Storm Water Impact Analysis

For

Rosemary Street Parking Deck

125 East Rosemary Street
(PIN: 9788-37-4748 \& 9788-37-6817)

Prepared by:

Ballentine Associates, P.A.

Consulting Engineers
221 Providence Road
Chapel Hill, NC 27514
(919) 929-0481

BA Project \# 119016.02

Project Overview:

The Rosemary Street Parking Deck is located along East Rosemary in Chapel Hill, NC. The property PINs are 9788-37-4748 \& 9788-37-6817. The project is 1.76 acres total. The proposed project consists of approximately seven parking levels with approximately 1,100 parking spaces, bicycle parking and potentially some limited office and enclosed storage space. The project will include utility relocation \& removal, and relocation of an existing storm pipe. The project will result in a slight decrease in the total impervious cover on the site.

Existing Site Description:

The site is comprised of two parcels and totals approximately 1.6 acres. An existing parking deck is located on the western parcel and an asphalt and gravel surface parking lot is located on the eastern parcel. The site generally slopes from south to north, or from Rosemary Street toward North Street. There is a slight draw in the existing surface lot on the eastern parcel beneath which an existing 30 " RCP storm system conveys runoff from Rosemary Street and points south. The existing parking deck on the western parcel drains into this existing 30" RCP system via pipe connections and the majority of surface lot on the eastern parcel drains into this system via surface flow to a raised-top yard inlet, which located at the north end of the site. The existing 30 " RCP system discharges into an existing 48 "wide x 27 " deep stone drainage channel just beyond the northern property line of the project's eastern parcel.

There is $66,548 \mathrm{SF}(1.53 \mathrm{AC})$ of existing impervious ground cover within the project property limits. All the existing impervious ground cover will be removed as the site is re-developed.

There are no stream features within 150 feet of the parcel boundaries, so a stream determination was not required as directed by The Town of Chapel Hill. The site lies in the Jordan Lake Watershed, which is part of the Cape Fear River Basin. A copy of FIRM panel 3710978800K is included in Appendix A, which confirms that the site is not within a special flood hazard area. The NRCS Soils Survey mapping included in Appendix A shows that the soils on the site are Appling-urban land complex "AuC" and Urban land "Ur" and the site is 26% HSG B and 74% of the site is unrated.

Proposed Project Description:

The redevelopment of the site includes the demolition of the existing deck and all other improvements on both parcels and the construction of a parking deck with associated features.

The project will result in a post-developed impervious cover of $65,500 \mathrm{SF}$, which includes an allowance of $1,004 \mathrm{SF}$ and represents a net decrease of $1,048 \mathrm{SF}$ from existing conditions within the site's net land area.

Stormwater Management Requirements:

This project must meet the town of Chapel Hill's current stormwater requirements, which include:

Water Quality Requirements:

- All post-development stormwater runoff resulting from the first one inch of precipitation shall be treated to remove 85% of total suspended solids for all new impervious surfaces resulting from the Development. Stormwater treatment facilities will be designed according to the North Carolina Department of Environment Quality (NCDEQ) "Stormwater Design Manual" as modified by the Town: and any future written design guidance approved by both the Town and NCDEQ.
- The increase in runoff volume ("Delta") for the 2-year, 24-hour storm (3.6" depth) must be managed (i.e. released over a 2-5 day period).

Water Quantity Requirements:

- Post-developed peak flows cannot exceed pre-developed peak flows during the 1,2 , and 25-year storms.

Proposed Stormwater Management:

The project as proposed removes $1,048 \mathrm{SF}$ of impervious surface and therefore satisfies the Town's water quality requirements. Because there will be a slight increase in the project's runoff curve number due to the conversion of compacted gravel parking lot to impervious concrete and asphalt, there will be a slight increase in peak flows resulting from the project during the 1,2 , and 25 -year storms. The following table summarizes the peak flows at each of the site's five study points, as shown in Appendix A.

Study Point	1-Year (cfs)			2-Year (cfs)			25-Year (cfs)		
	Pre	Post Un- detained	\% change	Pre	Post Un- detained	\% change	Pre	Post Un- detained	$\%$ change
	0.04	0.02	-50.00%	0.07	0.03	-57.14%	0.19	0.09	-52.63%
2	5.48	5.89	7.48%	6.77	7.22	6.65%	11.93	12.60	5.62%
3	0.07	0.02	-71.43%	0.09	0.03	-66.67%	0.16	0.09	-43.75%
4	0.23	0.06	-73.91%	0.29	0.09	-68.97%	0.50	0.25	-50.00%
5	0.31	0.31	0.00%	0.38	0.38	0.00%	0.66	0.66	0.00%
Totals	6.14	6.29	2.44%	7.58	7.75	2.24%	13.43	13.69	1.94%

Refer to appendix A for site area mapping.

Proposed Pipe Replacement:

The old 30 " storm pipe system that currently runs through the site will be relocated and replaced with a new 36 " RCP system within an OWASA easement along the east side of the project site. Our calculations show that the existing pipe should be replaced with a new 36-inch RCP. Drainage inlet maps DA 5 and DA 6 located in Appendix A show the pre- and post-development drainage areas to each of the inlets in the existing and proposed systems, respectively. Hydraulic grade lines profiles ($10-\mathrm{Yr}$ and $25-\mathrm{Yr}$ storms) for the storm network and pipe capacity calculations for the existing storm pipe coming into the site are located in Appendix B.

Analysis of Downstream Channel:

Appendix B of this report includes a preliminary calculation showing that the existing channel downstream of the site is adequate to handle the post-development peak flows discharged into it from the project site.

