50	
Exposure Duration (ED) (vr)	1	1	
Enposare Buranon (EB) (j1)		250	
Exposure Frequency (EF) (d/yr)	250	230	
Exposure Frequency (EF) (d/yr) Exposure Time (ET) (hr)	250 8	8	
Exposure Frequency (EF) (dyr) Exposure Time (ET) (hr) Skin Surface Area - Soil Exposure (SA,) (cm ²)	250 8 3527	8 3527	
Exposure Frequency (EF) (d/yr) Exposure Time (ET) (hr) Skin Surface Area - Soil Exposure (SA _s) (cm ²) Soil Adherence Factor (AF) (mg/cm ²)	250 8 3527 0.3	8 3527 0.3	

Input Form 1B

Input Form 1B

Exposure Factors and Target Risks

Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#2 Creek - Greenway User exlcuding Background

Exposure Parameter	Defau	lt Value	Site Specific Value	Justification
	1	User Defined	d Child	
	Recreator	Trespasser		1
Lifetime (LT) (years)	70	NA	70	
Averaging Time (AT) (days/yr)	365	NA	365	
Body Weight (BW) (kg)	15	NA	15	
Exposure Duration 0-2 (ED) (yr)	2	NA	2	
Exposure Duration 2-6 (ED) (yr)	4	NA	4	
Exposure Frequency (EF) (d/yr)	195	NA	52	Based on 98th percentile tail use polling data
Exposure Time (ET) (hr)	2	NA	0.5	Based on 98th percentile tail use polling data
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	2373	NA	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	NA	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	NA	200	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	6365	NA	6365	
Water Ingestion Rate (IRW) (L/hr)	0.124	NA	0.124	
Water Exposure Time (ET _{event}) (hr/event)	2	NA	0.5	Based on 98th percentile tail use polling data
Water Event Frequency (EV) (events/day)	1	NA	1	
		User Defined	d Adult	•
	Recreator	Trespasser		1
Lifetime (LT) (years)	70	70	70	
Body Weight (BW) (kg)	80	45	80	
Exposure Duration 6-16 (ED) (yr)	10	10	10	
Exposure Duration 16-26 (ED) (yr)	10	0	10	
Exposure Frequency (EF) (d/yr)	195	90	364	Based on 98th percentile tail use polling data
Exposure Time (ET) (hr)	2	2	1	Based on 98th percentile tail use polling data
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.2	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	200	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	19652	
Water Ingestion Rate (IRW) (L/hr)	0.0985	0.071	0.0985	
Water Exposure Time (ET _{event}) (hr/event)	2	2	1	Based on 98th percentile tail use polling data
Water Event Frequency (EV) (events/day)	1	1	1	

Exposure Point Concentrations Version Date: June 2021

Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#2 Creek - Greenway User exlcuding Background

Soil Exposure Point Concentration Table

Description of Exposure Point Concentration Selection:

Maximum detected constituent concentrations from sediment samples collected at the site during the most recent sampling event, excluding background levels.

N	OTE: If the chem	ical list is changed from a prior	· calculator run,	remember to select "See All Chemicals" on the data output sheet or newly adde	d chemicals will	not be included	in risk calculatio	18					
	Exposure Point Concentration (mg/kg)	Notes:	CAS Number	Chemical For the chemicals highlighted in blue, data entry notes are provided in the PSRG Table link on the Main Menu	Minimum Concentration (Qualifier)	Maximum Concentration (Qualifier)	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	S Tox (S Le
	20.2	SED-3	7440-50-8	Copper			mg/kg						
	0.008	SED-4	7439-97-6	~Mercury (elemental)			mg/kg						
	10.5	SED-4	7440-02-0	Nickel Soluble Salts			mg/kg						
	30.7	SED-4	7440-24-6	Strontium, Stable			mg/kg						

586

					Input Form 2A
					1
creening icity Value Gereening evel) (n/c)	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion	

Risk for Individual Pathways				Output Form 1A
Version Date: June 2021				
Basis: May 2021 EPA RSL Table				
Site ID: BPN 21061-17-060				
Exposure Unit ID: EU#2 Creek -	Greenway User exlcuding Backgrou	nd		
	· · · · · · · · · · · · · · · · · · ·			
DIRE	CT CONTACT SOIL AND WATE	R CALCULATO	RS	
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?
Resident	Soil	NC	NC	NC
Kesident	Groundwater Use*	NC	NC	NC
Non Residential Worker	Soil	NC	NC	NC
Non-Residential worker	Groundwater Use*	NC	NC	NC
Construction Worker	Soil	NC	NC	NC
B aaraatar/Traapagaar	Soil	7.1E-13	2.1E-03	NO
Recreator/ rrespasser	Surface Water*	3.2E-07	1.7E-02	NO
	VAPOR INTRUSION CALCU	LATORS		
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?
	Groundwater to Indoor Air	NC	NC	NC
Resident	Soil Gas to Indoor Air	NC	NC	NC
	Indoor Air	NC	NC	NC
	Groundwater to Indoor Air	NC	NC	NC
Non-Residential Worker	Soil Gas to Indoor Air	NC	NC	NC
	Indoor Air	NC	NC	NC
	CONTAMINANT MIGRATION CA	LCULATORS		
Pathway	Source	Target Rec	eptor Concentratio	ns Exceeded?
Groundwater	Source Soil	Exceedence of	2L at Receptor?	NC
Groundwater	Source Groundwater	Exceedence of	2L at Receptor?	NC
Surface Water	Source Soil	Exceedence of	Exceedence of 2B at Receptor?	
	Source Groundwater	Exceedence of	2B at Receptor?	NC

Notes:

1. If lead concentrations were entered in the exposure point concentration tables, see the individual calculator sheets for lead concentrations in comparison to screening levels. Note that lead is not included in cumulative risk calculations.

2. * = If concentrations in groundwater exceed the NC 2L Standards or IMAC, or concentrations in surface water exceed the NC 2B Standards, appropriate remediation and/or institutional control measures will be necessary to be eligible for a risk-based closure.

3. NM = Not Modeled

4. NC = Pathway not calculated

Output Form 2F

DEQ Risk Calculator - Direct Contact - Recreator/Trespasser Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060 Exposure Unit ID: EU#2 Creek - Greenway User exlcuding Background

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 400 mg/kg for residential soil.

Receptor Type: Greenway user

CAS#	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Ouotient
7440-50-8	Copper	20.2	20.2	20.2					9.6E-04			9.6E-04
7439-97-6	~Mercury (elemental)	0.008	0.008	0.008							3.0E-05	3.0E-05
7440-02-0	Nickel Soluble Salts	10.5	10.5	10.5			7.1E-13	7.1E-13	1.0E-03		8.2E-08	1.0E-03
7440-24-6	Strontium, Stable	30.7	30.7	30.7					9.7E-05			9.7E-05
						Cumulative:]	7.1E-13				2.1E-03

Output Form 2G DEQ Risk Calculator - Direct Contact - Recreator/Trespasser Surface Water Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060 Exposure Unit ID: EU#2 Creek - Greenway User exlcuding Background Receptor Type: Greenway user Calculated Dermal Dermal Contact Ingestion Dermal Ingestion Calculated Ingestion Non-Contact CAS # Chemical Name: Concentration Concentration Carcinogenic Carcinogenic Carcinogenic Hazard Carcinogenic Hazard (ug/L) (ug/L) Risk Risk Risk Quotient Hazard Quotient Quotient 2.2E-03 7.6E-04 7440-38-2 Arsenic, Inorganic 0.45 0.45 2.7E-07 4.5E-08 3.2E-07 1.8E-03 3.7E-04 7440-39-3 Barium 32.1 32.1 2.0E-04 5.6E-04 16065-83-1 Chromium(III), Insoluble Salts 0.73 0.73 6.0E-07 9.2E-06 9.8E-06 7440-48-4 Cobalt 0.36 0.36 1.5E-03 1.2E-04 1.6E-03 7440-50-8 Copper 3.2 3.2 9.8E-05 2.0E-05 1.2E-04 7439-96-5 Manganese (Non-diet) 37.4 37.4 1.9E-03 9.5E-03 1.1E-02 7440-02-0 Nickel Soluble Salts 0.62 0.62 3.8E-05 3.8E-05 7.6E-05 7782-49-2 2.9E-05 5 9E-06 Selenium 0.12 0.12 3 5E-05 7440-24-6 Strontium, Stable 110 110 2.3E-04 4.5E-05 2.7E-04 Cumulative: 3.2E-07 1.7E-02

North Carolina Department of Environmental Quality Risk Calculator

Version Date:	June 2021
Basis:	May 2021 EPA RSL Table
Site Name:	828 MLK Jr. Blvd Property
Site Address:	828 MLK Jr Blvd, Chapel Hill, Orange County, North Carolina
DEQ Section:	Brownfields Program
Site ID:	BPN 21061-17-060
Exposure Unit ID:	EU#3 - Resident, Non-Residential Worker, & Greenway User excludign
Submittal Date:	
Dronowod Dyr	Hart & Hickman, PC
г герагей Бу:	3921 Sunset Ridge Rd, Suite 301, Raleigh, North Carolina
Reviewed By:	

Table of Contents		TOC							
Version Date: June	2021								
Basis: May 2021 E	PA RSL Table								
Site ID: BPN 2106	1-17-060								
Exposure Unit ID:	xposure Unit ID: EU#3 - Resident, Non-Residential Worker, & Greenway User excludign Background								
Form No.	Description	Check box if included							
	DATA INPUT SHEETS								
	Input Section 1 - Exposure Pathways & Parameters								
Input Form 1A	Complete Exposure Pathways	✓							
Input Form 1B	Exposure Factors and Target Risks	✓							
Input Form 1C	Contaminant Migration Parameters								
Input Form 1D	Sample Statistics								
	Input Section 2 - Exposure Point Concentrations								
Input Form 2A	Soil Exposure Point Concentration Table	~							
Input Form 2R	Groundwater Exposure Point Concentration Table								
Input Form 2C	Surface Water Exposure Point Concentration Table								
Input Form 2D	Soil Gas Exposure Point Concentration Table								
Input Form 2E	Indoor Air Exposure Point Concentration Table								
input i ofin 2E	DATA OUTPUT SHEETS								
	Output Section 1 - Summary Output for All Calculators								
Output Form 1A	Risk for Individual Pathways	v							
Output Form 1R	Sitewide Risk								
output I offit IB	Output Section 2 - Direct Contact Soil and Groundwater Calculators								
Output Form 2A	Resident Soil	v							
Output Form 2B	Resident Groundwater Use								
Output Form 2C	Non-Residential Worker Soil								
Output Form 2D	Non-Residential Worker Groundwater Use								
Output Form 2E	Construction Worker Soil								
Output Form 2F	Recreator/Trespasser Soil								
Output Form 2G	Recreator/Trespasser Surface Water								
•	Output Section 3 - Vapor Intrusion Calculators								
Output Form 3A	Resident Groundwater to Indoor Air								
Output Form 3B	Resident Soil Gas to Indoor Air								
Output Form 3C	Resident Indoor Air								
Output Form 3D	Non-Residential Worker Groundwater to Indoor Air								
Output Form 3E	Non-Residential Worker Soil Gas to Indoor Air								
Output Form 3F	Non-Residential Worker Indoor Air								
	Output Section 4 - Contaminant Migration Worksheets								
Output Form 4A	Soil to Groundwater - Forward Mode								
Output Form 4B	Groundwater to Groundwater - Forward Mode								
Output Form 4C	Soil to Surface Water - Forward Mode								
Output Form 4D	Groundwater to Surface Water - Forward Mode								
Output Form 4E	Soil to Groundwater - Backward Mode								
Output Form 4F	Groundwater to Groundwater - Backward Mode								
Output Form 4G	Soil to Surface Water - Backward Mode								
Output Form 4H	Groundwater to Surface Water - Backward Mode								

Complete Exposure Pathways Input Form 1A							
Version Date: June 2021							
Basis: May 2021 EPA RSL 1 Site ID: BPN 21061-17-060	able						
Exposure Unit ID: EU#3 - Ro	esident, Non-Residential Worker, & Gro	eenway User exc					
<i>Note: Risk output will only be calculated for complete exposure pathways.</i>							
ReceptorPathwayCheck boxpathwaycomplete							
DIRECT CON	TACT SOIL AND WATER PATHWAYS						
Resident	Soil						
Kesident	Groundwater Use						
Non-Residential Worker	Soil						
Non-Residential worker	Groundwater Use						
Construction Worker	Construction Worker Soil						
Recreator/Trespasser	Soil	\checkmark					
Recreator/ rrespasser	Surface Water						
VAP	OR INTRUSION PATHWAYS						
	Groundwater to Indoor Air						
Resident	Soil Gas to Indoor Air						
	Indoor Air						
	Groundwater to Indoor Air						
Non-Residential Worker	Soil Gas to Indoor Air						
	Indoor Air						
CONTAMINANT MIGRATION PATHWAYS							
Groundwater	Source Soil						
Groundwater	Source Groundwater						
Surface Water	Source Soil						
Surface water	Source Groundwater						

Exposure Factors and Target Risks

Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#3 - Resident, Non-Residential Worker, & Greenway User excludign Background

Exposure Parameter	Default Value	Site Specific Value	Justification
	Gener	al	1
Target Cancer Risk (individual)	1.0E-06	1.0E-06	
Target Cancer Risk (cumulative)	1.0E-04	1.0E-04	
Target Hazard Index (individual)	2.0E-01	2.0E-01	
Target Hazard Index (cumulative)	1.0E+00	1.0E+00	
	Residential	Child	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	15	15	
Exposure Duration (ED) (yr)	6	6	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA _s) (cm2)	2373	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	200	
Skin Surface Area - Water Exposure (SAw) (cm2)	6365	6365	
Water Ingestion Rate (IRW) (L/d)	0.78	0.78	
Water Exposure Time (ET _{event}) (hr/event)	0.54	0.54	
Water Event Frequency (EV) (events/day)	1	1	
1 , (,) (,)	Residential	Adult	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr)	20	20	
Exposure Frequency (EF) (d/yr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA.) (cm ²)	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	2.5	2.5	
Water Exposure Time (ET.,) (hr/event)	0.71	0.71	
Water Event Frequency (EV) (events/day)	1	1	
	Non-Residentia	al Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (vr)	25	25	
Exposure Frequency (EF) (d/vr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA.) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.12	0.12	
Soil Ingestion Rate (IR) (mg/dav)	100	100	
Skin Surface Area - Water Exposure (SA) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (1/d)	0.83	0.83	
Water Exposure Time (ET) (hr/event)	0.67	0.65	
Water Event Frequency (FV) (events/day)	1	1	
	Construction	Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Working Weeks (EW) (wk/vr)	50	50	
Exposure Duration (ED) (vr)	1	1	
Exposure Frequency (EF) (d/vr)	250	250	
	8	8	
Exposure Time (ET) (hr)	0	0	
Exposure Time (ET) (hr) Skin Surface Area Sail Exposure (SA) (cm ²)	3527	3527	
Exposure Time (ET) (hr) Skin Surface Area - Soil Exposure (SA _s) (cm ²) Soil Adherence Foster (AF) $(m - (m^2))$	3527 0 3	3527	

Input Form 1B

Exposure Factors and Target Risks Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#3 - Resident, Non-Residential Worker, & Greenway User excludign Background

Exposure Parameter	Defau	lt Value	Site Specific Value	Justification					
User Defined Child									
	Recreator	Trespasser							
Lifetime (LT) (years)	70	NA	70						
Averaging Time (AT) (days/yr)	365	NA	365						
Body Weight (BW) (kg)	15	NA	15						
Exposure Duration 0-2 (ED) (yr)	2	NA	2						
Exposure Duration 2-6 (ED) (yr)	4	NA	4						
Exposure Frequency (EF) (d/yr)	195	NA	52	Based on 98% percentile of trail users					
Exposure Time (ET) (hr)	2	NA	0.5	Based on 98% percentile of trail users					
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	2373	NA	2373						
Soil Adherence Factor (AF) (mg/cm ²)	0.2	NA	0.2						
Soil Ingestion Rate (IRS) (mg/day)	200	NA	200						
Skin Surface Area - Water Exposure (SA _w) (cm ²)	6365	NA	6365						
Water Ingestion Rate (IRW) (L/hr)	0.124	NA	0.124						
Water Exposure Time (ET _{event}) (hr/event)	2	NA	0.5	Based on 98% percentile of trail users					
Water Event Frequency (EV) (events/day)	1	NA	1						
	Ţ	User Defined	l Adult						
	Recreator	Trespasser							
Lifetime (LT) (years)	70	70	70						
Body Weight (BW) (kg)	80	45	80						
Exposure Duration 6-16 (ED) (yr)	10	10	10						
Exposure Duration 16-26 (ED) (yr)	10	0	10						
Exposure Frequency (EF) (d/yr)	195	90	364	Based on 98% percentile of trail users					
Exposure Time (ET) (hr)	2	2	1	Based on 98% percentile of trail users					
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	6032						
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.2	0.07						
Soil Ingestion Rate (IRS) (mg/day)	100	200	100						
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	19652						
Water Ingestion Rate (IRW) (L/hr)	0.0985	0.071	0.0985						
Water Exposure Time (ET _{event}) (hr/event)	2	2	1	Based on 98% percentile of trail users					
Water Event Frequency (EV) (events/day)	1	1	1						

Input Form 1B

Exposure Point Concentrations Version Date: June 2021

Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#3 - Resident, Non-Residential Worker, & Greenway User excludign Background

Soil Exposure Point Concentration Table

Description of Exposure Point Concentration Selection:

Maximum detected constituent concentrations from samples collected from shallow (0-2 ft) soil within the exposure unit, excluding background levels.

NOTE: If the chem	ical list is changed from a prior	r calculator run,	remember to select "See All Chemicals" on the data output sheet or newly adde	d chemicals will	not be included i	in risk calculation	18					
Exposure Point Concentration (mg/kg)	Notes:	CAS Number	Chemical M For the chemicals highlighted in blue, data entry notes are provided in the PSRG Table link on the Main Menu (C		Maximum Concentration (Qualifier)	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	To (L
60.3	HH-10	7440-38-2	Arsenic, Inorganic			mg/kg						
3260	HH-11	7440-39-3	Barium			mg/kg						
5.9	HH-11	7440-41-7	Beryllium and compounds			mg/kg						
0.43	HH-11	7439-97-6	~Mercury (elemental)			mg/kg						
23.5	HH-11	7440-02-0	Nickel Soluble Salts			mg/kg						
9.05	HH-11	7782-49-2	Selenium			mg/kg						
269	HH-10	7440-24-6	Strontium, Stable			mg/kg						

					Input Form 2A
creening icity Value Screening evel) (n/c)	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion	

Risk for Individual Pathways				Output Form 1A
Version Date: June 2021				
Basis: May 2021 EPA RSL Table				
Site ID: BPN 21061-17-060				
Exposure Unit ID: EU#3 - Reside	nt, Non-Residential Worker, & Gree	enway User exclu	dign Backgroun	ıd
•		¥		
DIRE	CT CONTACT SOIL AND WATEI	R CALCULATO	RS	
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?
Resident	Soil	8.9E-05	2.1E+00	YES
Kesident	Groundwater Use*	NC	NC	NC
Non-Residential Worker	Soil	2.0E-05	1.5E-01	NO
Non-ixesidential worker	Groundwater Use*	NC	NC	NC
Construction Worker	Soil	NC	NC	NC
Recreator/Trespasser	Soil	3.3E-05	3.1E-01	NO
Recreator/Trespasser	Surface Water*	NC	NC	NC
	VAPOR INTRUSION CALCU	LATORS		
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?
	Groundwater to Indoor Air	NC	NC	NC
Resident	Soil Gas to Indoor Air	NC	NC	NC
	Indoor Air	NC	NC	NC
	Groundwater to Indoor Air	NC	NC	NC
Non-Residential Worker	Soil Gas to Indoor Air	NC	NC	NC
	Indoor Air	NC	NC	NC
(CONTAMINANT MIGRATION CA	LCULATORS		
Pathway	Source	Target Rec	eptor Concentratio	ns Exceeded?
Groundwater	Source Soil	Exceedence of	2L at Receptor?	NC
Groundwater	Source Groundwater	Exceedence of	2L at Receptor?	NC
Surface Water	Source Soil	Exceedence of	2B at Receptor?	NC
Surface Water	Source Groundwater	Exceedence of	NC	

Notes:

1. If lead concentrations were entered in the exposure point concentration tables, see the individual calculator sheets for lead concentrations in comparison to screening levels. Note that lead is not included in cumulative risk calculations.

2. * = If concentrations in groundwater exceed the NC 2L Standards or IMAC, or concentrations in surface water exceed the NC 2B Standards, appropriate remediation and/or institutional control measures will be necessary to be eligible for a risk-based closure.

3. NM = Not Modeled

4. NC = Pathway not calculated

Output Form 2A

DEQ Risk Calculator - Direct Contact - Resident Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#3 - Resident, Non-Residential Worker, & Greenway User excludign Background

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 400 mg/kg for residential soil.

CAS #	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk*	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient*	Calculated Non- Carcinogenic Hazard Quotient
7440-38-2	Arsenic, Inorganic	60.3	60.3	60.3	7.8E-05	1.1E-05	1.6E-09	8.9E-05	1.5E+00	1.8E-01	6.5E-05	1.7E+00
7440-39-3	Barium	3260	3260	3260					2.1E-01		1.1E-04	2.1E-01
7440-41-7	Beryllium and compounds	5.9	5.9	5.9			8.5E-11	8.5E-11	3.8E-02		4.8E-06	3.8E-02
7439-97-6	~Mercury (elemental)	0.43	0.43	0.43							3.7E-02	3.7E-02
7440-02-0	Nickel Soluble Salts	23.5	23.5	23.5			3.7E-11	3.7E-11	1.5E-02		4.2E-06	1.5E-02
7782-49-2	Selenium	9.05	9.05	9.05					2.3E-02		7.3E-09	2.3E-02
7440-24-6	Strontium, Stable	269	269	269					5.7E-03			5.7E-03
						Cumulative:]	8.9E-05				2.1E+00

	5	98

DEQ Risk Calculate	or - Direct Contact - Non-Residential Worker Soil											Output Form 2C
Version Date: Jun	e 2021											
Basis: May 2021 F	EPA RSL Table											
Site ID: BPN 21061-17-060												
Exposure Unit ID:	EU#3 - Resident, Non-Residential Worker, & Gr	enway User ex	cludign Backg	round								
* - Note that inha ** - Note that the mg/kg for comme	lation on this calculator refers to outdoor inhalation e EPA has no consensus on reference dose or cancer recial/industrial soil.	of volatiles and slope factor vali	l particulates, no ues for lead, the	ot indoor inhal refore it is not j	ation associatea possible to calci	with vapor intrus vlate cancer risk o	ion. r hazard quotient	Lead concentr	rations are con	npared to the E	PA screening l	evel of 800
CAS#	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Ouotient
7440-38-2	Arsenic, Inorganic	60.3	60.3	60.3	1.7E-05	3.5E-06	3.6E-10	2.0E-05	1.0E-01	2.2E-02	1.5E-05	1.3E-01
7440-39-3	Barium	3260	3260	3260					1.4E-02		2.5E-05	1.4E-02
7440-41-7	Beryllium and compounds	5.9	5.9	5.9			1.9E-11	1.9E-11	2.5E-03		1.1E-06	2.5E-03
7439-97-6	~Mercury (elemental)	0.43	0.43	0.43							8.9E-03	8.9E-03
7440-02-0	Nickel Soluble Salts	23.5	23.5	23.5			8.4E-12	8.4E-12	1.0E-03		1.0E-06	1.0E-03
7782-49-2	Selenium	9.05	9.05	9.05					1.5E-03		1.7E-09	1.5E-03
7440-24-6	Strontium, Stable	269	269	269					3.8E-04			3.8E-04
						Cumulative:		2.0E-05				1.5E-01

599

Output Form 2F

DEQ Risk Calculator - Direct Contact - Recreator/Trespasser Soil Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060 Exposure Unit ID: EU#3 - Resident, Non-Residential Worker, & Greenway User excludign Background

* - Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion. ** - Note that the EPA has no consensus on reference dose or cancer slope factor values for lead, therefore it is not possible to calculate cancer risk or hazard quotient. Lead concentrations are compared to the EPA screening level of 400 mg/kg for residential soil.

Receptor Type: Greenway User

CAS#	Chemical Name:	Ingestion Concentration (mg/kg)	Dermal Concentration (mg/kg)	Inhalation Concentration (mg/kg)*	Ingestion Carcinogenic Risk	Dermal Carcinogenic Risk	Inhalation Carcinogenic Risk	Calculated Carcinogenic Risk	Ingestion Hazard Quotient	Dermal Hazard Quotient	Inhalation Hazard Quotient	Calculated Non- Carcinogenic Hazard Quotient
7440-38-2	Arsenic, Inorganic	60.3	60.3	60.3	2.8E-05	5.1E-06	6.7E-11	3.3E-05	2.3E-01	3.2E-02	2.8E-06	2.6E-01
7440-39-3	Barium	3260	3260	3260					3.1E-02		4.6E-06	3.1E-02
7440-41-7	Beryllium and compounds	5.9	5.9	5.9			3.7E-12	3.7E-12	5.6E-03		2.1E-07	5.6E-03
7439-97-6	~Mercury (elemental)	0.43	0.43	0.43							1.6E-03	1.6E-03
7440-02-0	Nickel Soluble Salts	23.5	23.5	23.5			1.6E-12	1.6E-12	2.2E-03		1.8E-07	2.2E-03
7782-49-2	Selenium	9.05	9.05	9.05					3.4E-03		3.2E-10	3.4E-03
7440-24-6	Strontium, Stable	269	269	269					8.5E-04			8.5E-04
						Cumulative:]	3.3E-05				3.1E-01

North Carolina Department of Environmental Quality Risk Calculator

Version Date:	June 2021				
Basis:	May 2021 EPA RSL Table				
Site Name:	828 MLK Jr. Blvd Property				
Site Address:	828 MLK Jr Blvd, Chapel Hill, Orange County, North Carolina				
DEQ Section:	Brownfields Program				
Site ID:	BPN 21061-17-060				
Exposure Unit ID:	EU#3 - Construction Worker excluding Background				
Submittal Date:					
Duonawad Duu	Hart & Hickman, PC				
г герагей Бу:	3921 Sunset Ridge Rd, Suite 301, Raleigh, North Carolina				
Reviewed By:					

Table of Contents		TOC					
Version Date: Jun	e 2021						
Basis: May 2021 E	PA RSL Table						
Site ID: BPN 2106	1-17-060						
Exposure Unit ID: EU#3 - Construction Worker excluding Background							
Chi							
Form No.	Description	if included					
DATA INPUT SHEETS							
	Input Section 1 - Exposure Pathways & Parameters						
Input Form 1A	Complete Exposure Pathways	~					
Input Form 1B	Exposure Factors and Target Risks	✓					
Input Form 1C	Contaminant Migration Parameters						
Input Form 1D	Sample Statistics						
•	Input Section 2 - Exposure Point Concentrations						
Input Form 2A	Soil Exposure Point Concentration Table	✓					
Input Form 2B	Groundwater Exposure Point Concentration Table						
Input Form 2C	Surface Water Exposure Point Concentration Table						
Input Form 2D	Soil Gas Exposure Point Concentration Table						
Input Form 2E	Indoor Air Exposure Point Concentration Table						
input i ofin 21	DATA OUTPUT SHEFTS						
DATA OUTFUT SHEETS Output Section 1 - Summary Output for All Calculators							
Output Form 1A	Risk for Individual Pathways						
Output Form 1B	Sitewide Risk						
output i offit i D	Output Section 2 - Direct Contact Soil and Groundwater Calculators						
Output Form 2A	Resident Soil						
Output Form 2B	Resident Groundwater Use						
Output Form 2C	Non-Residential Worker Soil						
Output Form 2D	Non-Residential Worker Groundwater Use						
Output Form 2E	Construction Worker Soil						
Output Form 2E	Recreator/Trespasser Soil						
Output Form 2G	Recreator/Trespasser Surface Water						
output i offiti 20	Output Section 3 - Vapor Intrusion Calculators						
Output Form 3A	Resident Groundwater to Indoor Air						
Output Form 3B	Resident Soil Gas to Indoor Air						
Output Form 3C	Resident Indoor Air						
Output Form 3D	Non-Residential Worker Groundwater to Indoor Air	\square					
Output Form 3E	Non-Residential Worker Soil Gas to Indoor Air						
Output Form 3F	Non-Residential Worker Indoor Air						
	Output Section 4 - Contaminant Migration Worksheets						
Output Form 4A	Soil to Groundwater - Forward Mode						
Output Form 4R	Groundwater to Groundwater - Forward Mode	\square					
Output Form 4C	Soil to Surface Water - Forward Mode						
Output Form 4D	Groundwater to Surface Water - Forward Mode						
Output Form 4E	Soil to Groundwater - Backward Mode						
Output Form 4F	Groundwater to Groundwater - Backward Mode						
Output Form 4G	Soil to Surface Water - Backward Mode						
Output Form 4H	Groundwater to Surface Water - Backward Mode						
Output Form 4B Output Form 4C Output Form 4D Output Form 4E Output Form 4F Output Form 4G Output Form 4H	Groundwater to Groundwater - Forward Mode Soil to Surface Water - Forward Mode Groundwater to Surface Water - Forward Mode Soil to Groundwater - Backward Mode Groundwater to Groundwater - Backward Mode Groundwater to Surface Water - Backward Mode						

Complete Exposure Pathways Input Form						
Version Date: June 2021 Basis: May 2021 EPA RSL T Site ID: BPN 21061-17-060	able					
Exposure Unit ID: EU#3 - Co	onstruction Worker excluding Backgro	und				
Note: Risk output will only be calc	ulated for complete exposure pathways.					
Receptor	Pathway	Check box if pathway complete				
DIRECT CON	TACT SOIL AND WATER PATHWAYS	_				
Posident	Soil					
Kesident	Groundwater Use					
Non Residential Worker	Soil					
Non-Residential worker	Groundwater Use					
Construction Worker	Soil	√				
Pacrantor/Traspassar	Soil					
Recreator/ rrespasser	Surface Water					
VAP	OR INTRUSION PATHWAYS					
	Groundwater to Indoor Air					
Resident	Soil Gas to Indoor Air					
	Indoor Air					
	Groundwater to Indoor Air					
Non-Residential Worker	Soil Gas to Indoor Air					
	Indoor Air					
CONTAMINANT MIGRATION PATHWAYS						
Groundwater	Source Soil					
Groundwater	Source Groundwater					
Surface Water	Source Soil					
Surface Water	Source Groundwater					
Exposure Factors and Target Risks

Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#3 - Construction Worker excluding Background

Exposure Parameter	Default Value	Site Specific Value	Justification
	Genera	al	
Target Cancer Risk (individual)	1.0E-06	1.0E-06	
Target Cancer Risk (cumulative)	1.0E-04	1.0E-04	
Target Hazard Index (individual)	2.0E-01	2.0E-01	
Target Hazard Index (cumulative)	1.0E+00	1.0E+00	
I: 6-4:	70	70	
Pady Weight (PW) (kg)	15	15	
Exposure Duration (ED) (vr)	6	6	
Exposure Eraquency (EE) (d/ur)	350	350	
Exposure Trequency (ET) (d yr)	24	24	
Skin Surface Area - Soil Exposure (SA.) (cm?)	2373	24	
Skill Sufface Area - Son Exposure (SA_s) (en2)	0.2	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	200	
Skin Surface Area - Water Exposure (SA) (cm2)	6365	6365	
Water Ingestion Bate (IBW) (L/d)	0.78	0.78	
Water Exposure Time (ET) (hr/event)	0.54	0.54	
Water Exposure Time (ETevent) (Interent)	1	1	
water Event Frequency (Ev) (events/day)	Residential	Adult	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (vr)	20	20	
Exposure Frequency (EF) (d/vr)	350	350	
Exposure Time (ET) (hr)	24	24	
Skin Surface Area - Soil Exposure (SA.) (cm ²)	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	2.5	2.5	
Water Exposure Time (ET _{event}) (hr/event)	0.71	0.71	
Water Event Frequency (EV) (events/day)	1	1	
• • • • • • • • • • • • • • • • • • • •	Non-Residentia	al Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Exposure Duration (ED) (yr)	25	25	
Exposure Frequency (EF) (d/yr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.12	0.12	
Soil Ingestion Rate (IR) (mg/day)	100	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	
Water Ingestion Rate (IRW) (L/d)	0.83	0.83	
Water Exposure Time (ET _{event}) (hr/event)	0.67	0.67	
Water Event Frequency (EV) (events/day)	1	1	
	Construction	Worker	
Lifetime (LT) (years)	70	70	
Body Weight (BW) (kg)	80	80	
Working Weeks (EW) (wk/yr)	50	50	
Exposure Duration (ED) (yr)	1	1	
Exposure Frequency (EF) (d/yr)	250	250	
Exposure Time (ET) (hr)	8	8	
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	3527	3527	
Soil Adherence Factor (AF) (mg/cm ²)	0.3	0.3	
Soil Ingestion Rate (IR) (mg/day)	330	330	

Input Form 1B

604

Input Form 1B

Exposure Factors and Target Risks

Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#3 - Construction Worker excluding Background

Exposure Parameter	Defau	lt Value	Site Specific Value	Justification
	ι	Jser Defined	d Child	
	Recreator	Trespasser		
Lifetime (LT) (years)	70	NA	70	
Averaging Time (AT) (days/yr)	365	NA	365	
Body Weight (BW) (kg)	15	NA	15	
Exposure Duration 0-2 (ED) (yr)	2	NA	2	
Exposure Duration 2-6 (ED) (yr)	4	NA	4	
Exposure Frequency (EF) (d/yr)	195	NA	52	Based on 98th percentile of trail use polling data
Exposure Time (ET) (hr)	2	NA	0.5	Based on 98th percentile of trail use polling data
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	2373	NA	2373	
Soil Adherence Factor (AF) (mg/cm ²)	0.2	NA	0.2	
Soil Ingestion Rate (IRS) (mg/day)	200	NA	200	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	6365	NA	6365	
Water Ingestion Rate (IRW) (L/hr)	0.124	NA	0.124	
Water Exposure Time (ET _{event}) (hr/event)	2	NA	0.5	Based on 98th percentile of trail use polling data
Water Event Frequency (EV) (events/day)	1	NA	1	
	Ţ	Jser Defined	l Adult	
	Recreator	Trespasser		
Lifetime (LT) (years)	70	70	70	
Body Weight (BW) (kg)	80	45	80	
Exposure Duration 6-16 (ED) (yr)	10	10	10	
Exposure Duration 16-26 (ED) (yr)	10	0	10	
Exposure Frequency (EF) (d/yr)	195	90	364	Based on 98th percentile of trail use polling data
Exposure Time (ET) (hr)	2	2	1	Based on 98th percentile of trail use polling data
Skin Surface Area - Soil Exposure (SA _s) (cm ²)	6032	6032	6032	
Soil Adherence Factor (AF) (mg/cm ²)	0.07	0.2	0.07	
Soil Ingestion Rate (IRS) (mg/day)	100	200	100	
Skin Surface Area - Water Exposure (SA _w) (cm ²)	19652	19652	19652	
Water Ingestion Rate (IRW) (L/hr)	0.0985	0.071	0.0985	
Water Exposure Time (ET _{event}) (hr/event)	2	2	1	Based on 98th percentile of trail use polling data
Water Event Frequency (EV) (events/day)	1	1	1	

Exposure Point Concentrations Version Date: June 2021

Basis: May 2021 EPA RSL Table Site ID: BPN 21061-17-060

Exposure Unit ID: EU#3 - Construction Worker excluding Background

Soil Exposure Point Concentration Table

Description of Exposure Point Concentration Selection:

Maximum detected constituent concentrations from all samples collected within the exposure unit, excluding background levels.