Conclusion:

This project as proposed, will comply with the Town of Chapel Hill's water quality requirements because the project will result in a slight decrease in impervious cover. However, the project will result in a minor increase in peak flows. It is our opinion that the projected minor increase in peak flows will not adversely impact the downstream conveyance system.

List of Appendices:

- Appendix A - Maps
- DA-1 Pre-Developed Site Area Map
- DA-2 Post-Developed Site Area Map
- DA-3 Pre-Developed Drainage Area Map
- DA-4 Post-Developed Drainage Area Map
- DA-5 Pre-Developed Inlet Drainage Area Map
- DA-6 Post-Developed Inlet Drainage Area Map
- Soils Map -
- Hardbound
- NRCS Soils Map
- NRCS Hydrologic Soil Groups
- FIRM Panel 3710978800K
- USGS Topographic Map
- Aerial
- Appendix B - Stormwater Design Calculations
- Pipe Capacity Calculations
- Storm Sewers Schematic
- NCDOT Conduit Pipe Table (10-Year)
- Hydraulic Grade Line Profiles (10-Year)
- NCDOT Conduit Pipe Table (25-Year)
- Hydraulic Grade Line Profiles (25-Year)
- Hydrographs Report
- Hydraflow Channel Report (10-Year)
- Hydraflow Channel Report (25-Year)

- Appendix A - Maps

- DA-1 Pre-Developed Site Area Map
- DA-2 Post-Developed Site Area Map
- DA-3 Pre-Developed Drainage Area Map
- DA-4 Post-Developed Drainage Area Map
- DA-5 Pre-Developed Inlet Drainage Area Map
- DA-6 Post-Developed Inlet Drainage Area Map
- Soils Map -
- Hardbound
- NRCS Soils Map
- NRCS Hydrologic Soil Groups
- FIRM Panel 3710978800K
- USGS Topographic Map
- Aerial

MAP LEGEND

Area of Interest (AOI)	
	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(0) Blowout

B Borrow Pit
模 Clay Spot
$\diamond \quad$ Closed Depression
Gravel Pit
\therefore Gravelly Spot
(5) Landfill
A. Lava Flow

Marsh or swamp
Q Mine or Quarry
(C) Miscellaneous Water

- Perennial Water
- Rock Outcrop
\uparrow Saline Spot
\because Sandy Spot
Severely Eroded Spot
- Sinkhole

3. Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: Orange County, North Carolina
Survey Area Data: Version 19, Sep 16, 2019
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 27, 2014—May 6, 2014

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
AuC	Appling-Urban land complex, 2 to 10 percent slopes		0.5
Percent of AOI			
Ur	Urban land	1.3	26.0%
Totals for Area of Interest		$\mathbf{1 . 8}$	74.0%

MAP LEGEND

Area of Interest (AOI)	\square	C
Area of Interest (AOI)	\square	C/D
Soils		
Soil Rating Polygons		
$\square \mathrm{A}$	\square	Not rated or not available
A/D	Water Fe	ures
	\sim	Streams and Canals
B		
	Transpo	tion
B/D	H+	Rails
C	\sim	Interstate Highways
C/D	-	US Routes
D	\approx	Major Roads
Not rated or not available	\bigcirc	Local Roads
Soil Rating Lines	Background	
\cdots A		Aerial Photography
\cdots A/D		
$\cdots B$		
\cdots B/D		
$\cdots \mathrm{C}$		
$\cdots \mathrm{C} / \mathrm{D}$		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \quad \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
$\square \mathrm{B} / \mathrm{D}$		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: Orange County, North Carolina
Survey Area Data: Version 19, Sep 16, 2019
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 27, 2014—May 6, 2014

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AuC	Appling-Urban land complex, 2 to 10 percent slopes	B	0.5	26.0%
Ur	Urban land		1.3	74.0%
Totals for Area of Interest	$\mathbf{1 . 8}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C / D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

- Appendix B - Stormwater Design Calculations

- Pipe Capacity Calculations
- Storm Sewers Schematic
- NCDOT Conduit Pipe Table (10-Year)
- Hydraulic Grade Line Profiles (10-Year)
- NCDOT Conduit Pipe Table (25-Year)
- Hydraulic Grade Line Profiles (25-Year)
- Hydrographs Report
- Hydraflow Channel Report (10-Year)
- Hydraflow Channel Report (25-Year)

Pipe Capacity Calcs

Rational Method

Project:	Rosemary Deck
Proj. Number:	119006.02
Client:	Grubb Properties
Date:	$3 / 3 / 2020$
Revised:	$5 / 22 / 2020$

Ballentine
Associates, P.A.
Chapel Hill, NC 27514
(919) 929-0481 fax 489-2803

Pipe Capacity

Total Drainage Area	540522.30	sf
	12.41	ac

	Runoff Coefficient	Water Shed area (acres)	Total
Business Downtown area	0.80	12.41	0.80
		$\mathbf{1 2 . 4 1}$	$\mathbf{0 . 8 0}$

		$\mathbf{1 0} \mathbf{y r}$	
Drainage area	A	12.41	lacres
Runoff Coefficient	C	0.80	
Time of Concentration	t	10.00	mins
Rainfall Intensity	l	6.13	$\mathrm{in} / \mathrm{hr}$
Peak discharge	\mathbf{Q}	$\mathbf{6 0 . 8 5}$	$\mathbf{l f s}$

Time of Concentration	10.12 minutes
Use:	10.00 minutes

Pipe Capacity Calcs

Rational Method

Project:	Rosemary Deck
Proj. Number:	119006.02
Client:	Grubb Properties
Date:	$3 / 3 / 2020$
Revised:	$5 / 22 / 2020$