NOTE: If the chem	tical list is changed from a prio	r calculator run,	remember to select "See All Chemicals" on the data output sheet or newly adde	d chemicals will	not be included	in risk calculatio	ns					
Exposure Point Concentration (mg/kg)	Notes:	CAS Number	Chemical For the chemicals highlighted in blue, data entry notes are provided in the PSRG Table link on the Main Menu	Minimum Concentration (Qualifier)	Maximum Concentration (Qualifier)	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	S Tox (1 L
60.3	HH-10	7440-38-2	Arsenic, Inorganic			mg/kg						
3260	HH-11	7440-39-3	Barium			mg/kg						
5.9	HH-11	7440-41-7	Beryllium and compounds			mg/kg						/
1480	Excavation H-4	7439-96-5	Manganese (Non-diet)			mg/kg						
0.43	HH-11	7439-97-6	~Mercury (elemental)			mg/kg						/
23.5	HH-11	7440-02-0	Nickel Soluble Salts			mg/kg						
9.05	HH-11	7782-49-2	Selenium			mg/kg						
269	HH-10	7440-24-6	Strontium, Stable			mg/kg						
												-

					Input Form 2A
					1
					J
creening icity Value creening evel) (n/c)	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion	

Risk for Individual Pathways				Output Form 1A					
Version Date: June 2021									
Basis: May 2021 EPA RSL Table									
Site ID: BPN 21061-17-060									
Exposure Unit ID: EU#3 - Construction Worker excluding Background									
DIRECT CONTACT SOIL AND WATER CALCULATORS									
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?					
Resident	Soil	NC	NC	NC					
Kesident	Groundwater Use*	NC	NC	NC					
Non-Residential Worker	Soil	NC	NC	NC					
	Groundwater Use*	NC	NC	NC					
Construction Worker	Soil	3.4E-06	8.5E+00	YES					
Decreator/Trespasser	Soil	NC	NC	NC					
Recreator/ mespasser	Surface Water*	NC	NC NC						
VAPOR INTRUSION CALCULATORS									
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?					
	Groundwater to Indoor Air	NC	NC	NC					
Resident	Soil Gas to Indoor Air	NC	NC	NC					
	Indoor Air	NC	NC	NC					
	Groundwater to Indoor Air	NC	NC	NC					
Non-Residential Worker	Soil Gas to Indoor Air	NC	NC	NC					
	Indoor Air	NC	NC	NC					
С	ONTAMINANT MIGRATION CA	LCULATORS							
Pathway	Source	Target Rec	eptor Concentratio	ns Exceeded?					
Groundwater	Source Soil	Exceedence of	2L at Receptor?	NC					
	Source Groundwater	Exceedence of	Exceedence of 2L at Receptor? N						
Surface Water	Source Soil	Exceedence of	2B at Receptor?	NC					
Surface Water	Source Groundwater	Exceedence of	2B at Receptor?	NC					

Notes:

1. If lead concentrations were entered in the exposure point concentration tables, see the individual calculator sheets for lead concentrations in comparison to screening levels. Note that lead is not included in cumulative risk calculations.

2. * = If concentrations in groundwater exceed the NC 2L Standards or IMAC, or concentrations in surface water exceed the NC 2B Standards, appropriate remediation and/or institutional control measures will be necessary to be eligible for a risk-based closure.

3. NM = Not Modeled

4. NC = Pathway not calculated

DEQ RISK Calculator - D	irect Contact - Construction Worker Soil											Output Form 2
/ersion Date: June 2021												
asis: May 2021 EPA RSL Table												
te ID: BPN 21061-17-060												
xposure Unit ID: EU#3 - Construction Worker excluding Background												
* - Note that inhalation	*- Note that inhalation on this calculator refers to outdoor inhalation of volatiles and particulates, not indoor inhalation associated with vapor intrusion.											
** - Note that the EPA	has no consensus on reference dose or cancer s	lope factor value	s for lead, there	efore it is not po	ossible to calcula	te cancer risk or l	hazard quotient.	Lead concentra	tions are comp	ared to the EP.	4 screening lev	el of 800
mg/kg for commercial/	industrial soil.											
						· · · · · · · · · · · · · · · · · · ·						Calculated
		Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Calculated	Ingestion	Dermal	Inhalation	Non-
G 1 G 1									8-			
CAS #	Chemical Name:	Concentration	Concentration	Concentration	Carcinogenic	Carcinogenic	Carcinogenic	Carcinogenic	Hazard	Hazard	Hazard	Carcinogenic
CAS #	Chemical Name:	Concentration (mg/kg)	Concentration (mg/kg)	Concentration (mg/kg)*	Carcinogenic Risk	Carcinogenic Risk	Carcinogenic Risk	Carcinogenic Risk	Hazard Quotient	Hazard Quotient	Hazard Quotient	Carcinogenic Hazard
CAS #	Chemical Name:	Concentration (mg/kg)	Concentration (mg/kg)	Concentration (mg/kg)*	Carcinogenic Risk	Carcinogenic Risk	Carcinogenic Risk	Carcinogenic Risk	Hazard Quotient	Hazard Quotient	Hazard Quotient	Carcinogenic Hazard Quotient
CAS # 7440-38-2	Chemical Name: Arsenic, Inorganic	Concentration (mg/kg) 60.3	Concentration (mg/kg) 60.3	Concentration (mg/kg)* 60.3	Carcinogenic Risk 2.2E-06	Carcinogenic Risk 3.5E-07	Carcinogenic Risk 8.0E-07	Carcinogenic Risk 3.3E-06	Hazard Quotient 3.6E-01	Hazard Quotient 5.7E-02	Hazard Quotient 9.0E-01	Carcinogenic Hazard Quotient 1.3E+00
CAS # 7440-38-2 7440-39-3	Chemical Name: Arsenic, Inorganic Barium	Concentration (mg/kg) 60.3 3260	Concentration (mg/kg) 60.3 3260	Concentration (mg/kg)* 60.3 3260	Carcinogenic Risk 2.2E-06	Carcinogenic Risk 3.5E-07	Carcinogenic Risk 8.0E-07	Carcinogenic Risk 3.3E-06	Hazard Quotient 3.6E-01 4.8E-02	Hazard Quotient 5.7E-02	Hazard Quotient 9.0E-01 1.5E-01	Carcinogenic Hazard Quotient 1.3E+00 1.9E-01
CAS # 7440-38-2 7440-39-3 7440-41-7	Chemical Name: Arsenic, Inorganic Barium Beryllium and compounds	Concentration (mg/kg) 60.3 3260 5.9	Concentration (mg/kg) 60.3 3260 5.9	Concentration (mg/kg)* 60.3 3260 5.9	Carcinogenic Risk 2.2E-06	Carcinogenic Risk 3.5E-07	Carcinogenic Risk 8.0E-07 4.4E-08	Carcinogenic Risk 3.3E-06 4.4E-08	Hazard Quotient 3.6E-01 4.8E-02 3.5E-03	Hazard Quotient 5.7E-02	Hazard Quotient 9.0E-01 1.5E-01 6.6E-02	Carcinogenic Hazard Quotient 1.3E+00 1.9E-01 7.0E-02
CAS # 7440-38-2 7440-39-3 7440-41-7 7439-96-5	Chemical Name: Arsenic, Inorganic Barrium Beryllium and compounds Manganese (Non-diet)	Concentration (mg/kg) 60.3 3260 5.9 1480	Concentration (mg/kg) 60.3 3260 5.9 1480	Concentration (mg/kg)* 60.3 3260 5.9 1480	Carcinogenic Risk 2.2E-06	Carcinogenic Risk 3.5E-07	Carcinogenic Risk 8.0E-07 4.4E-08	Carcinogenic Risk 3.3E-06 4.4E-08	Hazard Quotient 3.6E-01 4.8E-02 3.5E-03 1.8E-01	Hazard Quotient 5.7E-02	Hazard Quotient 9.0E-01 1.5E-01 6.6E-02 6.6E+00	Carcinogenic Hazard Quotient 1.3E+00 1.9E-01 7.0E-02 6.8E+00
CAS # 7440-38-2 7440-39-3 7440-41-7 7439-96-5 7439-97-6	Chemical Name: Arsenie, Inorganie Barium Beryllium and compounds Manganese (Non-diet) - Mercury (elemental)	Concentration (mg/kg) 60.3 3260 5.9 1480 0.43	Concentration (mg/kg) 60.3 3260 5.9 1480 0.43	Concentration (mg/kg)* 60.3 3260 5.9 1480 0.43	Carcinogenic Risk 2.2E-06	Carcinogenic Risk 3.5E-07	Carcinogenic Risk 8.0E-07 4.4E-08	Carcinogenic Risk 3.3E-06 4.4E-08	Hazard Quotient 3.6E-01 4.8E-02 3.5E-03 1.8E-01	Hazard Quotient 5.7E-02	Hazard Quotient 9.0E-01 1.5E-01 6.6E-02 6.6E+00 4.4E-02	Carcinogenic Hazard Quotient 1.3E+00 1.9E-01 7.0E-02 6.8E+00 4.4E-02
CAS # 7440-38-2 7440-39-3 7440-41-7 7439-96-5 7439-97-6 7440-02-0	Chemical Name: Arsenic, Inorganic Barium Beryllium and compounds Manganese (Non-diet) Mercury (elemental) Nickel Soluble Salts	Concentration (mg/kg) 60.3 3260 5.9 1480 0.43 23.5	Concentration (mg/kg) 60.3 3260 5.9 1480 0.43 23.5	Concentration (mg/kg)* 60.3 3260 5.9 1480 0.43 23.5	Carcinogenic Risk 2.2E-06	Carcinogenic Risk 3.5E-07	Carcinogenic Risk 8.0E-07 4.4E-08 1.9E-08	Carcinogenic Risk 3.3E-06 4.4E-08 1.9E-08	Hazard Quotient 3.6E-01 4.8E-02 3.5E-03 1.8E-01 3.5E-03	Hazard Quotient 5.7E-02	Hazard Quotient 9.0E-01 1.5E-01 6.6E-02 6.6E+00 4.4E-02 2.6E-02	Carcinogenic Hazard Quotient 1.3E+00 1.9E-01 7.0E-02 6.8E+00 4.4E-02 3.0E-02
7440-38-2 7440-39-3 7440-41-7 7439-96-5 7439-97-6 7440-02-0 7782-49-2	Chemical Name: Arsenic, Inorganic Barium Beryllium and compounds Manganese (Non-diet) Mercury (elemental) Nickel Soluble Salts Selenium	Concentration (mg/kg) 60.3 3260 5.9 1480 0.43 23.5 9.05	Concentration (mg/kg) 60.3 3260 5.9 1480 0.43 23.5 9.05	Concentration (mg/kg)* 60.3 3260 5.9 1480 0.43 23.5 9.05	Carcinogenic Risk 2.2E-06	Carcinogenic Risk 3.5E-07	Carcinogenic Risk 8.0E-07 4.4E-08 1.9E-08	Carcinogenic Risk 3.3E-06 4.4E-08 1.9E-08	Hazard Quotient 3.6E-01 4.8E-02 3.5E-03 1.8E-01 3.5E-03 5.3E-03	Hazard Quotient 5.7E-02	Hazard Quotient 9.0E-01 1.5E-01 6.6E-02 6.6E+00 4.4E-02 2.6E-02 1.0E-04	Carcinogenic Hazard Quotient 1.3E+00 1.9E-01 7.0E-02 6.8E+00 4.4E-02 3.0E-02 5.4E-03

Cumulative:

8.5E+00

3.4E-06

TOWN OF CHAPEL HILL

Town Hall 405 Martin Luther King Jr. Boulevard Chapel Hill, NC 27514

Item Overview

Item #: 12., File #: [21-0770], Version: 1

Meeting Date: 10/13/2021

Receive the Fiscal Year (FY) 2021 Affordable Housing Annual Report.

Staff:

Sarah Osmer Viñas, Interim Director Faith Brodie, Director Nate Broman-Fulks, Affordable Housing Manager Stacey Todd, Public Housing Management Analyst **Department:** Housing and Community Public Housing Housing and Community Public Housing

Overview: This annual report on affordable housing activities for Fiscal Year 2021 tracks:

- Community indicators related to the housing market and affordable housing,
- The Town's progress toward affordable housing targets, •
- The status of projects funded with Town resources, •
- General housing conditions in Chapel Hill, and
- Public Housing highlights

Recommendation(s):

That the Council receive this Fiscal Year 2021 Annual Report.

Report Highlights:

Community Indicators

- The median household income in Chapel Hill rose to \$90,400, which is an increase of 0 \$6,000 (or 7%) from 2019 to 2020 HUD Data.
- The median home value rose to \$410,105, which is an increase of \$26,000 (or 6%) from 0 August 2019 to August 2020.
- The percentage of cost-burdened renters has continued to rise with 58% of renters 0 currently spending more than 30% of their income on housing expenses.

Affordable Housing Results

- Housing and Community continues to focus on COVID-19 response efforts 0
- Town affordable housing partnership with DHIC wins state's highest honor in affordable 0 housing, the 2020 Housing North Carolina Award
- The Town provided emergency housing assistance payments to 535 households. This 0 assistance is reflected in the total units preserved.
- Council approved 198 affordable homes 0
- The Town awarded \$1.8 million to community partners for affordable housing projects 0
- The Town awarded funding to 130 new development units 0
- The 2200 Homestead Road affordable housing development project received rezoning 0 approval
- Selected development partners and completed Concept Planning process for Jay Street 0

affordable housing development project

Public Housing Operations

Highlights of the fourth quarter, including a recap from the first three quarters, include:

- Continued COVID-related efforts, such as responding to Emergency Work Orders only and managing a record of needed routine repairs and managing a "new normal" for Public Housing tenants by continuing socially distanced weekly food distributions, screening all maintenance services calls before entering apartments and conducting household annual income updates via mail and telephone instead of in person
- Tracking financial metrics such as liquidity ratio, adequacy of reserves and our timeliness in paying vendors to ensure scheduled property restorations, such as appliance replacements, are not delayed,
- Information on the 2021 Habitability Inspections conducted by HUD in July
- Continued implementation of the Public Housing Master Plan including progress with the redevelopment of Trinity Court
- Efforts to increase tenant engagement and programming.

Attachments:

- Draft Staff Presentation
- Affordable Housing Annual Report Fiscal Year 2021
- Public Housing Annual Report Fiscal Year 2021

The Agenda will reflect the text below and/or the motion text will be used during the meeting.

PRESENTER: Sarah Osmer Viñas, Interim Housing and Community Director Faith Brodie, Public Housing Director Nate Broman-Fulks, Affordable Housing Manager Stacey Todd, Public Housing Management Analyst

RECOMMENDATION: That the Council receive the Fiscal Year 2021 Affordable Housing Annual Report.

AFFORDABLE HOUSING ANNUAL REPORT

FISCAL YEAR 2021

Council Meeting Presentation October 13, 2021

Agenda

1. 2021 Annual Results

2. Project Highlights

3. Next Steps

Summary of Progress in FY21

 Town and DHIC Awarded the 2020 Housing North Carolina Award

- 535 households provided emergency Housing Assistance
- 198 affordable homes approved by Council
- <u>\$1.8</u> million awarded to community partners for affordable housing projects
- 130 new development units awarded funding from the Town
- Selected development partners for Jay St and Trinity Court

Substantial Increase in Home Values

Cost-Burdened Renters in Chapel Hill

57% of Renters

16%

Rental Units Affordable for 60% AMI

The Town has increased its support for affordable housing:

Affordable Housing Funding Awarded to Projects

Increased support has increased our impact:

Increase in Units Developed and Preserved

Five Year Targets – 2023

FY21 Key Results

Progress Towards FY21 Projection

Emergency Housing Assistance Program

- 535 unique households assisted
- Serving very lowincome households
- \$ 1.3 million in Town investment

Number of Payments to Households

619

CAROLINA

Town

Awarded Excellence in Affordable Housing

Town and DHIC awarded the 2020 Housing North Carolina Award for excellence in affordable housing for Greenfield

620

North Carolina's top honor for excellence in affordable housing

HOUSING

FINANCE

A G E

Affordable Homes Approved

- 200 affordable homes received development approvals
 - ~75 through the Town's Inclusionary Housing program

 130 affordable homes receive funding support from the Town

Development on Town-Owned Land

- Homestead Gardens 2200 Homestead
 - Received rezoning approval to develop ~120 affordable homes
 - Planning to break ground in spring/summer 2022
- Jay Street
 - Concept Plan process completed
 - Conducting community engagement to refine draft site plan before submit conditional zoning application

Affordable Housing Development Pipeline

On the Horizon

- 1. Break ground at Homestead Gardens, Weavers Grove, and Perry Place
- 2. Submit Trinity Court Concept Plan and Jay St Application
- 3. Review AHDR Funding Plan in October and allocate the remaining \$5 million in bond funding
- 4. Continue providing Emergency Housing Assistance and adjusting programs based on impact from Covid-19
- 5. Community Development Block Grant Initial Public Forum in November

Public Housing

FY 2021 Annual Report

Metrics

To track our progress and success, Public Housing will mirror HUD's metrics in the Public Housing Assessment System (PHAS) score. These metrics are:

- **Financial Condition**
- Management Operations
 - **Capital Fund**

Community Engagement

Operations during COVID-19

628

No graded PHAS inspection this fiscal year
Habitability Inspection in Q4
Emergency Work Orders only
Continued pre-screening process for tenants
Continued Annual Recertifications via mail
Continued weekly food distribution

Physical Condition 💥

HUD evaluates site, building exterior, interior, and general condition of neighborhood

Habitability Inspection

- Completion of Oakwood units!
- Plumbing repairs

within 24 hours

Financial Condition 🍎

Operating Fund

HUD evaluates whether the Housing Agency has sufficient financial resources and is managing those resources effectively

Management Operations

HUD is assessing the effectiveness of the Housing Agency's Management in terms of Occupancy, Tenant Account Receivables, and Accounts Payable

- Community Housing Partners community engagement for Trinity Re-Imagined
- 67% of tenants = COVID vaccine

98% Occupancy; 5 vacant units:

2 vacant units due to Fire damage

3 vacant units currently in Leasing

Unit Turnaround Process
 Improvement team created

Capital Fund

HUD evaluates the time it takes to use the funds designated for Building Improvements. All Grant Funds must be spent within 4 years of receipt.

4th Quarter balance does not reflect FY22 grant. **Current Encumbrances** Available Balance Quarter \$2,058,460.59 \$270,457.89 4 \$260,031.55 \$2,137,648.83 3 \$2,182,249.84 \$333,313.41 2 \$2,363,794.71 \$304,688.85 **Grant Funds used for: 1. Development** 2. Financing 3. Modernization 4. Management Improvement

Community Number of people served by weekly Food Distribution 2,501 April Engagemen 2,566 May June 2,332 The Town of Chapel Hill Public Housing P21 THE OFFICIAL INENSCEPTER OF CHAPEL HILL PUBLIC HOUSING **Emergency Preparedness Planning** PRIL 2021 317 Caldwell Street Extension, Chapel Hill, NC 2751 Main Office # (919) 968-2850 Maintenance # (919) 969-4983 After Hours # (919) 968-2855 National Night Out event held in THREE neighborhoods

Resident Council Members increases

What's Ahead for Public Housing Implementation of the Public Housing Master Plan

 Filling staff vacancies: Maintenance Programs Supervisor, Administration Assistant, two Maintenance Mechanics, and Housing Officer

 Grow and develop our Resident Council

 Move forward with Trinity Re-Imagined

ם∩ם ПС U

from Public Housing

AFFORDABLE HOUSING ANNUAL REPORT

FISCAL YEAR 2021 JULY 1, 2020 - JUNE 30, 2021

FY21 Key Results

households provided Emergency Housing Assistance

Town Budget for affordable housing strategies

198

affordable housing units approved by Council

Approval of the 2200 Homestead Road Affordable Housing Development Project

Making significant progress on development projects including Jay Street and Trinity Court

Awarded the 2020 Housing North Carolina Award for the Greenfield Project

Affordable Homes Developed and Preserved 554 194 147 99 78 28 23 12 13 FY17 FY20 FY21 FY16 **FY18 FY19** Affordable Homes Developed Affordable Homes Preserved

COMMUNITY INDICATORS

	\$90,900	58%	40%
\$6,226,205 Town Budget for Affordable Housing Strategies	Median Household Income	of Renters spend more than 30% of income on Housing	of Housing Units (7,459) affordable to households with income at 80% AMI
	\$410,105 Median Home Value	22.5% of Homeowners spend more than 30% of income on Housing	21,708 Total housing units in town

Number and Percent of Households that are Cost-Burdened by Income Level

Percentage of Renters Cost-Burdened by Year

TO LEARN MORE: http://www.chapelhillaffordablehousing.org

Housing costs have been rising in Chapel Hill since 2014:

The Town has increased its support for affordable housing to address housing needs:

Increase in Number of Subsidized Units

Increase in Units Developed and Preserved

Emergency Housing Assistance

FY21 Town Performance-to-Date

Progress Towards FY21 Projection

Number of Subsidized Units in Town

Units Developed and Preserved by Quarter

by Town of Chapel Hill Office for Housing and Community – September 2021 / 3

640 Affordable Housing Projects Underway Supported by the Town

Project	Provider	Project Name	Number	Projected	Status
Туре			of Units	Completion	
\bigcirc	Community Home Trust	Culbreth Park Acquisition	1	FY21 Q1	\checkmark
\bigcirc	Community Home Trust	Graham Street Acquisition	1	FY21 Q2	~
\bigotimes	Town of Chapel Hill Public Housing	Church Street Renovation	1	FY21 Q2	√
\bigcirc	Town of Chapel Hill Transitional Housing	Sykes Street Renovation	1	FY21 Q4	~
\bigcirc	Orange County	Emergency Housing Assistance	400	FY21 Q4	~
\bigotimes	Self-Help	Northside Neighborhood Initiative Housing Rehabilitation	7	FY21 Q4	~
\bigcirc	Habitat for Humanity	Sunset Drive Home Construction	1	FY21 Q4	\checkmark
\bigcirc	Community Home Trust	Homebuyer Subsidy	1	FY21 Q4	~
\bigcirc	Self-Help	Grisham Cottages	2	FY22 Q2	\bigcirc
\bigotimes	Town of Chapel Hill Public Housing	Oak Avenue Furnace Replacement and Fire Repair	3	FY22 Q2	\bigcirc
	Orange County Preservation Coalition	Homeowner Rehab	3	FY22 Q2	\bigcirc
\bigcirc	Town of Chapel Hill Transitional Housing	Ashley Forest Renovation	1	FY22 Q2	\bigcirc
\bigcirc	Town of Chapel Hill	Employee and Transitional Housing Program Master Leasing	5	FY22 Q2	\bigcirc
\bigcirc	Pee Wee Homes	Mitchell Lane Tiny-plex	2	FY22 Q3	\bigcirc
\bigcirc	CASA	Merritt Mill Road Multi-Family Development	24	FY23 Q4	\bigcirc
\bigcirc	Town of Chapel Hill	Transitional Housing at Umstead Road	1	FY22 Q4	
\bigcirc	Town of Chapel Hill	2200 Homestead Road	120	FY24 Q2	
\bigcirc	EmPOWERment, Inc.	PEACH Apartments	10	FY24 Q2	
\bigcirc	Town of Chapel Hill	Jay Street	48	FY25 Q2	
\bigcirc	Town of Chapel Hill	Trinity Court	54	FY25 Q2	
\bigcirc	Habitat for Humanity	Weavers Grove	100	FY28 Q2	

Legend:

- \checkmark : The project has been completed
- The project is on track to meet its project scope and schedule
- The project has been delayed in meeting its previous quarter project scope and schedule
- 🧶 : The project has stalled and may not be completed
- 😚 : Development Project
- Preservation Project

Affordable Housing Work Plan Highlights

Project	Progress Update
DEVELOPMENT	
2200 Homestead	 Draft development contract between the Town and Homestead Collaborative scheduled for Council review October 13. Development team plans to break ground in spring/summer of 2022. Hosted Rep. David Price for a site visit in August as part of a Community Project Funding request in the FY22 federal budget.
Jay Street	 Development team received feedback on a preliminary concept plan from the Community Design Commission, Housing Advisory Board, and Town Council in the spring. Development team is working with the Jackson Center and Town staff for Phase 2 of its community engagement activities, with focus on gathering input to inform final site plan. Development team is anticipating a conditional zoning application submission in late fall.
Trinity Court	 In June, the Town executed a memorandum of understanding (MOU) with the recommended development partner, Community Housing Partners (CHP). Staff are working with CHP to conduct project due diligence and assemble a concept plan application for submission by October 2021. Advisory Boards and Town Council will review the concept in October and November. CHP and its partners are finalizing a community engagement plan.
Bennett Road	 Staff are finalizing a proposed visioning process designed to engage the Council and community, assess development options, and create a concept plan for the site.
PRESERVATION	
Implement Manufactured Home Communities Strategy	 Staff updated the draft County-wide Manufactured Home Action Plan (MHAP) and shared the latest version with the elected representatives of the Local Government Affordable Housing Collaborative. Each jurisdiction has shared the draft County-wide MHAP with their housing advisory boards, the OCAHC, and Preservation Coalition in September for review and input. Staff continuing to explore options for applying the Resident Owned Community model to MH communities in Orange County.
Affordable Housing Preservation Strategy	 The Town continues to support the County-wide Emergency Housing Assistance (EHA) program. The EHA partnership was selected by <u>ChangeLabSolutions¹</u> to participate in their Housing Solutions Collaborative peer learning cohort to evaluate EHA program success and sustainability. Staff from each jurisdiction and Empowerment are serving on that team. Staff is conducting additional research on implementation options for the Preservation Strategy based on Council's feedback.
POLICY	
Implement Employee Housing Program	 Staff have completed an evaluation of program. Staff plan to provide Housing Advisory Board and Council with update on findings in October.
FUNDING	
Implement Investment Plan for Affordable Housing – Affordable Housing Bond	 Staff planning for next Bond RFP process in winter for remaining \$5 million. Staff exploring eligible uses of American Rescue Plan Act funds and how other communities are using ARPA to support affordable housing efforts.
Manage Funding Programs Affordable Housing Fund (AHF) Development Reserve (AHDR) CDBG 	 Staff released RFP for the Affordable Housing Development Reserve on August 30, with applications due Oct. 1st. The town received 5 applications requesting a total of \$751,000 in funding.Town Council is scheduled to review in October 27th. CDBG Annual Action Plan submitted to HUD in May and Comprehensive Annual Performance and Evaluation Report (CAPER) submitted in early October
MANAGING TOWN-OWNED HOUSING	
Transitional Housing Program	 Renovations of Ashley Forest units underway. Households moving into the Union units within the next month

¹ https://www.changelabsolutions.org/

- The percentage of renters and homeowners that pay more than 30% of their income on Housing, the number and percentage of cost-burdened housing, and total occupied housing units in town data source is U.S. Census Bureau, 2014-2018 American Community Survey 5-Year Estimates
- HUD defines cost-burdened families as those who pay more than 30% of their income for all housing-related expenses and may
 have difficulty affording necessities such as food, clothing, transportation, and medical care.
- The median household income data source is the HUD 2020 Median Family Income Estimates based on American Community Survey data for the Durham-Chapel Hill Metropolitan Statistical Area.
- The median home value data source is Zillow.com and average rent rate is RentJungle.com
- The total budget this fiscal year for affordable housing strategies captures all Town expenditures for affordable housing. This
 includes the Affordable Housing Fund, CDBG Funds, the affordable housing bond, and operating funds, among others.
- The percentage of housing units that are affordable to households with income under 80% AMI includes naturally occurring
 affordable housing and units subsidized by the Town. The data source for this metric and corresponding chart is the commercial
 real-estate research firm Co-Star and the County-wide data inventory created through the Orange County Affordable Housing
 Coalition.
- The percent-of-budget allocated metric displays the percentage of the Town budget for affordable housing projects allocated as
 of the date of the quarterly report.
- The data source for the number of units subsidized by the Town is the County-wide Data Inventory created through the Orange County Affordable Housing Coalition.
- The data source for subsidized housing unit development projections is the County-wide data inventory created through the Orange County Affordable Housing Coalition.
- The number of subsidized units listed in this report has decreased by 35 units from the FY20 Q4 Report as an error in the jurisdictional classification of some units was discovered and corrected.

PUBLIC HOUSING ANNUAL REPORT Including FY21 Q4: April- June

Our quarterly reports are designed to provide an overview of the Town's Public Housing Department. Consistent with the United States Housing & Urban Development (HUD)'s rating, we also include information as it pertains to the Public Housing Assessment System (PHAS).

PHAS was created by **HUD** to evaluate the overall condition of each housing agency to obtain results that are objective, uniform, and verifiable.

Chapel Hill's listed PHAS score is based on the Oct. 2019 Real Estate Assessment Center (**REAC**) inspection. Due to the COVID conditions, there has not been a graded assessment since that time. HUD conducted a 2021 **Habitability Inspection** on July 27 and 29, but that did not affect the existing PHAS score.

Our October 2019 scores:	-Management: 5 (out of 25)
	-Capital Fund: 5 (out of 10)
	-Physical Condition: 19 (out of 40)
Total Score:	54 out of 100
Status:	Troubled Status

Graded as a Troubled Status resulted in a requirement for us to design and fulfill a **Recovery Agreement** with HUD. Our Recovery Agreement contained the following corrective actions:

-All Elected Officials and Senior Leadership Staff participating in HUD's "Lead the Way" training;

- -Increasing the quantity and quality of external contractors;
- -Improving the expenditure of our capital funds;
- -Evaluating maintenance staffing and performance; and
- -Evaluating previous REAC reports for strategies to improve Capital Fund and maintenance costs.

These are our evaluation tools referred to as **PHAS Indicators**. Public Housing leadership added a fifth indicator, Community Engagement, to identify opportunities for further connections with tenants. The five indicators are listed below, as well as their evaluation measures and steps taken to positively influence those measures.

INDICATOR	HUD EVALUTION MEASURES	ACTIONS TAKEN TO IMPROVE SCORE
Physical Condition	 Physical inspections 	Building improvementsRepairs
Financial Condition	 Management of funds 	 Monitor and process all invoices to ensure they are paid within 30 days

Management	 Tenant Accounts Receivable Occupancy Rate Accounts Payable 	 Account for reductions in rent due to loss of income during pandemic Offer timely rent payment incentives Maintain all payable accounts within current status; paid
		within 90 days
Capital Fund	 Obligation of HUD funds 	 Obligate funds to specific projects – Create timeline to
	 Occupancy Rate 	show exactly which properties will be improved
		 Decrease time units are vacant
Community	 Created indicators to develop 	 Continue Monthly newsletter
Engagement*	and analyze community	 Coordinate weekly Food Bank
	engagement efforts.	 Facilitate Resident's Council
		 Survey residents reference programming interest

644

*added by Public Housing leadership to maintain and improve connections with tenants.

OUR "NEW NORMAL" DEALING WITH COVID PANDEMIC

- Continued pre-screening process (employees, tenants, and applicants)
- Distributed face guards to Public Housing staff
- Continued abbreviated monthly safety inspections
- Responded to Emergency Work Orders only (maintained record of Routine Work Order Request)
- Staggered staffing at Administrative Office

PHYSICAL CONDITION

QUARTER 1: JULY to SEPTEMBER 2020

- Responded to 184 Emergency Work Orders; 167 (90%) closed within 24 hours.
- Responded to Pest Control as needed; halted regular inspections for safety of residents and staff.
- New contract with landscape company for Public Housing properties
- Repair contracts completed or in progress:
 - Rebuilding of fire damaged units at Oakwood (E1 and E2)

QUARTER 2: OCTOBER to DECEMBER 2020

- Responded to 179 Emergency Work Orders; 173 (98%) closed within 24 hours.
- Responded to monthly Pest Control and air conditioner filter changes.
- Continued residential entry level inspections.
- Repair contracts completed or in progress:
 - Repair of brick wall at Sykes St. playground
 - Reroofing of Craig/ Gomains and Lindsay St. (19 buildings)
 - Continued rebuilding of fire damaged units at Oakwood (E1 and E2)

QUARTER 3: JANUARY to MARCH 2021

- Responded to 152 Emergency Work Orders; 148 (96%) closed within 24 hours.
- Responded to monthly Pest Control and air filter changes.
- Repair contracts completed or in progress: Oakwood burn units, sidewalk repairs

645

- Continued rebuilding of fire damaged units at Oakwood (E1 and E2)
- New sidewalk at Oakwood (D unit)
- 4 abandoned units reclaimed and repaired for leasing.
- o Replaced flooring and completed asbestos remediation in 509C at Craig/Gomains
- o Resurfaced bathtubs at Airport Gardens (21 bathtubs)

QUARTER 4: APRIL TO JUNE 2021

- Resolved 128 Emergency Work Orders, closing 92% within 24 hours.
- Maintained ledger of needed routine repairs.
- Completed safety inspections for all AMP II neighborhoods in preparation for the HUD Habitability Inspections; including smoke alarm checks, light bulb replacements, air filter changes and minor repairs.
- 30 Unit Turnovers completed
- Repair contracts completed or in progress: fencing around playground at S. Estes, renovation of units with fire damage at Oakwood.

FINANCIAL CONDITION/ OPERATING FUND

- Liquidity Rate and Money Owed to Vendors have improved;
- However, Adequacy of Reserves rate decreased

Quarter 4	117%
Quarter 3	26%
Quarter 2	52%
Quarter 1	10%

MANAGEMENT

QUARTER 1: JULY to SEPTEMBER 2020

- Tenant Account Receivable: 94% of accounts receivable paid
- Occupancy Rates: 6 vacant units at the end of the quarter, all being prepared to lease.

QUARTER 2: OCTOBER to DECEMBER 2020

- Tenant Account Receivable: 98% of accounts receivable paid
- Occupancy Rates: 7 vacant units at the end of the quarter
 - 2 units under repair due to fire damage, 5 being prepared to lease

QUARTER 3: JANUARY to MARCH 2021

- Tenant Account Receivable: 99% of accounts receivable paid
- Occupancy Rates: 8 vacant units at the end of the quarter
 - 2 units under repair due to fire damage, 6 being prepared to lease.

QUARTER 4: APRIL TO JUNE 2021

Tenant Account Receivable: 94% of accounts receivable paid

646

- Occupancy Rates: 5 vacant units at the end of the quarter
 - o 2 units being completed from fire damage, 3 being prepared to lease
- Transfer of 3 households to appropriate bedroom-sized unit based on deconcentration plan's findings
- Unit Turnaround Process Improvement team created; held 4 meetings and collected data on last 15 unit turnarounds to analyze.

- Funds used for development, preservation, financing, modernization, and management improvements.
- 100% allocation of funds to identified projects.
- Summary of Capital Fund Grant balances per quarter*.
 - *4th Quarter balance does not reflect acceptance of FY22 grant. We report those funds in FY22Q1:

Quarter	Current Encumbrances	Available Balance
4	\$270,457.89	\$2,058,460.59
3	\$260,031.55	\$2,137,648.83
2	\$333,313.41	\$2,182,249.84
1	\$304,688.85	\$2,363,794.71

- Quarter 3 Projects: Virtual Staff Retreat, Ballentine Associates-Affordable Housing Development analysis, Re-glazing bathtubs, asbestos testing, and abatement, reroofing at Craig Gomains.
- Quarter 4 Projects: Asphalt and pavement evaluation in collaboration with Public Works. Replaced fencing around playground area in South Estes neighborhood.

COMMUNITY ENGAGEMENT

QUARTER 1: JULY to SEPTEMBER 2020

- Mailed monthly newsletter to tenants.
- Continued operation of weekly food distribution.

QUARTER 2: OCTOBER to DECEMBER 2020

- Mailed monthly newsletter to tenants.
- Mailed 2021 Calendars to tenants including information on community resources.
- Mailed invitations to the new Resident Council to residents
- Partnered with Piedmont Health Services to administer COVID tests and flu shots.
- Distributed over 2,500 masks to tenants.
- Continued operation of weekly food distribution.

QUARTER 3: JANUARY to MARCH 2021

- Mailed monthly newsletter to tenants.
- Held monthly Resident Council Meetings in January, February, and March
- Continued re-certification of Tenant's employment and family size.
- Continued operation of weekly food distribution.

Quarter 4: Community Engagement

- 296 Newsletters mailed each month
- 25 Newsletters sent electronically to community partners
- Resident Council convened each month
- Over 7,000 people served at weekly Food Bank Distribution
- 204 income and family size recertifications completed
- Wellness Committee information shared with tenants
- Office Assistant met regularly with Everbridge, a public communication platform created to allow for communication with tenants via automated calls and alerts.
- COVID Vaccination & Testing information sponsored by Piedmont Health shared with all tenants
- National Night Out event held in 3 Public Housing neighborhoods, staff, police and fire department present
- Distribution of Emergency Preparedness bags to ¼ of Public Housing households (other ¾ distributed in FY22 Q1)
- Two community engagement meetings held with Community Housing Partners for Trinity Re-Imagined project; a third is scheduled for December 2021.