Ballentine
Associates, P.A.
Chapel Hill, NC 27514
(919) 929-0481 fax 489-2803

Pipe Capacity

Total Drainage Area	540522.30	sf
	12.41	ac

	Runoff Coefficient	Water Shed area (acres)	Total
Business Downtown area	0.80	12.41	0.80
		$\mathbf{1 2 . 4 1}$	$\mathbf{0 . 8 0}$

		$\mathbf{2 5} \mathbf{y r}$	
Drainage area	A	12.41	acres
Runoff Coefficient	C	0.80	
Time of Concentration	t	10.00	mins
Rainfall Intensity	l	7.01	$\mathrm{in} / \mathrm{hr}$
Peak discharge	\mathbf{Q}	$\mathbf{6 9 . 5 9}$	$\mathbf{l f s}$

Time of Concentration	10.12 minutes
Use:	10.00 minutes

Water Resources \& Environmental
Part B - Open System Hydraulics - Culvert Design

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

Storm Sewer Tabulation

Storm Sewer Profile

10YR HGL PROFILES

Storm Sewer Profile
10YR HGL PROFILES

Storm Sewer Profile

Storm Sewer Tabulation

Storm Sewer Profile

Storm Sewer Profile
25YR HGL PROFILES

Storm Sewer Profile

Watershed Model Schematic

Legend

Hyd. Origin

1 SCS Runoff Combine Combine

Description

PRE NORTHWEST SUBAREA
PRE TO RTYI \#1
PRE NORTHEAST SUBAREA
PRE TO RTYI \#2
PRE SOUTH SUBAREA
POST NORTHWEST SUBAREA
POST TO RTYI \#1
POST NORTHEAST SUBAREA
POST TO RTYI \#2
POST SOUTH SUBAREA
Pre Site Summary
Post Site Summary
Watershed Model Schematic. 1
Hydrograph Return Period Recap 2
1 - Year
Summary Report. 3
Hydrograph Reports 4
Hydrograph No. 1, SCS Runoff, PRE NORTHWEST SUBAREA 4
Hydrograph No. 2, SCS Runoff, PRE TO RTYI \#1 5
Hydrograph No. 3, SCS Runoff, PRE NORTHEAST SUBAREA 6
Hydrograph No. 4, SCS Runoff, PRE TO RTYI \#2 7
Hydrograph No. 5, SCS Runoff, PRE SOUTH SUBAREA. 8
Hydrograph No. 6, SCS Runoff, POST NORTHWEST SUBAREA 9
Hydrograph No. 7, SCS Runoff, POST TO RTYI \#1. 10
Hydrograph No. 8, SCS Runoff, POST NORTHEAST SUBAREA 11
Hydrograph No. 9, SCS Runoff, POST TO RTYI \#2. 12
Hydrograph No. 10, SCS Runoff, POST SOUTH SUBAREA 13
Hydrograph No. 11, Combine, Pre Site Summary. 14
Hydrograph No. 12, Combine, Post Site Summary 15
2 - Year
Summary Report 16
Hydrograph Reports 17
Hydrograph No. 1, SCS Runoff, PRE NORTHWEST SUBAREA 17
Hydrograph No. 2, SCS Runoff, PRE TO RTYI \#1 18
Hydrograph No. 3, SCS Runoff, PRE NORTHEAST SUBAREA 19
Hydrograph No. 4, SCS Runoff, PRE TO RTYI \#2 20
Hydrograph No. 5, SCS Runoff, PRE SOUTH SUBAREA. 21
Hydrograph No. 6, SCS Runoff, POST NORTHWEST SUBAREA 22
Hydrograph No. 7, SCS Runoff, POST TO RTYI \#1. 23
Hydrograph No. 8, SCS Runoff, POST NORTHEAST SUBAREA 24
Hydrograph No. 9, SCS Runoff, POST TO RTYI \#2 25
Hydrograph No. 10, SCS Runoff, POST SOUTH SUBAREA 26
Hydrograph No. 11, Combine, Pre Site Summary 27
Hydrograph No. 12, Combine, Post Site Summary 28
10 - Year
Summary Report. 29
Hydrograph Reports 30
Hydrograph No. 1, SCS Runoff, PRE NORTHWEST SUBAREA 30
Hydrograph No. 2, SCS Runoff, PRE TO RTYI \#1 31
Hydrograph No. 3, SCS Runoff, PRE NORTHEAST SUBAREA 32
Hydrograph No. 4, SCS Runoff, PRE TO RTYI \#2 33
Hydrograph No. 5, SCS Runoff, PRE SOUTH SUBAREA. 34
Hydrograph No. 6, SCS Runoff, POST NORTHWEST SUBAREA 35
Hydrograph No. 7, SCS Runoff, POST TO RTYI \#1. 36
Hydrograph No. 8, SCS Runoff, POST NORTHEAST SUBAREA 37
Hydrograph No. 9, SCS Runoff, POST TO RTYI \#2. 38
Hydrograph No. 10, SCS Runoff, POST SOUTH SUBAREA. 39
Hydrograph No. 11, Combine, Pre Site Summary 40
Hydrograph No. 12, Combine, Post Site Summary 41
25 - Year
Summary Report 42
Hydrograph Reports 43
Hydrograph No. 1, SCS Runoff, PRE NORTHWEST SUBAREA 43
Hydrograph No. 2, SCS Runoff, PRE TO RTYI \#1 44
Hydrograph No. 3, SCS Runoff, PRE NORTHEAST SUBAREA 45
Hydrograph No. 4, SCS Runoff, PRE TO RTYI \#2. 46
Hydrograph No. 5, SCS Runoff, PRE SOUTH SUBAREA. 47
Hydrograph No. 6, SCS Runoff, POST NORTHWEST SUBAREA 48
Hydrograph No. 7, SCS Runoff, POST TO RTYI \#1. 49
Hydrograph No. 8, SCS Runoff, POST NORTHEAST SUBAREA 50
Hydrograph No. 9, SCS Runoff, POST TO RTYI \#2. 51
Hydrograph No. 10, SCS Runoff, POST SOUTH SUBAREA 52
Hydrograph No. 11, Combine, Pre Site Summary. 53
Hydrograph No. 12, Combine, Post Site Summary 54
100 - Year
Summary Report. 55
Hydrograph Reports 56
Hydrograph No. 1, SCS Runoff, PRE NORTHWEST SUBAREA 56
Hydrograph No. 2, SCS Runoff, PRE TO RTYI \#1 57
Hydrograph No. 3, SCS Runoff, PRE NORTHEAST SUBAREA 58
Hydrograph No. 4, SCS Runoff, PRE TO RTYI \#2. 59
Hydrograph No. 5, SCS Runoff, PRE SOUTH SUBAREA. 60
Hydrograph No. 6, SCS Runoff, POST NORTHWEST SUBAREA 61
Hydrograph No. 7, SCS Runoff, POST TO RTYI \#1. 62
Hydrograph No. 8, SCS Runoff, POST NORTHEAST SUBAREA 63
Hydrograph No. 9, SCS Runoff, POST TO RTYI \#2. 64
Hydrograph No. 10, SCS Runoff, POST SOUTH SUBAREA. 65
Hydrograph No. 11, Combine, Pre Site Summary. 66
Hydrograph No. 12, Combine, Post Site Summary 67

Hydrograph Return Period Recap

Hydrograph Summary Report

Hyd. No. 1

PRE NORTHWEST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.042 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=88 \mathrm{cuft}$
Drainage area	$=0.040 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=2.96 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^0]

Hyd. No. 2

PRE TO RTYI \#1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=5.485 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=11,976 \mathrm{cuft}$
Drainage area	$=1.460 \mathrm{ac}$	Curve number	$=95^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. $($ Tc $)$	$=5.00 \mathrm{~min}$
Total precip.	$=2.96 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^1]

Hyd. No. 3

PRE NORTHEAST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.069 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=145 \mathrm{cuft}$
Drainage area	$=0.020$ ac	Curve number	$=92^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=2.96 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^2]| Q (cfs) | PRE NORTHEAST SUBAREA
 Hyd. No. 3 -- 1 Year | | | | | | | | | | | | $\begin{aligned} & Q \text { (cfs) } \\ & 0.10 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| 0.10 | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| 0.09 | | | | | | | | | | | | | 0.09 |
| | | | | | | | | | | | | | |
| 0.08 | | | | | | | | | | | | | |
| 0.08 | | | | | | | | | | | | | 0.08 |
| | | | | | | | | | | | | | |
| 0.07 | | | | | | | | | | | | | 0.07 |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| 0.06 | | | | | | | | | | | | | 0.06 |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| 0.05 | | | | | | | | | | | | | 0.05 |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| 0.04 | | | | | | | | | | | | | 0.04 |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| 0.03 | | | | | | | | | | | | | 0.03 |
| | | | | | | | | | | | | | |
| 0.02 | | | | | | | | | | | | | |
| 0.02 | | | | | | | | | | | | | 0.02 |
| | | | | | | | | | | | | | |
| 0.01 | | | | | | | | | | | | | 0.01 |
| | | | | | | | | | | | | | |
| | | | | | | | , | | | | | | |
| 0.00 | 120 | 240 | 360 | 480 | 600 | 720 | | 840 | 960 | 1080 | 1200 | 132 | 0 |
| | | | | | | | | | | | | Time | (min) |

Hydrograph Report

Hyd. No. 4

PRE TO RTYI \#2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.235 \mathrm{cfs}$
Storm frequency	$=1$ yrs	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=535 \mathrm{cuft}$
Drainage area	$=0.060$ ac	Curve number	$=97^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=2.96$ in	Distribution	$=7$ Ype II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^3]

Hyd. No. 5

PRE SOUTH SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.308 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=684 \mathrm{cuft}$
Drainage area	$=0.080 \mathrm{ac}$	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=2.96 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^4]
Hyd. No. 6

POST NORTHWEST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.021 \mathrm{cfs}$
Storm frequency	$=1$ yrs	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=44 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	$=2.96$ in	Time of conc. (Tc)
Total precip.	$=5.00 \mathrm{~min}$		
Storm duration	$=24 \mathrm{hrs}$	Distribution	$=$ Type II
		Shape factor	$=484$

[^5]Hyd. No. 7

POST TO RTYI \#1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=5.886 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=13,083 \mathrm{cuft}$
Drainage area	$=1.530 \mathrm{ac}$	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. $($ Tc $)$	$=5.00 \mathrm{~min}$
Total precip.	$=2.96 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^6]

Hyd. No. 8

POST NORTHEAST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.021 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=44 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=2.96 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^7]
Hyd. No. 9

POST TO RTYI \#2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.061 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=125 \mathrm{cuft}$
Drainage area	$=0.050 \mathrm{ac}$	Curve number	$=71^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=\mathrm{User}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=2.96 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite (Area/CN) $=[(0.040 \times 69)+(0.010 \times 79)] / 0.050$