**** NOTES AND DEFINITIONS**

HUD-U.S. Department of Housing and Urban Development

<u>PHAS- Public Housing Assessment System</u>- An assessment tool used by HUD to measure Public Housing Agencies uniformly and consistently.

<u>PHAS Indicators</u> - Four areas of Public Housing Agency operations that are inspected and rated; they are physical condition, financial condition, management, and capital fund.

<u>Habitability Inspection</u>: HUD conducted inspections; does not result in "grade" but does allow PHA to make corrections to any identified needs.

Liquidity- The ratio between cash and current liabilities.

• The higher the ratio, the better the score.

Adequacy of Reserves-the ratio between unrestricted resources and average monthly operating expenses

• The higher the ratio, the better the score.

<u>Unrestricted Resources</u>- Access to anything that can be turned into cash (unrestricted cash, tenant's security deposits, unrestricted investments)

<u>Monthly Operating Expenses-</u> dwelling rent expense, operating expense, and extraordinary maintenance (divided by 12 for a monthly average)

Adjusted Operated Income-the ratio between operating income and annual debt service.

Accounts Payable-the ratio between total vendor accounts payable and monthly operating expense.

- The lower the ratio, the higher the score
- Accounts payable-(both > and < than 90 days)/Monthly operating expenses</p>

649 TOWN OF CHAPEL HILL

Town Hall 405 Martin Luther King Jr. Boulevard Chapel Hill, NC 27514

Item Overview

Item #: 13., File #: [21-0771], Version: 2

Meeting Date: 10/13/2021

Authorize the Town Manager to Execute a Site Development Agreement with Self-Help Ventures Fund for the 2200 Homestead Road Mixed-Income Affordable Housing Development.

Staff:

Department:

Housing and Community

Sarah Osmer Viñas, Interim Director Nate Broman-Fulks, Affordable Housing Manager Emily Holt, Affordable Housing Development Officer

Overview: This agreement authorizes the Town to temporarily convey land to Self-Help Ventures Fund while they perform and manage site development. The agreement describes the roles and responsibilities of Self-Help and the Town during site development.

Recommendation(s):

That the Council authorize the Town Manager to execute a site development agreement with Self-Help Ventures Fund to prepare the land and infrastructure for the development of mixed income affordable housing at 2200 Homestead Road.

Background: The Town and its outside legal counsel at Sanford Holshouser Law Group have worked with Self-Help Ventures Fund to draft a site development agreement that confirms the roles and responsibilities of Self-Help and the Town in carrying out the site development scope for the 2200 Homestead Road project. This agreement is for the land and infrastructure preparation. Separate agreements with the housing developers - CASA, Community Home Trust, and Habitat for Humanity of Orange County - to develop the housing portions of the project will come to Council for approval in the winter/spring 2022.

The Town Council consistently reviewed and authorized the steps leading to consideration of this agreement.

- In <u>September 2017 <http://chapelhill.granicus.com/MinutesViewer.php?</u> view id=21&clip id=3233&doc id=2307f58a-9404-11e7-8661-00505691bffa>, the Town Council designated a 14-acre parcel of Town-owned land at 2200 Homestead Road for mixed-income affordable housing and authorized the Town Manager to continue to pursue development on this site and to engage potential partners.
- In June 2018 <https://chapelhill.legistar.com/LegislationDetail.aspx? ID=3531765&GUID=2AAB0753-D883-4117-BBFE-, the Town Council reviewed a concept plan for the development of 2200 Homestead Road.
- In November 2018 <https://chapelhill.legistar.com/LegislationDetail.aspx? ID=3760315&GUID=212CC318-56AD-416C-A079-, the Town Council authorized the Town Manager to issue a Request for Qualifications to identify potential development partners and to begin negotiations with potential developers.
- In February 2020, the Town executed a Memorandum of Understanding with Self-Help Ventures Fund laying out the terms of negotiation for the drafting of a development agreement.
- In June 2020 <https://chapelhill.legistar.com/LegislationDetail.aspx? ID=4563690&GUID=ADE08ABC-2155-4427-A7A8-

Item #: 13., File #: [21-0771], Version: 2

- , Council approved \$3.3M in Affordable Housing Bond funds to pay for site construction costs. In November 2020 <https://chapelhill.legistar.com/LegislationDetail.aspx?
- In <u>November 2020 <https://chapelhill.legistar.com/LegislationDetail.aspx?</u> <u>ID=4682752&GUID=67E829EC-E6E4-4117-849B-09126332CFA0></u>, Council approved \$173,395 in Affordable Housing Development Reserve funding for predevelopment and site construction costs.
- On May 19, 2021 <<u>https://chapelhill.legistar.com/LegislationDetail.aspx?GUID=3FF66E07-2362-4A7A-A8E7-F0E3EC81F28B&ID=4955855&Options=&Search=>,</u> Council approved a conditional zoning application for the parcel, thereby approving the development of 117 mixed-income affordable housing units on the site.

Key components of the agreement:

- The temporary conveyance of the 2200 Homestead Road parcel to Self-Help: Once site development is complete, Self-Help will reconvey the land back to the Town and the Town will draft separate land conveyance and development agreements with each of the three housing developers. If the agreements between the Town and housing developers are approved by Council and executed prior to completion of site development, Self-Help could instead convey the land directly to the partner(s) in a separate land conveyance agreement.
- The responsibilities of Self-Help in conducting site development for the project: This includes management of the site development budget and oversight of the site development contract with the general contractor.
- *The Town's funding commitment*: The agreement references the related funding agreement between Self-Help and the Town outlining the requirements for accessing the Town approved funding for the project.
- Coordination between the Town and Self-Help to draft development agreements with the housing developers (CASA, Community Home Trust, and Habitat for Humanity Orange County): These agreements will provide, a project financing plan, and the land use restrictions and covenants required to provide a 99-year affordability period, among other things. Each vertical development agreement will be reviewed by Council prior to execution.

Fiscal Impact/Resources: The Town Council approved a \$3.3 million funding award from the Town's Affordable Housing Bond in June 2020. The Council also approved \$173,395 in Affordable Housing Development Reserve funding in November 2020 to fund predevelopment activities and site development costs for the project. This Site Development Agreement does not allocate any additional Town funds toward the project.

Attachments:

- Resolution
- Draft Staff Presentation
- 2200 Homestead Project Milestones
- 2200 Homestead Road Site Development Agreement

A RESOLUTION AUTHORIZING THE TOWN MANAGER TO EXECUTE A SITE DEVELOPMENT AGREEMENT FOR THE 2200 HOMESTEAD ROAD MIXED INCOME AFFORDABLE HOUSING DEVELOPMENT (2021-10-13/R-18)

WHEREAS, on September 6, 2017, the Council designated 2200 Homestead Road as a mixed-income affordable housing site and authorized the Town Manager to continue to pursue development of mixed-income affordable housing on this site and to engage potential partners in the discussions; and

WHEREAS, on June 20, 2018 the Council gave feedback on a Concept Plan for the development of 2200 Homestead Road where the exploration of development partners was identified as a key next step; and

WHEREAS, on November 28, 2018 the Council authorized the Town Manager to issue a Request for Qualifications to identify potential development partners for 2200 Homestead and to begin negotiations with potential developers; and

WHEREAS, on February 27, 2019 the Town executed a Memorandum of Understanding with Self-Help Ventures Fund to establish the terms and conditions for negotiating an agreement for 2200 Homestead Road site development; and

WHEREAS, on June 17, 2020 the Council approved \$3.3M in Affordable Housing Bond funding for the 2200 Homestead Road project; and

WHEREAS, on November 4, 2020 the Council approved \$173,395 in Affordable Housing Development Reserve funding for the 2200 Homestead Road project; and

WHEREAS, the Council approved the Conditional Zoning of the 2200 Homestead Rd project on May 19, 2021.

NOW, THEREFORE, BE IT RESOLVED by the Council of the Town of Chapel Hill that the Council authorizes the Town Manager to execute a site development agreement with Self-Help Ventures Fund for the 2200 Homestead Rd site, as described in the October 13, 2021 meeting materials.

This the 13th day of October, 2021.

The Agenda will reflect the text below and/or the motion text will be used during the meeting.

PRESENTER: Nate Broman-Fulks, Affordable Housing Manager Emily Holt, Affordable Housing Development Officer

RECOMMENDATION: That the Council authorize the Town Manager to execute a site development agreement with Self-Help Ventures Fund to prepare the land and infrastructure for the development of mixed income affordable housing at 2200 Homestead Road.

2200 Homestead Site Development Agreement

Council Presentation October 13, 2021

Agenda

1. Project History and Context

2. Site Development Agreement Summary

3. Discussion and Next Steps

Council Consideration

Authorize the Town Manager to execute a site development agreement with Self-Help for the 2200 Homestead Road affordable housing development.

Site Context

656

Approved Site Plan

- Site 13 acres
- Residential Units 115-126
 - 72 apartments
 - 27-35 townhomes
 - 18 duplexes
- Amenities include:
 - greenway trail
 - nature trails
 - central green with playground, shelter, grills
 - basketball court
 - community garden

Site Development Agreement Summary

1. Town will temporarily convey property to Self-Help

2. Self-Help will prepare land for development of affordable units by Collaborative Developers

 Self-Help and Town will work together to draft development agreements with Collaborative Partners for construction of affordable units

1. Town conveyance to Self-Help

- Conveyance to occur after contract executed with general contractor
- Once site development complete, Self-Help will reconvey site to the Town within 60 days

 If appropriate, Self-Help could convey land directly to partners

2. Self-Help will develop site on behalf of Town

- Manage contract with general contractor for site construction
- Scope includes preparation of land for vertical construction and new community garden

3. Development agreements with housing developers

- Self-Help will assist housing developers to prepare development agreements
- Contracts will include:
 - Financing Plan
 - Affordability Plan
 - Land use restrictions and covenants required, including 99-year affordability period

Next Steps

Fall 2021

- Execute Site Development Agreement

- Apply for final permits

Spring 2022

- Execute contract w/ general contractor

662

- Convey land to Self-Help
- Obtain final approvals

Summer 2022

- Site construction
- Execute agreements with housing developers
- Convey land to housing developers

Council Consideration

Adopt R-# authorizing the Town Manager to execute a site development agreement with Self-Help Ventures Fund for the 2200 Homestead Road affordable housing development.

2200 Homestead Site Development Agreement

Council Presentation October 13, 2021

Next Steps

2200 Homestead Road Project Milestones	F	FY2018			FY2019			FY2020				FY2021				F١	/20)22	2	FY2023				FY2024			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1 (22 0	23	Q4	Q1	Q2 (Q3 (24 C	(1 Q)	2 Q3	Q4
DEVELOPMENT																											
Council approves site development contract with Self-Help																		★									
Land conveyance to Self-Help																			x								
Council approves vertical development agreement(s) with vertical Collaborative partners																				★							
Project receives final approvals and permits																				х							
Project Groundbreaking - site construction begins																				x						F	
Land conveyance to Vertical Partners																					x						
Vertical construction begins																					x						
Construction Complete																										x	
Council Item Scheduled Council Item Heard and/or Action Taken																											

665

Project Budget (to be populated from SHVF)

Sources	Tentative amount (\$)	Uses	Tentative amount (\$)
Town	3,500,000	Site Development	
Orange County		Contract, total	
[new State funding	2,000,000	SHVF fee	
allocation]		[more to come]	
[more to come]		TOTAL	
TOTAL			

2200 Homestead Road Project Milestones	FY2018		FY2019			FY2020				FY2021				FY2022				FY2023				FY2024				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 (3 Q	1 Q1	Q2	Q3	Q4	Q1	Q2	Q3 (Q4 (Q1 0)2 C	13 Q4
DEVELOPMENT																										
Council designated land for mixed-income affordable housing	*																									
Council reviewed concept plan				\star																						
Council authorized issuance of RFQ for development partners and						4																				
negotiations with potential developers						×																				
Town executes MOU w/ Self-Help as leader of the Homestead Housing											1															
Collaborative development team											•															
Council approved \$3.3M in AH bond funding to site construction costs												\star														
Council approved \$173,395 in AHDR funding for predevelopment and site														•												
construction costs																										
Council approved Conditional Zoning District																										
Council approves site development agreement with Self-Help																	\bigstar									
Self-Help executes contract w/ site construction contractor																										
Land conveyance to Self-Help																		Х								
Council approves development agreement(s) with housing partners																			\star							
Project receives final approvals and permits																			Х							
Groundbreaking - site construction begins																			Х							
Land conveyance to vertical partners																				Χ						
Vertical construction begins																				Χ						
Construction complete]	X

Council Item Scheduled

Council Item Heard and/or Action Taken

Last updated 10-7-2021 by Emily Holt, Town of Chapel Hill

Prepared by and return after recording to:

Brian L. Crawford Robert M. Jessup Jr. Sanford Holshouser LLP 209 Lloyd St., Suite 350 Carrboro, NC 27510

PINs - 9870912947

Brief description - 2200 Homestead Road, Chapel Hill

Agreement for 2200 Homestead Road Site Development

THIS AGREEMENT is dated as of _____, 2021, and is between the Town of Chapel Hill, a North Carolina municipal corporation (the "Town"), and Self-Help Ventures Fund ("SHVF"), a North Carolina nonprofit corporation.

Introduction and Purpose

The Town owns a parcel of approximately 14 acres at 2200 Homestead Road, Chapel Hill, as more specifically described in Attachment A (the "Site"). In September 2017, the Town dedicated the Site for mixed-income affordable housing, with a focus on providing affordable homes, and requested staff to pursue development. In 2019, the Town accepted a proposal from SHVF, as part of the development team they assembled and refer to as the Homestead Housing Collaborative, to develop the Site as a residential community serving a range of incomes and providing a variety of housing types for homeownership and rental.

This Agreement states the Parties' definitive and binding agreement with respect to SHVF's role in the undertaking to manage Site construction on behalf of the Town. Unless the context clearly requires otherwise, capitalized terms used in this Agreement and not otherwise defined have the meanings set forth in Attachment B.

NOW, THEREFORE, for and in consideration of the mutual promises and covenants contained in this Agreement, the Parties agree as follows:

1. The Town will convey the Site to SHVF.

A. <u>Conveyance and acceptance</u>. The Town will convey the Site to SHVF, for valuable consideration the receipt of which is hereby acknowledged, and SHVF agrees to accept the conveyance under the terms and conditions of this Agreement. The Town is making this conveyance under its statutory authority North Carolina General Statute 160A-279 to convey property to nonprofit organizations carrying out a public purpose and its authority to enter into agreements with private entities to provide housing for persons of low and moderate income.

B. <u>Termination prior to Closing</u>. The Town will have no further obligation to convey the Site if the Town has not approved the Site Development Contract by July 1, 2022, with time being of the essence for this purpose. SHVF can terminate this Agreement at any time before the Closing Date for any reason. If under this Section either this Agreement expires or SHVF terminates this Agreement, then neither Party will have any further rights or obligations under this Agreement.

C. Closing: Special Warranty Deed. The Town will convey the Site to SHVF by a special warranty deed in form and substance acceptable to both Parties (the "Deed"). The Town will deliver the Deed to SHVF at such time and place within Orange or Durham Counties, North Carolina as SHVF may designate, but SHVF must give the Town five Business Days' notice of the time and place for delivery. In no event will the Town be required to deliver the Deed less than 30 days after the Town's approval of the Site Development Contract. The delivery and acceptance of the Deed are referred to in this Agreement as the "Closing," and the date and time of acceptance are referred to as the "Closing Date."

D. <u>**Conditions for closing.**</u> The Town must receive the following items, in form and substance reasonably acceptable to the Town, at or prior to the Closing, as conditions to the Town's obligation to complete the Closing.

- 1. The Site Development Contract in a form previously approved by the Town, signed by both SHVF and the Site Contractor.
- 2. The payment and performance bonds called for in Section 2A.2 d.
- 3. The final Budget referenced in Section 2B.2.
- 4. The executed Funding Agreement referenced in Section 2B.
- 5. An agreement by SHVF to reconvey the Site to the Town for no additional consideration at either Party's request (A) within 60 days after the Completion Date or (B) any time on or after the date which is twelve (12) months after the issuance of building permits for the Site Development Contract Work (the "Deadline") if the Completion Date has not previously occurred. The Parties agree that time is of the essence with respect to the dates and timelines specified in this subsection. This agreement to reconvey may be included in the Deed or in a separate agreement as the Parties may agree.
- 6. The recording of any land use restrictions or covenants related to the overall Site development plan that the Town deems desirable to be in place prior to Closing. These restrictions or covenants will be designed to provide for long-term use of the Site for affordable housing without regard to any specific requirements or obligations of the Collaborative Developers.

E. Delivery of information. Within ten Business Days after the Effective Date, the Town will deliver to SHVF at the address set forth in Section 6(a) (or make available for SHVF's convenient examination and copying) copies of all the following materials relating to the Site in the Town's possession:

1. Any policies of title insurance issued in favor of the Town or the Town's predecessors in title for any portion of the Site.

- 2. Any land surveys of any portion of the Site.
- 3. Any permits, zoning stipulations, agreements, or requirements that affect or that are proposed to affect any portion of the Site.

In addition, the Town will provide to SHVF any information or materials relating to the Site of the same or similar nature to the foregoing coming into the Town's possession or control throughout the term of this Agreement. The Town represents that all such deliveries are being made in good faith, but the Town makes no further representation or warranty, expressed or implied, as to the accuracy or completeness of those documents.

F. <u>**Risk of loss**</u>. The Town will bear the risk of loss or damage to the Site until the Closing, except as otherwise provided for in this Agreement.

G. <u>No brokers.</u> The Town and SHVF represent, one to the other, that it has not dealt with any broker, finder, or other agent in connection with the transaction contemplated by this Agreement. To the extent permitted by law, each party will indemnify, defend, protect, and hold the other harmless from and against any and all claims incurred by the other party by reason of any breach or inaccuracy of the representation contained in this Section.