Hydrograph Report

Hyd. No. 10

POST SOUTH SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.308 \mathrm{cfs}$
Storm frequency	$=1$ yrs	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=684 \mathrm{cuft}$
Drainage area	$=0.080 \mathrm{ac}$	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	$=2.96$ in	Time of conc. (Tc)
Total precip.	$=5.00 \mathrm{~min}$		
Storm duration	$=24 \mathrm{hrs}$	Distribution	$=$ Type II
		Shape factor	$=484$

[^8]
Hyd. No. 11

Pre Site Summary

Hydrograph type	$=$ Combine	Peak discharge	$=6.136 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=13,428 \mathrm{cuft}$
Inflow hyds.	$=1,2,3,4,5$	Contrib. drain. area	$=1.660 \mathrm{ac}$

Hydrograph Report

Hyd. No. 12

Post Site Summary

Hydrograph type	$=$ Combine	Peak discharge	$=6.290 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=13,981 \mathrm{cuft}$
Inflow hyds.	$=6,7,8,9,10$	Contrib. drain. area	$=1.700 \mathrm{ac}$

Hydrograph Summary Report

Hyd. No. 1

PRE NORTHWEST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.067 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=136 \mathrm{cuft}$
Drainage area	$=0.040 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=3.58 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=[(0.040 \times 69)] / 0.040$

Hyd. No. 2

PRE TO RTYI \#1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=6.767 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=14,993 \mathrm{cuft}$
Drainage area	$=1.460 \mathrm{ac}$	Curve number	$=95^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. $($ Tc $)$	$=5.00 \mathrm{~min}$
Total precip.	$=3.58 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^9]

Hyd. No. 3

PRE NORTHEAST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.087 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=185 \mathrm{cuft}$
Drainage area	$=0.020$ ac	Curve number	$=92^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=3.58 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^10]

Hyd. No. 4

PRE TO RTYI \#2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.287 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=660 \mathrm{cuft}$
Drainage area	$=0.060 \mathrm{ac}$	Curve number	$=97^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	$=3.58$ in	Time of conc. (Tc)
Total precip.	$=5.00 \mathrm{~min}$		
Storm duration	$=24 \mathrm{hrs}$	Distribution	$=$ Type II
		Shape factor	$=484$

[^11]

Hyd. No. 5

PRE SOUTH SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.377 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=851 \mathrm{cuft}$
Drainage area	$=0.080 \mathrm{ac}$	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=\mathrm{User}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=3.58 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^12]
Hyd. No. 6

POST NORTHWEST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.034 \mathrm{cfs}$
Storm frequency	$=2$ rys	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=68 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U$ Ser	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=3.58$ in	Distribution	$=T y p e ~ I I$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^13]
Hyd. No. 7

POST TO RTYI \#1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=7.218 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=16,268 \mathrm{cuft}$
Drainage area	$=1.530 \mathrm{ac}$	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=\mathrm{User}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=3.58 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^14]

Hyd. No. 8

POST NORTHEAST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.034 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=68 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. $($ Tc $)$	$=5.00 \mathrm{~min}$
Total precip.	$=3.58 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^15]
Hyd. No. 9

POST TO RTYI \#2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.094 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=190 \mathrm{cuft}$
Drainage area	$=0.050 \mathrm{ac}$	Curve number	$=71^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=3.58 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite (Area/CN) $=[(0.040 \times 69)+(0.010 \times 79)] / 0.050$

Hyd. No. 10

POST SOUTH SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.377 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=851 \mathrm{cuft}$
Drainage area	$=0.080$ ac	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=3.58$ in	Distribution	$=$ Type II
Storm duration	$=24$ hrs	Shape factor	$=484$

[^16]
Hyd. No. 11

Pre Site Summary

Hydrograph type	$=$ Combine	Peak discharge	$=7.583 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=16,825 \mathrm{cuft}$
Inflow hyds.	$=1,2,3,4,5$	Contrib. drain. area	$=1.660 \mathrm{ac}$

Hyd. No. 12

Post Site Summary

Hydrograph type	$=$ Combine	Peak discharge	$=7.751 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=17,445 \mathrm{cuft}$
Inflow hyds.	$=6,7,8,9,10$	Contrib. drain. area	$=1.700 \mathrm{ac}$

Hydrograph Summary Report

Hyd. No. 1

PRE NORTHWEST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.142 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=283 \mathrm{cuft}$
Drainage area	$=0.040 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=5.17 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^17]

Hyd. No. 2

PRE TO RTYI \#1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=10.02 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=22,796 \mathrm{cuft}$
Drainage area	$=1.460 \mathrm{ac}$	Curve number	$=95^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=5.17 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

${ }^{*}$ Composite $($ Area $/ \mathrm{CN})=[(0.720 \times 98)+(0.200 \times 98)+(0.060 \times 92)+(0.400 \times 92)+(0.030 \times 69)+(0.050 \times 79)] / 1.460$

Hyd. No. 3

PRE NORTHEAST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.132 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=290 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=92^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. $($ Tc $)$	$=5.00 \mathrm{~min}$
Total precip.	$=5.17 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^18]
Hyd. No. 4

PRE TO RTYI \#2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.419 \mathrm{cfs}$
Storm frequency	$=10$ yrs	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=983 \mathrm{cuft}$
Drainage area	$=0.060 \mathrm{ac}$	Curve number	$=97^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=5.17 \mathrm{in}$	Dintribution	$=T y p e \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^19]

Hydrograph Report

Hyd. No. 5

PRE SOUTH SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.555 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,280 \mathrm{cuft}$
Drainage area	$=0.080 \mathrm{ac}$	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=5.17 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^20]
Hyd. No. 6

POST NORTHWEST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.071 \mathrm{cfs}$
Storm frequency	$=10$ yrs	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=142 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	$=5.17 \mathrm{in}$	Time of conc. (Tc)
Total precip.	$=5.00 \mathrm{~min}$		
Storm duration	$=24 \mathrm{hrs}$	Distribution	$=$ Type II
		Shape factor	$=484$

[^21]
Hyd. No. 7

POST TO RTYI \#1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=10.61 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=24,480 \mathrm{cuft}$
Drainage area	$=1.530 \mathrm{ac}$	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=5.17 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^22]

Hyd. No. 8

POST NORTHEAST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.071 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=142 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=5.17 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^23]
Hyd. No. 9

POST TO RTYI \#2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.190 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2$ min	Hyd. volume	$=382 \mathrm{cuft}$
Drainage area	$=0.050 \mathrm{ac}$	Curve number	$=71^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. $($ Tc $)$	$=5.00 \mathrm{~min}$
Total precip.	$=5.17 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^24]

Hyd. No. 10

POST SOUTH SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.555 \mathrm{cfs}$
Storm frequency	$=10$ yrs	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,280 \mathrm{cuft}$
Drainage area	$=0.080$ ac	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=5.17$ in	Distribution	$=$ Type II
Storm duration	$=24$ hrs	Shape factor	$=484$

[^25]
Hyd. No. 11

Pre Site Summary

Hydrograph type	$=$ Combine	Peak discharge	$=11.27 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=25,632 \mathrm{cuft}$
Inflow hyds.	$=1,2,3,4,5$	Contrib. drain. area	$=1.660 \mathrm{ac}$

Hyd. No. 12

Post Site Summary

Hydrograph type	$=$ Combine	Peak discharge	$=11.49 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=26,425 \mathrm{cuft}$
Inflow hyds.	$=6,7,8,9,10$	Contrib. drain. area	$=1.700 \mathrm{ac}$

Hydrograph Summary Report

Hyd. No. 1

PRE NORTHWEST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.189 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=381 \mathrm{cuft}$
Drainage area	$=0.040 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=6.11 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^26]

Hyd. No. 2

PRE TO RTYI \#1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=11.93 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=27,431 \mathrm{cuft}$
Drainage area	$=1.460 \mathrm{ac}$	Curve number	$=95^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=6.11 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^27]

Hyd. No. 3

PRE NORTHEAST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.159 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=22 \mathrm{~min}$	Hyd. volume	$=352 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=92^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U \mathrm{ser}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=6.11 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^28]

Hyd. No. 4

PRE TO RTYI \#2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.497 \mathrm{cfs}$
Storm frequency	$=25$ yrs	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,175 \mathrm{cuft}$
Drainage area	$=0.060$ ac	Curve number	$=97^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=6.11$ in	Distribution	$=$ Type II
Storm duration	$=24$ hrs	Shape factor	$=484$

[^29]

Hyd. No. 5

PRE SOUTH SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.659 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,535 \mathrm{cuft}$
Drainage area	$=0.080 \mathrm{ac}$	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=6.11 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^30]
Hyd. No. 6

POST NORTHWEST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.095 \mathrm{cfs}$
Storm frequency	$=25$ yrs	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=190 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	$=6.11 \mathrm{in}$	Time of conc. (Tc)
Total precip.	$=5.00 \mathrm{~min}$		
Storm duration	$=24 \mathrm{hrs}$	Distribution	$=$ Type II
		Shape factor	$=484$

[^31]
Hyd. No. 7

POST TO RTYI \#1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=12.60 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=29,350 \mathrm{cuft}$
Drainage area	$=1.530 \mathrm{ac}$	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=\mathrm{User}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=6.11 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=[(0.260 \times 98)+(0.023 \times 98)+(1.140 \times 98)+(0.050 \times 69)+(0.060 \times 79)] / 1.530$

Hyd. No. 8

POST NORTHEAST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.095 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=718 \mathrm{~min}$
Time interval	$=2$ min	Hyd. volume	$=190 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. $($ Tc $)$	$=5.00 \mathrm{~min}$
Total precip.	$=6.11 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=[(0.020 \times 69)] / 0.020$

Hyd. No. 9

POST TO RTYI \#2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.252 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=508 \mathrm{cuft}$
Drainage area	$=0.050 \mathrm{ac}$	Curve number	$=71^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=6.11 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite (Area/CN) $=[(0.040 \times 69)+(0.010 \times 79)] / 0.050$

Hyd. No. 10

POST SOUTH SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.659 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,535 \mathrm{cuft}$
Drainage area	$=0.080$ ac	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=6.11 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

${ }^{*}$ Composite $($ Area $/ C N)=[(0.070 \times 98)+(0.010 \times 79)] / 0.080$

Hyd. No. 11

Pre Site Summary

Hydrograph type	$=$ Combine	Peak discharge	$=13.43 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=30,874 \mathrm{cuft}$
Inflow hyds.	$=1,2,3,4,5$	Contrib. drain. area	$=1.660 \mathrm{ac}$

Hyd. No. 12

Post Site Summary

Hydrograph type	$=$ Combine	Peak discharge	$=13.69 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=31,774 \mathrm{cuft}$
Inflow hyds.	$=6,7,8,9,10$	Contrib. drain. area	$=1.700 \mathrm{ac}$

Hydrograph Summary Report

Hyd. No. 1

PRE NORTHWEST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.271 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=548 \mathrm{cuft}$
Drainage area	$=0.040 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U \mathrm{ser}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=7.62 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^32]

Hyd. No. 2

PRE TO RTYI \#1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=14.99 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=34,894 \mathrm{cuft}$
Drainage area	$=1.460 \mathrm{ac}$	Curve number	$=95^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. $($ Tc $)$	$=5.00 \mathrm{~min}$
Total precip.	$=7.62 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^33]