H. Closing costs. The Town will pay for the preparation of the Deed, and for all other documents necessary to perform the Town's obligations under this Agreement. SHVF will pay for any title insurance, recording fees for the Deed and any other recordable documents described by this Agreement. Each party is responsible for its own legal fees and costs. As the Site is currently exempt from real estate taxes, there will be no pro-ration payment for real estate taxes.

I. <u>Post-closing obligations</u>. After Closing, the Town and SHVF will cooperate with one another, at reasonable times and on reasonable conditions, to prepare, execute and deliver documents necessary to fully carry out the intent and purposes of this Agreement. Except for such instruments as the Parties were originally obligated to deliver by the terms of this Agreement, such cooperation will be without additional cost or liability to the Party from which such cooperation is sought.

2. SHVF will develop the Site on behalf of the Town for the purpose of passing it to other Collaborative Developers

A. Site development contract

SHVF will plan, design, build and otherwise carry out the Project. SHVF will act in consultation with the Town and under the terms and conditions of this Agreement, but SHVF has the right and responsibility to manage the Project. SHVF's responsibilities will include the following:

- 1. SHVF has selected, and the Town hereby approves, WeaverCooke to be the site contractor (the "Site Contractor").
- 2. SHVF will provide for the preparation of the Site Development Contract, and then will enter into the Site Development Contract with the Site Contractor. The Site Development Contract will be subject to the Town's reasonable approval, but the Site Development Contract must in any event include the following terms and conditions:
 - a. For the Site Development Contract to be a guaranteed maximum price contract and may allow for change orders to the scope of work.
 - b. For the scope of work for Site Development to be consistent with the Zoning Compliance Permit issued by the Town. The scope for preparing the new site for relocation of Hope Gardens includes: mobilization, erosion control, clearing and grubbing, grading, fine grading, driveway apron, and laying gravel in the parking lot for up to six regular parking spaces (the "Hope Gardens Work"). Notwithstanding the foregoing, the Parties acknowledge and agree that SHVF shall have no obligation to include the Hope Gardens Work in the Site Development Contract if (a) the cost of such work exceeds \$95,000; or (b) the final Budget does not include sufficient resources for completing such work.

- c. For the Project to be complete not later than the Deadline. SHVF shall notify Town as far in advance as is possible of any anticipated delays beyond the Deadline.
- d. For the Site Contractor to provide payment and performance bonds in favor of the Town as would apply if the Town were contracting for work on a public contract covered by Chapter 143 of the North Carolina General Statutes.
- e. For the Site Contractor to proceed in a good and workmanlike manner, and to keep the Project free of defects and the Site free of mechanics', materialmen's, and similar liens.
- f. For the Site Contractor to maintain general liability, workers compensation, builders' risk and other insurance as the Town may reasonably require, and for those coverages to be subject to such terms and conditions, and extensions of coverage to the Town, as the Town may reasonably specify.
- g. For contractors' warranties to be assigned to the Town upon the completion of the Site Contractor's work.

4. SHVF will on its own apply and obtain all permits, entitlements and planning approvals required according to municipal and county ordinances. SHVF will present to the Town the finished contractor documents when the Project is complete. SHVF will at all times carry and maintain, or cause the Contractor to carry and maintain, with responsible carriers general liability insurance in amounts reasonably acceptable to the Town from time to time, with the Town as an additional insured with respect to occurrences at the Site. SHVF will promptly notify the Town of the Completion Date.

B. <u>Project Budget; Change Orders.</u>

1. The Town and SHVF will agree on a Project budget (the "Budget"). The Budget will show in reasonable detail (a) all primary categories of Project Costs, except that all amounts to be paid under the Site Development Contract may be shown as a single entry, and (b) all sources of Project funding. Either Party may request additional information concerning items of funding or expense.

2. Attachment D shows a tentative Budget, but the Parties are not bound by this Exhibit in completing the final Budget. SHVF acknowledges that the Town intends to contribute not more than \$3,500,000 toward Project Costs. SHVF has no obligation to fund Project Costs beyond sources identified in the Project Budget.

3. SHVF has primary responsibility to manage the Project and the Budget to secure completion of the Project within the Budget, in accordance with the agreed-upon scope of work, and by the Deadline.

4, If the Site Contractor requests a change to the Site Development Contract (a) that does not modify the original scope of such contract and (b) the cost of which does not exceed remaining contingency (a requested "Change Order"), SHVF shall either (a) deny the Change Order or (b) approve the Change Order and provide notice to the Town of the requested Change Order. If the Change Order requires an increase in Project funding, SHVF must also notify the Town of the sources of funding to be made available to resolve that increase.

5. If the Site Contractor requests a change to the Site Development Contract (a) that modifies the original scope of such contract or (b) the costs of which exceeds remaining contingency (a requested "Scope Change Order"), SHVF shall either (a) deny the Scope Change Order or (b) notify the Town of the requested Scope Change Order and SHVF's recommendation that it be approved. If the Scope Change Order requires an increase in Project funding, SHVF must also notify the Town of the sources of funding to be made available to resolve that increase. Within five Business Days of its receipt of the notice and recommendation of a Scope Change Order, the Town Manager (or the Manager's designee) must notify SHVF of either (a) the Town's approval of the Scope Change Order or (b) the Town's reasons, in brief and general terms, for not approving the Scope Change Order or for referring the Scope Change Order for consideration by the Town Council at the next Council meeting for which the agenda has not yet been distributed. If the Town fails to deliver a notice as contemplated under (b), then the Town will be deemed to have approved the Scope Change Order, except that no Scope Change Order that increases the Town Maximum Contribution will be effective without the Town's express consent.
6. The Town grants the Town Manager (or the Manager's designee) full authority to provide approval, or not, under this Section. The Town Manager, in the Manager's discretion, may refer any Scope Change Order to the Town Council for the Town Council's consideration.

7. If conditions require amendments to the Site Development Contract or the Budget, beyond approved Change Orders, the Parties shall negotiate in good faith to amend the Site Development Contract, the Town Maximum Contribution or other aspects of the Budget as possible. Either Party may invoke the provisions of Section 5D for the consideration of any required amendments.

C. <u>**Disbursement of Town Payments.**</u> The Town will make payments toward Project Costs pursuant to a separate Funding Agreement between the Town and SHVF. This agreement will be based on a form commonly used by the Town for similar project payments.

3. SHVF and the Town will work together on Development Contracts.

SHVF and the Town expect that when the Project is complete, SHVF and the Town will provide for portions of the Site to be conveyed in separate transactions to the Collaborative Developers. The Site will be conveyed to the Town. If appropriate the Site may be conveyed directly in portions to the Collaborative Developers, as the Town and SHVF may agree as the Project nears its conclusion.

SHVF is the lead member of the Homestead Housing Collaborative and will have primary responsibility for coordination and leadership of its members. As lead member, SHVF will assist each Collaborative Developer to work with the Town to prepare and deliver a Collaborative Development Contract in form and substance reasonably acceptable to both parties. Each Collaborative Development Contract will include at least the information contemplated in Attachment C. The Parties acknowledge that land conveyance to a Collaborative Developer shall not occur until the Town's Collaborative Development Contract with such Developer is effective

676

velopment Contract are executed and SHVF delivers the Site, the Collaborative Developers will be solely responsible for their vertical construction commitments made in their agreements with the Town. SHVF has no responsibility or obligation with respect to the performance by any Collaborative Developer of its respective Collaborative Development Contract.

4. Representations and warranties of the Parties

A. By SHVF

SHVF makes the following statements of fact, with the understanding and intent that the Town will rely on these statements in making its decision to enter into this Agreement:

(a) SHVF is duly organized, validly existing, and in good standing under the laws of North Carolina.

(b) SHVF has full power and authority to execute and deliver this Agreement and to perform its obligations under this Agreement.

(c) SHVF has duly executed and delivered this Agreement. Assuming due authorization, execution and delivery of this Agreement by the Town, this Agreement constitutes a valid, legal and binding obligations of SHVF, enforceable in accordance with its terms, subject to bankruptcy, insolvency and other similar laws affecting the enforcement of creditors' rights generally and such principals of equity as a court having jurisdiction may impose.

(d) SHVF is solvent, is able to pay its ordinary debts and expenses as they become due, and is not currently the defendant in any bankruptcy, insolvency or similar proceeding under federal or state law.

(e) SHVF has not been barred from participation in any program of federal, state or local assistance for projects or undertakings of the sort contemplated by this Agreement.

9

(f) Neither the execution and delivery of this Agreement, nor the fulfillment of or compliance with its terms and conditions, nor the consummation of the transactions contemplated by this Agreement, results in any material breach of the terms, conditions and provisions of any agreement or instrument to which SHVF is now a party or by which either is bound, or constitutes a default under any of the foregoing.

(g) There is no litigation or other court or administrative proceeding pending or threatened against SHVF (or against any SHVF official in an official capacity) affecting SHVF's rights to execute or deliver this Agreement or to comply with its obligations under this Agreement.

(h) SHVF hereby agrees to indemnify, protect and save the Town (including its affiliates), any Council member, member, director, officer, agent or employee thereof, harmless from all liability, obligations, losses, claims, damages, actions, suits, proceedings, costs and expenses, including reasonable attorneys' fees, actually incurred, arising out of, connected with, or resulting, directly or indirectly, from SHVF's acts or omissions in completion of the Project, including, without limitation, the possession, condition, construction or use of the Site or the actions of any Site Contractor or its agents, employees and contractors. The indemnification arising under this paragraph shall continue in full force and effect notwithstanding the termination of this Agreement, or any other agreement, document or instrument related to the Project to which SHVF and the Town are Parties. SHVF is not required to indemnify the Town under this paragraph for claims that arise solely from the Town's gross negligence or willful misconduct.

(i) No SHVF representation, covenant or warranty in this Agreement is false or misleading in any material respect.

(j) SHVF will promptly notify the Town of any matter that affects the accuracy of any representation and warranty under this Section, including any change in conditions or any receipt of any notice, action, or other information SHVF receives relating to any representation or warranty under this Section.

(k) SHVF will not cause or knowingly permit any action to be taken that will cause any of the foregoing representations or warranties to be untrue on or prior to

677

Closing, and all of SHVF's representations and warranties under this Agreement will be as of the Closing as though those representations or warranties were made then.

B. By the Town

The Town makes the following statements of fact, with the understanding and intent that SHVF will rely on these statements in making its decision to enter into this Agreement:

Generally –

(a) The Town is a duly organized and validly existing municipal corporation of the State of North Carolina. The Town will take no action that would adversely affect its existence as a municipal corporation in good standing in the State of North Carolina.

(b) The Town has all powers necessary to enter into the transactions contemplated by this Agreement and to carry out its obligations under this Agreement.

(c) The Town has duly and validly authorized, executed and delivered this Agreement. Assuming due authorization, execution and delivery of this Agreement by SHVF, this Agreement constitutes a valid, legal and binding obligation of the Town, enforceable in accordance with its terms, subject to bankruptcy, insolvency and other similar laws affecting the enforcement of creditors' rights generally and such principals of equity as a court having jurisdiction may impose.

(d) The Town requires no further approval or consent from any governmental authority with respect to the Town's entering into or performing under this Agreement.

(e) Neither the execution and delivery of this Agreement, nor the fulfillment of or compliance with its terms and conditions, nor the consummation of the transactions contemplated by this Agreement, results in any material breach of the terms, conditions and provisions of any agreement or instrument to which the Town is now a party or by which either is bound, or constitutes a default under any of the foregoing. (f) There is no litigation or other court or administrative proceeding pending or threatened against the Town (or against any Town official in an official capacity) affecting the Town's rights to execute or deliver this Agreement or to comply with its obligations under this Agreement.

(g) No Town representation, covenant or warranty in this Agreement is false or misleading in any material respect.

With respect to the Site and its title --

1. The Town holds fee simple title to the Site, free and clear of any and all easements, covenants, conditions, or other encumbrances.

2. The Town is in sole and exclusive possession of the entire Site, and no other person or entity claims any right to possess all or any portion of the Site.

3. No options, rights of first refusal, or other agreements are in effect to purchase or to lease any interest in the Site or any part thereof.

4. The Site is currently exempt from *ad valorem* taxes and is expected to remain tax exempt provided it is developed for affordable housing as planned.

5. The Town is not a "foreign person" within the meaning of the Internal Revenue Code, as amended, Sections 1445 and 7701 or the regulations promulgated thereunder.

6. The Town is not a person with whom U.S. persons or entities are restricted from doing business under regulations of the Office of Foreign Asset Control (the "OFAC"), of the Department of the Treasury (including those named on OFAC's Specially Designated and Blocked Persons List) or under any statute, executive order (including the September 24, 2001, Executive Order Blocking Site and Prohibiting Transactions with Persons Who Commit, Threaten to Commit, or Support Terrorism)

7. The Town has no knowledge of any violation of Environmental Laws (as defined below) related to the Site or the presence or release of Hazardous Materials (as defined below) on or from the Site except as previously disclosed to SHVF in the following reports:

[List by date, title, and contractor; will include existing asbestos report]

The term "Environmental Laws" includes without limitation the Resource Conservation and Recovery Act and the Comprehensive Environmental Response Compensation and Liability Act and other federal laws governing their implementing regulations and guidelines as of the Effective Date, and all state, regional, county, municipal, and other local laws, regulations and ordinances that are equivalent or similar to the federal laws recited above or that purport to regulate Hazardous Materials. The term "Hazardous Materials" includes petroleum, including crude oil or any fraction thereof, natural gas, natural gas liquids, liquified natural gas, or synthetic gas usable for fuel (or mixtures of natural gas or such synthetic gas), asbestos and asbestos containing materials and any substance, material waste, pollutant or contaminant listed or defined as hazardous or toxic under any Environmental Law. The representations and warranties contained in this paragraph will survive Closing for so long as is permitted by applicable law.

In addition --

The Town will promptly notify SHVF of any matter that affects the accuracy of any representation and warranty under this Section, including any change in conditions or any receipt of any notice, action, or other information the Town receives relating to any representation or warranty under this Section.

The Town will not cause or knowingly permit any action to be taken that will cause any of the foregoing representations or warranties to be untrue on or prior to the Closing, and all of the Town's representations and warranties under this Agreement will be true as of the Closing as though those representations or warranties were made then.

5. Defaults and Remedies; Dispute Resolution

A. <u>Defaults</u>. A Party is in default under this Agreement if it fails to (i) complete the Project, (ii) make required payments, (iii) perform any other obligation under this Agreement, or if it (iii) dissolves, or is subject to a declaration of involuntary or voluntary bankruptcy, or if (v) any warranty, representation or statement in this Agreement or in any other document executed or delivered in connection herewith is found to be incorrect or misleading in any material respect on the date made. **B.** <u>Remedies</u>. Whenever any Event of Default has occurred and has not been remedied within fifteen (15) days of receipt of written notice describing such default, the non-defaulting Party may take either or both of the following remedial steps:

i. At its option, cure the default by paying money or taking any other appropriate action, in which case the defaulting Party must reimburse the non-defaulting Party for all costs and expenses reasonably incurred in curing the default.

ii. Take whatever action at law or in equity may appear necessary or desirable to collect the amounts then due and thereafter to become due, to enforce performance and observance of any obligation, agreement or covenant of a Party under this Agreement, and to recover legal fees and other expenses incurred in pursuing and enforcing any remedy

iii. Any amounts owed to a non-defaulting Party under this Section will bear interest payable by the defaulting Party, from the date of the non-defaulting Party's payment, at the annual rate of 4.00%, calculated based on a 360-day year consisting of twelve 30-day months.

C. <u>No remedy exclusive; other provisions.</u> No remedy conferred or reserved in this Agreement is intended to be exclusive, but the remedies are instead intended to be cumulative. No delay or omission to exercise any right or power accruing upon any default constitutes a waiver of that right or power. A waiver of any default is limited to the default so waived and does not waive any other default.

D. Dispute resolution. In the event of a dispute between the Parties concerning the terms or performance of this Agreement, the Parties will take the following steps prior to commencing any proceeding before a court or administrative body:

1. <u>Exchange of positions</u>. Any Party noting a dispute under this Agreement will notify the other Party of the nature of the dispute and the first Party's proposed resolution. Within ten days after the notice date, the other Party must respond in writing as to its view of the dispute and its position on the proposed resolution.

2. <u>Meet and confer</u>. If the Parties are unable to reach an agreement on the dispute and upon notice from any Party, the Parties will promptly hold a meeting attended by representatives with appropriate authority to resolve the dispute. At this meeting, the Parties will attempt in good faith to negotiate a resolution of the dispute.

3. <u>Mediation</u>. If the dispute remains unsettled by negotiation, the Parties will engage the services of a professional mediator certified by the Dispute Resolution Commission as a Superior Court mediator and agreed upon by the Parties. The Parties will then attempt in good faith to resolve the dispute through mediation. The Town and SHVF will each pay one-half of the mediator's fees and expenses, and each Party will pay all its own legal fees and other expenses related to the mediation. Each Party must be represented at the mediation by a representative with appropriate authority to resolve the matters in dispute. Only after mediation may a Party initiate legal or administrative proceedings.

6. Additional Provisions

a. <u>Notices.</u> (i) Any communication provided for in this Agreement must be in English and must be in writing. Under this Agreement, "writing" includes fac-simile transmission and electronic mail.

(ii) For the purposes of this Agreement, any communication sent by facsimile transmission or electronic mail will be deemed to have been given on the date the communication is similarly acknowledged by the Town Manager or the director of the Town's office of Housing and Community, (in the case of the Town), or other authorized representative (in the case of SHVF). No such communication will be deemed given or effective without such an acknowledgment.

(iii) Any other communication under this Agreement will be deemed given on the delivery date shown on a United States Postal Service certified mail receipt, or a delivery receipt (or similar evidence) from a national commercial package delivery service, if addressed as follows:

- A) If to the Town, to the Town of Chapel Hill Manager, Re: Notice under 2021 2200 Homestead Road Agreement, 405 Martin Luther King Jr. Blvd., Chapel Hill, NC 27514
- B) If to SHVF, to Self-Help Ventures Fund, Attn: Real Estate Team Leader, 301 W. Main Street, Durham NC 27701

(iv) The Town will send a copy of any notice sent to SHVF to Self-Help Ventures Fund, Attn: General Counsel, 301 W. Main Street, Durham NC 27701, but no failure or defect in this second notice affects the validity of a notice otherwise deemed given to the address shown in (iii)(B) (or any successor address designated under (iv) below).