Hyd. No. 3

PRE NORTHEAST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.201 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=454 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=92^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. $($ Tc $)$	$=5.00 \mathrm{~min}$
Total precip.	$=7.62 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^34]PRE NORTHEAST SUBAREA

Hyd No. 3

Hyd. No. 4

PRE TO RTYI \#2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.621 \mathrm{cfs}$
Storm frequency	$=100$ yrs	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,483 \mathrm{cuft}$
Drainage area	$=0.060$ ac	Curve number	$=97^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	$=7.62$ in	Time of conc. (Tc)
Total precip.	$=5.00 \mathrm{~min}$		
Storm duration	$=24$ hrs	Distribution	$=$ Type II
		Shape factor	$=484$

[^35]
Hyd. No. 5

PRE SOUTH SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.825 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,944 \mathrm{cuft}$
Drainage area	$=0.080 \mathrm{ac}$	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=7.62 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

* Composite $($ Area/CN $)=[(0.070 \times 98)+(0.010 \times 79)] / 0.080$

Hyd. No. 6

POST NORTHWEST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.136 \mathrm{cfs}$
Storm frequency	$=100$ yrs	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=274 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=7.62$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^36]| POST NORTHWEST SUBAREA | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q (cfs) | Hyd. No. 6 -- 100 Year | | | | | | | | | | | $\begin{aligned} & Q \text { (cfs) } \\ & 0.50 \end{aligned}$ |
| 0.50 | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| 0.45 | | | | | | | | | | | | 0.45 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| 0.40 | | | | | | | | | | | | 0.40 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | 0.35 |
| 0.35 | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | 0.30 |
| 0.30 | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | 0.25 |
| 0.25 | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| 0.20 | | | | | | | | | | | | 0.20 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| 0.15 | | | | | | | | | | | | 0.15 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| 0.10 | | | | | | | | | | | | 0.10 |
| | | | | | | | | | | | | |
| 0.05 | | | | | | | | | | | | 0.05 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| 0.00 | 120 | | | 480 | 600 | | 840 | | | 1200 | 1320 | 1440 |
| | | 240 | 360 | | | 720 | | 960 | 1080 | | | |
| | | | | | | | | | | | | Time (min) |

Hyd. No. 7

POST TO RTYI \#1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=15.78 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=37,186 \mathrm{cuft}$
Drainage area	$=1.530 \mathrm{ac}$	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=7.62 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^37]

Hyd. No. 8

POST NORTHEAST SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.136 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=274 \mathrm{cuft}$
Drainage area	$=0.020$ ac	Curve number	$=69^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=\mathrm{User}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=7.62 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^38]

Hyd. No. 9

POST TO RTYI \#2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.357 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=723 \mathrm{cuft}$
Drainage area	$=0.050 \mathrm{ac}$	Curve number	$=71^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=\mathrm{User}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=7.62 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^39]

Hyd. No. 10

POST SOUTH SUBAREA

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.825 \mathrm{cfs}$
Storm frequency	$=100$ yrs	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,944 \mathrm{cuft}$
Drainage area	$=0.080$ ac	Curve number	$=96^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$==$ User	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=7.62$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^40]
Hyd. No. 11

Pre Site Summary

Hydrograph type	$=$ Combine	Peak discharge	$=16.90 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=39,323 \mathrm{cuft}$
Inflow hyds.	$=1,2,3,4,5$	Contrib. drain. area	$=1.660 \mathrm{ac}$

Q (cfs)
18.00 Pre Site Summary
Hyd. No. 11 - 100 Year

Hyd. No. 12

Post Site Summary

Hydrograph type	$=$ Combine	Peak discharge	$=17.24 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=40,402 \mathrm{cuft}$
Inflow hyds.	$=6,7,8,9,10$	Contrib. drain. area	$=1.700 \mathrm{ac}$

Channel Report

10-YR Post Channel Analysis - Rosemary Deck

Rectangular

Bottom Width (ft)	$=4.00$
Total Depth (ft)	$=2.25$
Invert Elev (ft)	$=446.80$
Slope $(\%)$	$=5.71$
N-Value	$=0.020$

Calculations

Compute by:
Known Q (cfs)
$=0.020$

Known Q
$=68.60$

Highlighted

Depth (ft)	$=1.18$
Q (cfs)	$=68.60$
Area (sqft)	$=4.72$
Velocity (ft/s)	$=14.53$
Wetted Perim (ft)	$=6.36$
Crit Depth, Yc (ft)	$=2.10$
Top Width (ft)	$=4.00$
EGL (ft)	$=4.46$

Elev (ft)

Section

Depth (ft)

Reach (ft)

25-YR Post Channel Analysis - Rosemary Deck

Rectangular

Bottom Width (ft)	$=4.00$
Total Depth (ft)	$=2.25$
Invert Elev (ft)	$=446.80$
Slope (\%)	$=5.71$
N-Value	$=0.020$

Calculations

Compute by:
Known Q (cfs)
$=0.020$

Known Q
$=75.21$

Highlighted

Depth (ft)	$=1.26$
Q (cfs)	$=75.21$
Area (sqft)	$=5.04$
Velocity (ft/s)	$=14.92$
Wetted Perim (ft)	$=6.52$
Crit Depth, Yc (ft)	$=2.23$
Top Width (ft)	$=4.00$
EGL (ft)	$=4.72$

Elev (ft)

Section

Depth (ft)

Reach (ft)

[^0]: * Composite (Area/CN) $=[(0.040 \times 69)] / 0.040$

[^1]: ${ }^{*}$ Composite $($ Area $/ C N)=[(0.720 \times 98)+(0.200 \times 98)+(0.060 \times 92)+(0.400 \times 92)+(0.030 \times 69)+(0.050 \times 79)] / 1.460$

[^2]: * Composite $($ Area/CN $)=[(0.020 \times 92)] / 0.020$

[^3]: * Composite $($ Area/CN $)=[(0.040 \times 98)+(0.010 \times 98)+(0.010 \times 92)] / 0.060$

[^4]: * Composite $($ Area/CN $)=[(0.070 \times 98)+(0.010 \times 79)] / 0.080$

[^5]: * Composite (Area/CN) $=[(0.020 \times 69)] / 0.020$

[^6]: * Composite $($ Area $/ \mathrm{CN})=[(0.260 \times 98)+(0.023 \times 98)+(1.140 \times 98)+(0.050 \times 69)+(0.060 \times 79)] / 1.530$

[^7]: * Composite (Area/CN) $=[(0.020 \times 69)] / 0.020$

[^8]: * Composite $($ Area/CN $)=[(0.070 \times 98)+(0.010 \times 79)] / 0.080$

[^9]: * Composite $($ Area $/ \mathrm{CN})=[(0.720 \times 98)+(0.200 \times 98)+(0.060 \times 92)+(0.400 \times 92)+(0.030 \times 69)+(0.050 \times 79)] / 1.460$

[^10]: * Composite (Area/CN) $=[(0.020 \times 92)] / 0.020$

[^11]: ${ }^{*}$ Composite $($ Area/CN $)=[(0.040 \times 98)+(0.010 \times 98)+(0.010 \times 92)] / 0.060$

[^12]: * Composite (Area/CN) $=[(0.070 \times 98)+(0.010 \times 79)] / 0.080$

[^13]: * Composite (Area/CN) $=[(0.020 \times 69)] / 0.020$

[^14]: * Composite $($ Area $/ \mathrm{CN})=[(0.260 \times 98)+(0.023 \times 98)+(1.140 \times 98)+(0.050 \times 69)+(0.060 \times 79)] / 1.530$

[^15]: * Composite $($ Area/CN $)=[(0.020 \times 69)] / 0.020$

[^16]: * Composite (Area/CN) $=[(0.070 \times 98)+(0.010 \times 79)] / 0.080$

[^17]: * Composite (Area/CN) $=[(0.040 \times 69)] / 0.040$

[^18]: * Composite $($ Area/CN $)=[(0.020 \times 92)] / 0.020$

[^19]: * Composite $($ Area $/ C N)=[(0.040 \times 98)+(0.010 \times 98)+(0.010 \times 92)] / 0.060$

[^20]: * Composite (Area/CN) $=[(0.070 \times 98)+(0.010 \times 79)] / 0.080$

[^21]: * Composite (Area/CN) $=[(0.020 \times 69)] / 0.020$

[^22]: ${ }^{*}$ Composite $($ Area $/ C N)=[(0.260 \times 98)+(0.023 \times 98)+(1.140 \times 98)+(0.050 \times 69)+(0.060 \times 79)] / 1.530$

[^23]: * Composite (Area/CN) $=[(0.020 \times 69)] / 0.020$

[^24]: * Composite (Area/CN) $=[(0.040 \times 69)+(0.010 \times 79)] / 0.050$

[^25]: * Composite (Area/CN) $=[(0.070 \times 98)+(0.010 \times 79)] / 0.080$

[^26]: * Composite (Area/CN) $=[(0.040 \times 69)] / 0.040$

[^27]: ${ }^{*}$ Composite $($ Area $/ \mathrm{CN})=[(0.720 \times 98)+(0.200 \times 98)+(0.060 \times 92)+(0.400 \times 92)+(0.030 \times 69)+(0.050 \times 79)] / 1.460$

[^28]: * Composite $($ Area/CN $)=[(0.020 \times 92)] / 0.020$

[^29]: * Composite $($ Area $/ C N)=[(0.040 \times 98)+(0.010 \times 98)+(0.010 \times 92)] / 0.060$

[^30]: * Composite $($ Area/CN $)=[(0.070 \times 98)+(0.010 \times 79)] / 0.080$

[^31]: * Composite (Area/CN) $=[(0.020 \times 69)] / 0.020$

[^32]: * Composite (Area/CN) $=[(0.040 \times 69)] / 0.040$

[^33]: ${ }^{*}$ Composite $($ Area $/ C N)=[(0.720 \times 98)+(0.200 \times 98)+(0.060 \times 92)+(0.400 \times 92)+(0.030 \times 69)+(0.050 \times 79)] / 1.460$

[^34]: * Composite $($ Area/CN $)=[(0.020 \times 92)] / 0.020$

[^35]: * Composite $($ Area $/ \mathrm{CN})=[(0.040 \times 98)+(0.010 \times 98)+(0.010 \times 92)] / 0.060$

[^36]: * Composite (Area/CN) $=[(0.020 \times 69)] / 0.020$

[^37]: ${ }^{*}$ Composite $($ Area $/ \mathrm{CN})=[(0.260 \times 98)+(0.023 \times 98)+(1.140 \times 98)+(0.050 \times 69)+(0.060 \times 79)] / 1.530$

[^38]: * Composite $($ Area/CN $)=[(0.020 \times 69)] / 0.020$

[^39]: * Composite $($ Area/CN $)=[(0.040 \times 69)+(0.010 \times 79)] / 0.050$

[^40]: * Composite (Area/CN) $=[(0.070 \times 98)+(0.010 \times 79)] / 0.080$