(v) Any addressee may designate additional or different addresses for communications by notice given under this Section to each of the others, but in no event is a Party required to give notice to more than one addressee for the notice to be otherwise effective under this Section.

(vi) Whenever this Agreement requires the giving of a notice, the person entitled to receive the notice may waive the notice, in writing. The giving or receipt of the notice will then not be a condition to the validity of any action taken in reliance upon the waiver.

b. <u>Each Party will bear its own costs.</u> Each Party will bear its own costs of the fees and expenses of its counsel and consultants, and of the studies or surveys required under this Agreement or that it otherwise commissions or obtains for its use under this Agreement.

c. Limitation on liability of officers and agents. No officer, agent or employee of the Town will be subject to any personal liability or accountability because of the execution of this Agreement, or any other documents related to the transactions contemplated by this Agreement. Those officers, agents or employees

will be deemed to execute documents in their official capacities only, and not in their individual capacities. This provision does not relieve any officer, agent or employee from the performance of any official duty provided by law.

d. <u>No assignment.</u> Neither Party may assign any of its rights or obligations under this Agreement without the express consent of the other.

e. <u>Amendments.</u> Neither this Agreement, nor any provision hereof may be changed, waived, discharged, modified or terminated orally, but only by an instrument in writing signed by the Party against whom enforcement is sought.

f. Further instruments. Upon a Party's request, the other Party will execute, acknowledge and deliver any further instruments reasonably necessary or desired to carry out more effectively the purposes of this Agreement or any other document related to the transactions contemplated by this Agreement.

g. <u>Governing law</u>. The Parties intend that North Carolina law will govern this Agreement and all matters of its interpretation. To the extent permitted by law, the Parties agree that any action brought with respect to this Agreement must be brought in the North Carolina General Court of Justice in Orange County, North Carolina.

h. <u>Time not of the essence</u>. The Parties agree that time is not of the essence with respect to the deadlines and other limits of this Agreement, except where expressly stated.

i. <u>Not a partnership</u>. This Agreement describes and defines an arm'slength contract between the Town and SHVF. The Town and SHVF are not partners or otherwise participants in a joint venture.

j. Entire agreement. This Agreement constitutes the entire agreement between the Town and SHVF with respect to its general subject matter.

k. <u>No third-party beneficiaries</u>. There are no persons or entities intended as third-party beneficiaries of this Agreement. No person or entity, including the Collaborative Developers, is intended to have any rights to enforce any rights or obligations under this Agreement, other than the Town, SHVF and their respective successors and assigns.

l. <u>**Counterparts**</u>. This Agreement may be executed in several counterparts, including separate counterparts. Each will be an original, but all of them together constitute the same instrument.

m. <u>**Recording allowed**</u>. Either Party may provide for this Agreement to be recorded in the office of the Register of Deeds of Orange County, North Carolina.

n. Execution: Effective date. This Agreement will become effective as of the last date and time indicated on the signature page for a signature (the "Effective Date"). If the Agreement has not become effective, however, prior to _____, 2021, then any offer represented by the first Party's signature is automatically revoked, and no Party has any further rights or obligations under this Agreement. Each Party must promptly give notice of its execution to the other Party.

Attachments –

- A Site description
- B Definitions; rules of interpretation
- C Development Contract components
- D Tentative Project Budget

[The remainder of this page has been left blank intentionally.]

IN WITNESS WHEREOF, the Town and SHVF have caused this Agreement to be executed and delivered by duly authorized officers.

(SEAL)

ATTEST:

TOWN OF CHAPEL HILL, NORTH CAROLINA

By:

Maurice Jones Town Manager

Date and time: _____

STATE OF NORTH CAROLINA; ORANGE COUNTY

Sabrina Oliver

Town Clerk

I,______, a Notary Public of such Town and State, certify that Sabrina Oliver and Maurice Jones personally came before me this day and acknowledged that they are the Town Clerk and the Town Manager, respectively, of the Town of Chapel Hill, North Carolina, and that by authority duly given and as the act of such Town, the foregoing instrument was signed in the Town's name by such Town Manager, sealed with its corporate seal and attested by such Town Clerk.

WITNESS my hand and official stamp or seal, this _____ day of _____, 2021.

[SEAL]

Notary Public

My commission expires: _____

[Agreement for 2200 Homestead Road Site Development, dated as of _____, 2021]

19

IN WITNESS WHEREOF, the Town and SHVF have caused this Agreement to be executed and delivered by duly authorized officers.

(SEAL) ATTEST:	SELF-HELP VENTURES FUND		
	By:		
Printed name:	Printed name:		
Title:	Title:		
	Date and time:		
STATE OF NORTH CAROLINA; ORANGE COUNTY			
I, a Notary Public of suc personally came befor and the, r tion, and that by authority duly give	h Town and State, certify that and re me this day and acknowledged that they are the espectively, of Self Help Ventures Fund, a corpora- ven and as the act of such corporation, the foregoing		
instrument was signed in the corp corporate seal and attested by suc	poration's name by such, sealed with its ch		
WITNESS my hand and offi	cial stamp or seal, this day of, 2021.		

[SEAL]

Notary Public

My commission expires: _____

[Agreement for 2200 Homestead Road Site Development, dated as of _____, 2021]

<u>Attachment A – Legal description of Site</u>

688

[To come]

Schedule B -- Definitions; Rules of Interpretation

Definitions. For all purposes of this Agreement, unless the context requires otherwise, the following terms have the following meanings.

"Budget" means the budget for the sources of uses of Project Funds referenced in Section 2B1.

"Business Day" means any day other than a day that Town offices have previously been scheduled to be closed.

"Closing" and "Closing Date" have the meanings assigned in Section 1C.

"Collaborative Developer" or "Developers" means the partners under the Memorandum of Understanding dated February 27, 2020 with the Town and SHVF, and specifically means CASA, Community Home Trust, and Habitat for Humanity of Orange County.

"Collaborative Development Contract" means an agreement between a Collaborative Developer and the Town for the vertical development of a portion of the Site as contemplated by Section 3.

"Completion Date" means the first date substantially all Project is complete.

"Deadline" means the deadline for Project completion as designated in Section 1D5.

"Deed" means the deed to convey the Site to SHVF referenced in Section 1C.

"Effective Date" has the meaning assigned in Section 6(n).

SHVF or the Town may be referred to individually as a "Party" and together as the "Parties."

"Hope Gardens" or "" Hope Gardens Work" means the specific work and site relocation that support the nonprofit and student run Hope Gardens.

"Project" means the preparation of the Site to make it suitable for the vertical development contemplated by the Introduction, including carrying out the work contemplated by Site Development Contract.

"Project Costs" means all costs of carrying-out of the Project, including the costs of the design, planning, constructing, acquiring, installing, equipping of improvements to the Project. "Project Costs" includes sums required to reimburse SHVF for advances made for any costs otherwise described in this definition, and all financing costs.

"Site"" means the parcel of approximately 14 acres located at 2200 Homestead Road, as more particularly described in Attachment A.

"Site Contractor" means any firm obligated to carry out any portion of the Project under the Site Development Contract.

"Site Development Contract" means any and all contracts between SHVF and one or more third party Site Contractors to carry out any portion of the Project.

"Town Maximum Contribution" means \$3,500,000, as the maximum amount the Town intends to pay toward Project Costs.

Rules of Interpretation. Unless the context otherwise requires,

(a) An accounting term not otherwise defined has the meaning assigned to it in accordance with generally accepted accounting principles, and any accounting term should be understood to include any successor term or other new term with a substantially equivalent function.

(b) Unless otherwise indicated, references to Sections and Attachments are to the Sections and Attachments of this Agreement.

(c) Words importing the singular will include the plural and vice versa, and words importing any gender will include all other genders.

23

(d) The headings on sections and articles are solely for convenience of reference. They do not constitute a part of this Agreement, nor should they affect its meanings, construction or effect.

(e) Reference to any statute or regulation should be understood to include any successor provision.

(f) The use of the term "including" should in all cases be understood to mean "including, without limitation."

<u>Attachment C – required contents of Collaborative Developer Agreements</u>

Each Collaborative Developer Agreement will be between the Town and a Collaborative Developer. It will include at least the information specified in this Attachment, and such other provisions as the Town may require or accept.

- 1. Name of developer entity, relationship to Collaborative member, and organization chart
- 2. A list of all its project team members including architects, civil engineer and legal counsel that will be involved in the transactions. This section includes any knowledge of proposed management entities or agents working on the collaborative member's project. The Town may require additional information on the identity and qualifications of organizations or individuals.
- 3. Proposed development program for the Site, including schematic design, development timeline, and physical descriptions such as number and square footage of each dwelling unit, bedroom and bathroom count for each unit, footprints of all proposed buildings, description of amenities, number and location of parking stalls, pedestrian and vehicular circulation, and allowances for access roads, utilities, setbacks and other site plan elements required by the Town's development standards.
- 4. Project financing plan: The financing plan will illustrate the developer's plan for how to finance the approved development plan, including the sources, amounts and timing of different funding sources and the sources and uses of funds. Each financing plan must also specify the terms of any expected Town financial participation. The financing plan must disclose all fees and all amounts paid to entities under common control. The financing plan must also include a 30-year pro forma of the development's financial performance and show provisions for adequate reserves for routine maintenance and capital repairs.
- 5. An undertaking to provide the Town with an as-built Survey and other asbuilt construction documents.

6. Affordability plan, stating each Collaborative Developer's program to insure extended long-term affordability consistent with that Developer's expertise and role in the overall collaborative. For example:

CASA will finance, construct, own, and manage affordable multifamily rental units targeting households between 0% and 80% of AMI. CASA is expected to partner with the UNC Horizons program to designate a portion (approximately 34 units in a single building) of the multifamily units for participants and/or graduates of the Horizons program. There are expected to be approximately 74 total multifamily rental units developed by CASA.

Habitat for Humanity will finance, construct, market, and sell approximately 18 affordable duplex units (9 buildings, each with two units) targeted to households earning between 30% and 80% of AMI, with the majority of units targeted to households below 60% AMI.

Community Home Trust will finance, construct, market, and find residents for approximately 26 affordable townhomes targeted to households earning between 65% and 115% of AMI. The vast majority of these units will be available for sale to first-time homebuyers; a small number of units may be used as affordable rentals serving households under 65% AMI.

- Appropriate land use restrictions and covenants governing both the behavior of the Collaborative Developer and the land to provide for the Town's typical 99-year affordability period consistent with the affordability plan. The restrictions covenants will be in place prior to fee simple conveyance to the Collaborative Developer.
- 8. Appropriate representations and warranties from the Collaborative Developer as to such matters as existence and good standing, proper authorization, financial and technical capability, absence of litigation or conflict with other agreements, lack of debarment, and other customary matters.
- 9. Indemnification by the Developer of the Town with respect to all activities at the Developer's portion of the Site after conveyance.

10. Designation of appropriate project contact for decision making purposes. Additional provisions for notices, resolution of disputes and similar matters.

27

Draft – October 8, 2021

<u>Attachment D – Draft Project Budget</u>

Sources of funds

All sources are committed unless indicated otherwise.

Source	Tentative amount (\$)
Town of Chapel Hill Affordable Housing Bond	3,300,000
Town of Chapel Hill AHDR	170,000
Orange County Affordable Housing Bond	1,500,000
Community Project Funding, Rep. Price (anticipated)	1,871,349
TOTAL	6,841,349

Uses of funds

Numbers shown are preliminary and subject to change based on construction cost escalations and other unforeseen project costs that may arise.

Use	Tentative amount (\$)
Site Development Costs	4,943,236
Contribution to Hope Gardens Site Costs	95,000
Hard Cost Contingency	988,647
Design, Survey, & Geotech Testing	289,435
Other Soft Costs	203,776
Developer Fee	321,255
TOTAL	6,841,349

28

*Last updated October 1, 2021 by Self-Help Ventures Fund staff.

Item Overview

Item #: 14., File #: [21-0772], Version: 1

Meeting Date: 10/13/2021

Concept Plan Review: 5500 and 5502 Old Chapel Hill Road.

See the Summary Report on the next page.

The Agenda will reflect the text below and/or the motion text will be used during the meeting.

PRESENTER: Corey Liles, Principal Planner

- a. Review of process
- b. Presentation by the applicant
- c. Comments from the Community Design Commission
- d. Comments from the public
- e. Comments and questions from the Mayor and Town Council
- f. Motion to adopt a resolution transmitting Council comments to the applicant.

RECOMMENDATION: That the Council adopt the resolution transmitting comments to the applicant.

CONCEPT PLAN REPORT

CONCEPT PLAN REVIEW: 5500 AND 5502 OLD CHAPEL HILL ROAD (PROJECT #21-055)

SUMMARY REPORT

TOWN OF CHAPEL HILL PLANNING DEPARTMENT Colleen Willger, Director Judy Johnson, Assistant Director

DECISION POINTS

of the primary land uses.

5500 and 5502 Old Chanel Hill Road October 13, 2021 CIT, PA, on behalf of FB Canital I	
Store and Store of Chapter fills (Store in Store	artners

STAFF RECOMMENDATION

That the Council adopt the resolution transmitting comments to the applicant regarding the proposed development.

PROCESS The Council will hear the applicant's presentation, receive comments from the Community Design Commission, Housing Advisory Board, and Stormwater Utility Management Advisory Board, hear public comments, and offer suggestions to the applicant.

- Because this review is a Concept Plan submittal, statements by individual Council members this evening do not represent an official position or commitment on the part of a Council member with respect to the position he or she may take when and if the Council considers a formal application.
- The Community Design Commission reviewed a concept plan for this site on September 28, 2021.
- The Housing Advisory Board reviewed a concept plan for this site on September 14, 2021.
- The Stormwater Utility Management Advisory Board reviewed a concept plan for this site on September 28, 2021.

PROJECT OVERVIEW

This approximately 6.5-acre site is located on the north side of Old Chapel Hill Road, just to the west of Interstate 40 (I-40). The site is zoned Residential-1 (R-1). There are currently a single-family dwelling unit and several outbuildings on the property.

The applicant proposes to construct a 90-unit, four-to-five story apartment building and 126 parking spaces. The plan shows the portion of the parcel south of the stream being developed as part of this proposal. The proposal does not propose any encroachment into the stream buffer.

The site is located in the North 15-501 Corridor

The FLUM identifies multifamily residential as one

Area of the Future Land Use Map (FLUM).

ATTACHMENTS	 Concept Plan Report Draft Staff Presentation Resolution A, transmitting comments to the applicant Advisory Board recommendations (<i>to be attached</i>) Applicant Materials 	

697

LONG-RANGE PLANS EVALUATION

5500 and 5502 Old Chapel Hill Road

The following report provides an evaluation by Planning Staff of the Concept Plan site, based on long-range planning considerations.

PROPERTY ADDRESS 5500 and 5502 Old Chapel Hill Road ()	APPLICANT Wendi Ramsden CJT, PA		CURRENT ZONING DISTRICT Residential-1 (R-1)			
EXISTING LAND USE Vacant / Undeveloped		PROPOSED LAND USE Multifamily Residential				
SURROUNDING PROPERTIES – EXISTING LAND USES I-40 freeway (North/East), Single-family residence (East, West, and South)						
FUTURE LAND USE MAP (FLUM) FOCUS AREA North 15-501 Corridor		FLUM SUB-AREA A				
 OTHER APPLICABLE ADOPTED PLANS Mobility and Connectivity Plan Parks Comprehensive Plan Greenways Master Plan Chapel Hill Bike Plan Cultural Arts Plan 		 Stormwater Mana Climate Action and West Rosemary St Central West Sma 	gement Master Plan d Response Plan (NEW) treet Development Guide Il Area Plan			

SUMMARY OF PLAN CONSIDERATIONS AFFECTING SITE

Map excerpts on following pages demonstrate the Plan Considerations listed below. The location of 5500 Old Chapel Hill Road is marked with the + symbol.

Future Land Use Map (FLUM)

- The project is located in the North 15-501 Corridor Sub-Area A.
- Multifamily Residential is identified as one of the appropriate Primary land uses.
- Typical Height in the Sub-Area is 4-6 stories.
- Transitional Area is on the south side of the site.

Mobility and Connectivity Plan

 NC Department of Transportation is nearing completion of a project to upgrade Old Chapel Hill Road with pedestrian and bicycle facilities.

Parks Comprehensive Plan

- The site does not fall within a Community Park or Neighborhood Park Service Area.
- No additional Neighborhood Parks or Community Parks are proposed in the vicinity of the site.

Greenways Master Plan

 The applicant should coordinate with Chapel Hill Parks & Recreation for the latest information on trail alignment, design, and construction timing.

Chapel Hill Bike Plan

• Mapping of future bike facilities in the Bike Plan is superseded by the Mobility and Connectivity Plan. The Bike Plan provides some additional detail on facility design.

Cultural Arts Plan

No opportunities for integrating public art are identified at locations that impact the site.

Stormwater Management Master Plan

The site is mostly located in the Clark Lake 1 (JL1) Basin. The applicant should coordinate with Chapel Hill's Stormwater Management Division to understand relevant stormwater considerations.

Climate Action and Response Plan (NEW)

(Note: no map excerpt provided, as the Plan is generally text-based)

- Developing the site in accordance with the Future Land Use Map and Mobility Plan would contribute to the following Plan actions:
 - Create walkable, bikeable, transit-served neighborhoods
 Increase bicycling, walking, and transit use
- Conditions for development could contribute to the other actions in the plan such as: .
 - Net-zero emissions for new construction
 - Create a town-wide EV charging station network
 - Protect water quality, natural, and agricultural resources
 - Enhance green infrastructure

CONCEPT PLAN REPORT 5500 and 5502 Old Chapel Hill Road

Future Land Use Map (Excerpt)

* See Mobility Plan for more information about proposed multi-modal improvements

Mobility and Connectivity Plan (Excerpt)

CONCEPT PLAN REPORT 5500 and 5502 Old Chapel Hill Road

CONCEPT PLAN REPORT 5500 and 5502 Old Chapel Hill Road

Greenways Master Plan (Excerpt)

CONCEPT PLAN REPORT

5500 and 5502 Old Chapel Hill Road

Cultural Arts Plan (Excerpt)

Legend

Opportunities for Intergrating Public Art into Town Master Plans & Action Plans

> Gateway Node of Intersecting Plans Shared Improvement Corridor

> > Entranceway or Major Cross-Connector

Future Non-Street Pedestrian and Transit Facilities

> Future Nature Trail Proposed Paved Greenway

na

- Town Public Art: Existing or Funded
 - Existing Public Art
 - A Funded & Planned Public Art

Public Lands & Town Boundaries

Stormwater Management Master Plan (Excerpt)

Council

CONCEPT PLAN 10/13/2021

5500 Old Chapel Hill Road 5500/5502 Old Chapel Hill Rd . Chapel Hill, NC . 27514

RECOMMENDATION

Adopt Resolution, transmitting comments to the Applicant regarding the proposed development

CONCEPT PLANS

- No Decision; Feedback Only
- Applicant provides a rough sketch
- Staff does not conduct a formal review of concept plans
- Sketch is forwarded to advisory boards for preliminary feedback

PROCESS OVERVIEW

Chapel Hill Planning I 405 Martin Luther King Jr. Blvd. I townofchapelhill.org

708

PROJECT SUMMARY

- **Existing Zoning-R1**
- □ Multi-Family Res.
- Approx. 90 Units
- Approx. 126 Parking
- Recreational Amenities

KEY POINTS-*Evaluation*

□ 15/501 N. Future Focus Area

-Sub Area <u>A</u>

-Multifamily, shops, offices & <u>commercial</u>/office

-Parks and Green/Gathering Spaces

-Townhouse and Residences

-Typical Height 4-6 stories

RECOMMENDATION

Adopt Resolution, transmitting comments to the Applicant regarding the proposed development

Chapel Hill Planning I 405 Martin Luther King Jr. Blvd. I townofchapelhill.org

A RESOLUTION TRANSMITTING COUNCIL COMMENTS ON A CONCEPT PLAN FOR 5500 AND 5502 OLD CHAPEL HILL ROAD (PROJECT #21-055) (2021-10-13/R-19)

WHEREAS, a Concept Plan has been submitted for review by the Council of the Town of Chapel Hill for 5500 and 5502 Old Chapel Hill Road, further identified by Durham County Parcel Identifier Numbers 0709-01-09-7325 and 0709-01-09-8651; and

WHEREAS, the Council has the opportunity tonight to hear this applicant's presentation, receive a set of comments from the Community Design Commission, the Stormwater Management Utility Advisory Board, and the Housing Advisory Board, hear public comments, and offer suggestions to the applicant; and

WHEREAS, the Council has heard presentations from the applicant and members of the public; and

WHEREAS, statements by individual Council members this evening are not an official position or commitment on the part of a Council member with respect to the position he or she may take when and if a formal application for development is subsequently submitted to the Council for formal consideration; and

WHEREAS, the Council has discussed the proposal, with Council members offering reactions and suggestions.

NOW, THEREFORE, BE IT RESOLVED by the Council of the Town of Chapel Hill that the Council transmits comments to the applicant regarding this proposal, as expressed by Council members during discussions on October 13, 2021 and reflected in minutes of that meeting.

This the 13th day of October, 2021.

713						
CONCEPT PLAN APPLICATION						
Parcel Identifi	er Number (PIN): 0709-01	097325 /	0709-01-09-8651		Date: 26 July 2021	
Section A: Project Information						
Proiect Name	Project Name: 5500 Old Chapel Hill Road					
Property Add	Iress: 5500 and 5502 Old	Chapel Hill	Road	Zir	Code: 27707	
Use Groups (A, B, and/or C): A Existing Zoning District: R-1						
90 unit apartment building with 126 parking spaces and recreational amenities					menities	
Project Description:						
Section B: Applicant, Owner and/or Contract Purchaser Information						
Applicant Information (to whom correspondence will be mailed)						
Name: CJT, PA Attn: Wendi Ramsden						
Address:	111 W Main Street					
City:	Durham	State:	NC	Zip Code:	27701	
Phone:	919-682-0368	Email:	wramsden@cjtpa.co	m		
The undersigned applicant hereby certifies that, to the best of his knowledge and belief, all information supplied with						
this application is true and accurate.						
Signature:	Menti La	not		Date:	7.26.2021	
Owner/Contract Purchaser Information:						
Owner Contract Purchaser						
Name:	EB Capital Partners, Attn: Ernest Brown					
Address:	100 Silers Fen Court					
City:	Chapel Hill	State:	NC	Zip Code:	27517	
Phone:	202-586-3062	Email:	ebrown@ebcapitalpa	artners.com		
The undersigned applicant hereby certifies that, to the best of his knowledge and belief, all information supplied with this application is true and accurate						
Signature:	Date:					
	×.					

5500 Old Chapel Hill Road

Concept Plan Application

26 July 2021

Response to Project Summary Questions

- 1. Would this project demonstrate compliance with the Comprehensive Plan?
 - Small Area Plan N/A
 - Overall Zone Yes / NCD N/A
 - Study Area N/A
 - Land Use Plan Complies with the guidelines and design as characterized for the North 15 501 Corridor Focus Area as described in the Future Land Use Map / Charting Our Future report December 2020

The site is within Town limits.

2. Would the proposed project comply with the Land Use map?

Yes, the project complies with the December 2020 Future Land Use report.

3. Would the proposed project require a rezoning?

Yes.

4. What is the proposed zoning district?

Existing zoning is R-1. Zoning to accommodate multi-family residential at a density of 14 units/ac and an FAR of .482 could be OI-3.

5. Would the proposed project require modifications to the existing regulations?

It is expected that the applicant would ask for modifications to the street landscape buffer. There would also be modification request for disturbance of steep slopes. There is only 1,300 sf of steep slope on site broken up into 7 areas. The largest steep slope area is about 600 sf. The project would disturb 75% of the steep slopes.

6. If there is a residential component to the project, does the applicant propose to address affordable housing?

The entire project will be residential. The developer is expected to offer some percentage of the units as affordable and workforce. The developer has reached out to the Town's housing staff, and expects to meet with them prior to the board presentations.

a. Has the applicant presented its concept plan to the Housing Advisory Board? *No. This will happen during the concept plan review process.*

714

- b. Has the applicant met with appropriate Town staff to discuss affordable housing policy, expectations, and options? *The developer has reached out to the Town housing department and has an appointment to meet with them about policy, expectations, and options prior to the Housing Advisory Board presentation.*
- c. Is the project for ownership or rental? *Rental.*
- 7. Are there existing conditions that impact the site design (i.e. environmental features such as RCD, slopes, erosion and sedimentation, retention of trees and tree stands, stormwater drainage patterns, significant views into and out of the site)?

Yes.

There is an existing intermittent stream on site, running west to east. The associated RCD is 50' each side of the stream. This zone effectively divides the property in two, with the southern portion slightly larger than the northern portion.

There are many utilities along the frontage – overhead power lines, underground stormwater lines, and water utilities, all with associated easements.

8. Has the applicant addressed traffic impact? Traffic and circulation issues?

Traffic impacts will be assessed at the time of formal conditional zoning application. Recent improvements have been made to Old Chapel Hill Road with the addition of the round-about at Pope, widening of the street, and addition of sidewalks to the east.

- 9. How is the application compatible with he surrounding neighborhood and/or district? *The project is compatible with the Town's initiatives for development in the North 15 501 Corridor focus area.*
- 10. Has the applicant discussed the project with adjacent neighbors?

The contract purchaser has not formally spoken with adjacent landowners.

5500 Old Chapel Hill Road

Concept Plan Application

26 July 2021

Developer's Program

The project includes a 90-unit 4-5 story apartment building with 126 parking spaces. The building will be an urban style apartment with access through a central lobby space and units accessed off interior corridors. The design will include a mix of materials such as brick and aluminum storefronts on the ground level, and a mix of fiber cement board and batten siding along with metal on the upper floors. The building will be 4 stories facing Old Chapel Hill Road and will take advantage of slope to add a lower level on the north side of the building. That lower level will be the location for the leasing office and indoor amenities. The project will also include exterior site amenities such as a pool, dog park, disc golf, and walking trails. The residential units will all be accessed from interior corridors on the top four floors.

The project is accessible to public transit and also close to I-40 for easy access for commuters. The service functions (for example trash collection) will be handled inside the lower level of the building.

The northeastern portion of the parcel fronts the highway (I-40) - that portion of the site is intended to remain undeveloped but will be used for recreation, and the full 100'wide landscape buffer will be satisfied with retained tree coverage. The development will be contained in the southern portion of the site, accessible from Old Chapel Hill Road. The site frontage is almost 360 lf, and two driveways are planned on that frontage.

The site is served by a Chapel Hill Transit route which will carry passengers into downtown Chapel Hill.

The property is a rectangular parcel approximately 6.5 acres in size with a stream and related buffer running west to east through the center.

The current concept includes plans for the development of the approximately 4 acres south of the stream and related buffer zone. There are no current plans to develop the 2.5 acres of buildable area north of the stream but that may be developed in the future in a compatible use, or as adjacent parcels develop and provide access. As part of the current development plan, nature trails or a disc golf course may be incorporated into the forest area north of the stream, and would be field located to avoid grading, large tree removal, and tree clearing in general. Pedestrian creek crossing would be made by stepping stones or by low flow crossing strategies.

A pond stormwater management facility will be constructed to handle runoff from the development and will meet the current storm management requirements.

The RCD zones will remain forested and the minimum requirement of 30% tree coverage will be exceeded by existing forest to remain. It is expected that approximately 35% of the site will remain forested, and additional canopy and understory trees will be added in the design. West, south and eastern required buffers would be 10'-20' wide and the project design includes constructed buffers to meet the internal buffer requirements. The buffer along the I-40 frontage would be 100' wide and is expected to remain in forest.

Statement of Compliance with Comprehensive Plan

The proposed residential project is being designed to comply with the Chapel Hill Comprehensive Plan, and with the Future Land Use Map (FLUM).

The main applicable concepts from the Comprehensive Plan are Community Choices, and Sustainability.

Community Choices:

The project will provide small apartments in an urban style building. This gives Town residents a choice of apartment style living which is not garden-style walk up, but a more urban framework. The building will be an urban style corridor loaded facility with interior amenities as well as site recreation facilities. This facility will be marketed to young professionals and empty nesters. Because the majority of units are 1-bedroom, it is unlikely to attract families or student populations.

Sustainability:

This apartment project will take advantage of dense development to concentrate site disturbance and allow for a greater amount of forest to remain, as well as staying out of RCD zones on site.

Charting Our Future Guiding Principals

The following principals are identified in the Town's Land Use Initiative published in December 2020.

- 1. Demonstrate the Town's commitment to effectively respond to the threats associated with climate change as well as environmental stewardship and resiliency.
- 2. Ensure equitable planning and development.
- 3. Encourage a diversity of housing types.
- 4. Promote distinctive, safe, and attractive neighborhoods.
- 5. Cultivate a vibrant and inclusive community.

- 6. Direct investment along key transportation corridors and promote construction of transit and multi-modal transportation options in concert with the Town's regional transportation partners.
- 7. Support and facilitate economic development, including the development of flexible and varied types of retail and offices spaces; job creation; innovation; and entrepreneurship, through redevelopment and infill development, in order to expand and diversify the Town's tax base to enable the Town's fiscal resiliency.
- 8. Provide appropriate transition between land uses and buildings of different scales.
- 9. Preserve and maintain Chapel Hill's appearance and create the quality of design and development the Town desires.
- 10. Cooperate and collaborate with all of the Town's regional partners especially the University of North Carolina at Chapel Hill and UNC Health.

The proposed multi-family project complies with the majority of these guidelines and does not contradict the others. Multi family use has been identified as a primary desired use in this zone (Sub Area A of the North 15-501 Corridor) in the Charting Our Future report. The 4-5 story height falls in the range of typical height and transitional height desired in this area.

The project will implement sustainable design measures to promote environmental sustainability. Many recreational amenities will involve low impact use of stream buffers and retained forest area. The stream buffer on site will be protected, and the retained forest on site will exceed Town codes. Additional plantings will be included in the design to provide parking lot shade, hardscape shade, building shade, as well as aesthetic benefit. Stormwater runoff from new impervious surfaces will be treated on site for both peak flow and for water quality improvement.

The project will offer urban style apartment living new to this part of town. Sidewalks will be added to the street frontage.

Statement of Compliance with Design Guidelines

The portion of the site to be developed is a rectangular 4-acre piece fronting Old Chapel Hill Road. Located in Durham County, the parcel is within the limits of the Town of Chapel Hill.

The Town has a Design Manual which provide guidance for the design of new projects, intended "to assure that new designs remain in continuity with the Town's existing design 'successes' and at the same time inspire exciting and creative additions to the community's blend of distinctive buildings from many eras" (p.1)

These guidelines regulate site design as it relates to services, utilities, and landscaping.

Stormwater Treatment - The project will meet stormwater quantity and quality controls at the time of final plan development and approval. A surface pond is anticipated which will treat for both water quality and peak flow. The approximate size of this facility has been accommodated on the proposed layout plan.

Landscaping and tree protection - The project will meet most parts of this guideline including but not limited to: total tree coverage, parking lot screening, perimeter landscape buffers, landscaping around the building, and storm pond plantings. Because of the multiple overhead and underground utilities along Old Chapel Hill Road, and due to the large and irregular distance of the property line from the street edge, the applicant would expect to ask for a modification to reduce the street buffer planting or modify the location of the plantings.

It is expected that the retained tree coverage on site will be about 35%, exceeding the minimum requirement.

There is no current plan for development of the site north of the stream buffer. Though it is possible that mulch trails and disc golf would be incorporated into the plan, these are uses which would be accommodated without tree removal or grading.

Access and circulation - The project will be designed to comply with Town standards for circulation, parking, emergency access, and access for services such as utility maintenance and trash collection. Street frontage is approximately 360 LF, and the applicant expects to have 2 driveway entries along this frontage. There is no current opportunity for connection to other public streets, but the project could accommodate a future connection to potential development on the parcel to the west. As the west portion of the site will include an access drive, and parking on site

will exceed minimum requirements, it would be easy to accommodate off-street connections to future adjacent development.

Parking and loading - The LUMO calls for 1-1.25 parking spaces per 1 bedroom unit, and 1.4-1.75 spaces per 2-bedroom unit. Total required parking for this project would be a minimum of 100 spaces and maximum of 126 spaces. The concept plan accommodates 126 parking spaces total. Bicycle parking will meet Town codes, and the majority of bicycle parking will be located inside the building. Electric charging stations will be provided on site as well as bike storage and bike wash station to encourage alternative transportation usage.

Street lights, signs and markings - It is not anticipated that public street improvements will be required.

Utilities and easements - There is electric service along the parcel frontage. There is also water service along the frontage.

Sanitary sewer will involve some extension of a sanitary main, and possible a pump station within the project.

New easements will be recorded as necessary for utility mains and stormwater mitigation facilities on site, and also to recombine the two existing parcels.

Solid waste management - A trash compactor will be located in the lower level of the building. A recycling and cardboard dumpster collection facility will be located at the end of the surface parking area. Access to the collection areas will meet Town and County requirements, or will accommodate private pickup.

Affordable Housing Plan

This concept plan proposes multi-family housing at the east edge of Town. Of the 90 proposed units, some portion will be offered for affordable housing. These units will be located within the main building and will be constructed and leased concurrent with the market rate units.

The developer is currently working with Town staff to formulate an affordable housing plan offering.

722

AREA MAP SCALE: 1" = 150'

CONTACT INFORMATION

OWNER TERRI BENFORADFO 1026 NICKELBY ST, DURHAM NC 27703

CONTRACT PURCHASER / DEVELOPER EB CAPITAL PARTNERS 100 SILERS FEN COURT CHAPEL HILL NC 27517 CONTACT: Ernest Brown, 205–586–3062 ebrown@ebcapitalpartners.com

APPLICANT / LANDSCAPE ARCHITECT CJT PA 111 WEST MAIN STREET, DURHAM NC 27701 CONTACT: Wendi Ramsden, 919–682–0368 wramsden@cjtpa.com

SITE DATA

PIN

NET LAND AREA GROSS LAND AREA

EXISTING ZONING: PROPOSED ZONING:

EXISTING USE: PROPOSED USES:

283,682 SF / 6.51 AC NET 293,519 SF / 6.74 AC GROSS R-1 CZ-01-3 RESIDENTIAL, WOODED MULTI-FAMILY RESIDENTIAL

0709—01—09—7325 0709—01—09—8651

LIST OF SHEETS

CP-1 COVER & AREA MAP CP-2 EXISTING CONDITIONS PLAN CP-3 CONCEPT PLAN

RENDERED CONCEPT PLAN

SITE DATA

ENVIRONMENTAL CONSTRAINTS

SLOPES > 25% ON SITE = 1,315 SF POTENTIAL WETLAND = 3,170 SF INTERMITTENT STREAM WITH 50' STREAMSIDE RCD & 50' BUFFER

SLOPES > 25%

SLOPES 15-25%

7.26.2021

723

<u>RESIDENTIAL OFFERING</u>

90 APARTMENTS IN 4–5 STORY BUILDING 63 STUDIO/1-BDROM 27 2-BDRM

ANTICIPATED BUILDING SIZE: 141,500 SF

REQUIRED PARKING: 100 MIN, 126 MAX STUDIO/1-BEDROOM: 63-78 SPACES 2-BEDROOM: 37-48 PARKING PROVIDED: 126 SPACES

<u>RECREATION FACILITIES</u>

- POOL COMMUNITY GAZEBO AND GRILLING AREA
- DISC GOLF
- DOG PARK – WALKING TRAILS
- LOWER LEVEL BUILDING TO HAVE AMENITIES SUCH AS LEASING OFFICE, FITNESS ROOM, BIKE STORAGE, RESIDENT WORKSPACE

ENVIRONMENTAL CONSIDERATIONS

- PROTECTION OF STREAMSIDE RCD – STORMWATER MITIGATION IN SURFACE POND
- MINIMAL STEEP SLOPES - MULTIPLE UNDERGROUND AND ABOVE GROUND UTILITIES ALONG STREET FRONTAGE

Scale 1" = 60'

5500 Old Chapel Hill Road **Conceptual Site Plan - Chapel Hill, NC**

1"=70' (11x17)

